ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/multipole/dielectric_new.tex
Revision: 4415
Committed: Fri Apr 8 18:05:38 2016 UTC (9 years, 5 months ago) by gezelter
Content type: application/x-tex
File size: 77260 byte(s)
Log Message:
Latest

File Contents

# User Rev Content
1 gezelter 4396 \documentclass[aip,jcp,amsmath,amssymb,preprint]{revtex4-1}
2 mlamichh 4353
3     \usepackage{graphicx}% Include figure files
4     \usepackage{dcolumn}% Align table columns on decimal point
5     \usepackage{multirow}
6 gezelter 4396 \usepackage{bm}
7 mlamichh 4353 \usepackage{natbib}
8     \usepackage{times}
9     \usepackage{mathptmx}
10     \usepackage[version=3]{mhchem} % this is a great package for formatting chemical reactions
11     \usepackage{url}
12     \usepackage{braket}
13 mlamichh 4389 \usepackage{tabularx}
14 gezelter 4400 \usepackage{rotating}
15 gezelter 4408 \usepackage{multirow}
16     \usepackage{booktabs}
17 gezelter 4396
18 mlamichh 4389 \newcolumntype{Y}{>{\centering\arraybackslash}X}
19 mlamichh 4353
20     \begin{document}
21    
22     \title{Real space electrostatics for multipoles. III. Dielectric Properties}
23    
24     \author{Madan Lamichhane}
25     \affiliation{Department of Physics, University
26     of Notre Dame, Notre Dame, IN 46556}
27     \author{Thomas Parsons}
28     \affiliation{Department of Chemistry and Biochemistry, University
29     of Notre Dame, Notre Dame, IN 46556}
30     \author{Kathie E. Newman}
31     \affiliation{Department of Physics, University
32     of Notre Dame, Notre Dame, IN 46556}
33     \author{J. Daniel Gezelter}
34     \email{gezelter@nd.edu.}
35     \affiliation{Department of Chemistry and Biochemistry, University
36     of Notre Dame, Notre Dame, IN 46556}
37    
38     \date{\today}% It is always \today, today,
39     % but any date may be explicitly specified
40    
41 mlamichh 4393 \begin{abstract}
42 gezelter 4399 In the first two papers in this series, we developed new shifted
43     potential (SP), gradient shifted force (GSF), and Taylor shifted
44     force (TSF) real-space methods for multipole interactions in
45     condensed phase simulations. Here, we discuss the dielectric
46     properties of fluids that emerge from simulations using these
47     methods. Most electrostatic methods (including the Ewald sum)
48     require correction to the conducting boundary fluctuation formula
49     for the static dielectric constants, and we discuss the derivation
50     of these corrections for the new real space methods. For quadrupolar
51     fluids, the analogous material property is the quadrupolar
52     susceptibility. As in the dipolar case, the fluctuation formula for
53     the quadrupolar susceptibility has corrections that depend on the
54     electrostatic method being utillized. One of the most important
55     effects measured by both the static dielectric and quadrupolar
56     susceptibility is the ability to screen charges embedded in the
57     fluid. We use potentials of mean force between solvated ions to
58     discuss how geometric factors can lead to distance-dependent
59     screening in both quadrupolar and dipolar fluids.
60 mlamichh 4353 \end{abstract}
61    
62     \maketitle
63    
64     \section{Introduction}
65    
66     Over the past several years, there has been increasing interest in
67 gezelter 4396 pairwise or ``real space'' methods for computing electrostatic
68     interactions in condensed phase
69 gezelter 4401 simulations.\cite{Wolf99,Zahn02,Kast03,Beckd05,Ma05,Wu:2005nr,Fennell06,Fukuda:2013uq,Wang:2016kx}
70 gezelter 4396 These techniques were initially developed by Wolf {\it et al.} in
71     their work towards an $\mathcal{O}(N)$ Coulombic sum.\cite{Wolf99}
72     Wolf's method of using cutoff neutralization and electrostatic damping
73     is able to obtain excellent agreement with Madelung energies in ionic
74 gezelter 4401 crystals.\cite{Wolf99}
75 mlamichh 4353
76 gezelter 4396 Zahn \textit{et al.}\cite{Zahn02} and Fennell and Gezelter extended
77     this method using shifted force approximations at the cutoff distance
78     in order to conserve total energy in molecular dynamics
79 gezelter 4399 simulations.\cite{Fennell06} Other recent advances in real-space
80 gezelter 4400 methods for systems of point charges have included explicit
81 gezelter 4401 elimination of the net multipole moments inside the cutoff sphere
82     around each charge site.\cite{Fukuda:2013uq,Wang:2016kx}
83 mlamichh 4353
84 gezelter 4399 In the previous two papers in this series, we developed three
85     generalized real space methods: shifted potential (SP), gradient
86     shifted force (GSF), and Taylor shifted force (TSF).\cite{PaperI,
87     PaperII} These methods evaluate electrostatic interactions for
88     charges and higher order multipoles using a finite-radius cutoff
89     sphere. The neutralization and damping of local moments within the
90     cutoff sphere is a multipolar generalization of Wolf's sum. In the
91     GSF and TSF methods, additional terms are added to the potential
92     energy so that forces and torques also vanish smoothly at the cutoff
93     radius. This ensures that the total energy is conserved in molecular
94     dynamics simulations.
95    
96 gezelter 4400 One of the most stringent tests of any new electrostatic method is the
97 gezelter 4390 fidelity with which that method can reproduce the bulk-phase
98     polarizability or equivalently, the dielectric properties of a
99 gezelter 4396 fluid. Before the advent of computer simulations, Kirkwood and Onsager
100     developed fluctuation formulae for the dielectric properties of
101 gezelter 4399 dipolar fluids.\cite{Kirkwood39,Onsagar36} Along with projections of
102     the frequency-dependent dielectric to zero frequency, these
103 gezelter 4400 fluctuation formulae are now widely used to predict the static
104     dielectric constant of simulated materials.
105 gezelter 4396
106 gezelter 4399 If we consider a system of dipolar or quadrupolar molecules under the
107     influence of an external field or field gradient, the net polarization
108     of the system will largely be proportional to the applied
109     perturbation.\cite{Chitanvis96, Stern-Feller03, SalvchovI14,
110     SalvchovII14} In simulations, the net polarization of the system is
111     also determined by the interactions \textit{between} the
112 gezelter 4400 molecules. Therefore the macroscopic polarizablity obtained from a
113 gezelter 4399 simulation depends on the details of the electrostatic interaction
114 gezelter 4400 methods that were employed in the simulation. To determine the
115 gezelter 4399 relevant physical properties of the multipolar fluid from the system
116     fluctuations, the interactions between molecules must be incorporated
117     into the formalism for the bulk properties.
118 gezelter 4396
119 gezelter 4400 In most simulations, bulk materials are treated using periodic
120     replicas of small regions, and this level of approximation requires
121     corrections to the fluctuation formulae that were derived for the bulk
122     fluids. In 1983 Neumann proposed a general formula for evaluating
123     dielectric properties of dipolar fluids using both Ewald and
124     real-space cutoff methods.\cite{NeumannI83} Steinhauser and Neumann
125     used this formula to evaluate the corrected dielectric constant for
126 gezelter 4404 the Stockmayer fluid using two different methods: Ewald-Kornfeld (EK)
127 gezelter 4400 and reaction field (RF) methods.\cite{NeumannII83}
128 gezelter 4390
129 gezelter 4392 Zahn \textit{et al.}\cite{Zahn02} utilized this approach and evaluated
130     the correction factor for using damped shifted charge-charge
131     kernel. This was later generalized by Izvekov \textit{et
132 gezelter 4400 al.},\cite{Izvekov08} who noted that the expression for the
133 gezelter 4401 dielectric constant reduces to widely-used conducting boundary formula
134     for real-space methods that have first derivatives that vanish at the
135     cutoff radius.
136 gezelter 4390
137 gezelter 4400 One of the primary topics of this paper is the derivation of
138     correction factors for the three new real space methods. We find that
139     the correction formulae for dipolar molecules depends not only on the
140 gezelter 4399 methodology being used, but also on whether the molecular dipoles are
141     treated using point charges or point dipoles. We derive correction
142     factors for both cases.
143    
144 gezelter 4392 In quadrupolar fluids, the relationship between quadrupolar
145     susceptibility and the dielectric constant is not as straightforward
146 gezelter 4399 as in the dipolar case. The effective dielectric constant depends on
147     the geometry of the external (or internal) field
148     perturbation.\cite{Ernst92} Significant efforts have been made to
149     increase our understanding the dielectric properties of these
150 gezelter 4400 fluids,\cite{JeonI03,JeonII03,Chitanvis96} although a general
151     correction formula has not yet been developed.
152 gezelter 4390
153 gezelter 4392 In this paper we derive general formulae for calculating the
154 gezelter 4400 quadrupolar susceptibility of quadrupolar fluids. We also evaluate the
155     correction factor for SP, GSF, and TSF methods for quadrupolar fluids
156     interacting via point charges, point dipoles or directly through
157     quadrupole-quadrupole interactions.
158 gezelter 4390
159 gezelter 4400 We also calculate the screening behavior for two ions immersed in
160     multipolar fluids to estimate the distance dependence of charge
161     screening in both dipolar and quadrupolar fluids. We use three
162     distinct methods to compare our analytical results with computer
163     simulations:
164 gezelter 4390 \begin{enumerate}
165 gezelter 4396 \item responses of the fluid to external perturbations,
166 gezelter 4399 \item fluctuations of system multipole moments, and
167 gezelter 4396 \item potentials of mean force between solvated ions,
168 gezelter 4390 \end{enumerate}
169    
170 gezelter 4408 \begin{figure}
171     \includegraphics[width=\linewidth]{Schematic}
172     \caption{Dielectric properties of a fluid measure the response to
173 gezelter 4411 external electric fields and gradients (left), or internal fields
174     and gradients generated by the molecules themselves (center), or
175     fields produced by embedded ions (right). The dielectric constant
176     ($\epsilon$) measures all three responses in dipolar fluids (top).
177     In quadrupolar liquids (bottom), the relevant bulk property is the
178     quadrupolar susceptibility ($\chi_Q$), and the geometry of the field
179 gezelter 4408 determines the effective dielectric screening.}
180     \label{fig:schematic}
181     \end{figure}
182    
183 gezelter 4400 Under the influence of weak external fields, the bulk polarization of
184     the system is primarily a linear response to the perturbation, where
185     proportionality constant depends on the electrostatic interactions
186     between the multipoles. The fluctuation formulae connect bulk
187     properties of the fluid to equilibrium fluctuations in the system
188     multipolar moments during a simulation. These fluctuations also depend
189     on the form of the electrostatic interactions between molecules.
190     Therefore, the connections between the actual bulk properties and both
191     the computed fluctuation and external field responses must be modified
192     accordingly.
193 gezelter 4390
194 gezelter 4400 The potential of mean force (PMF) allows calculation of an effective
195 gezelter 4399 dielectric constant or screening factor from the potential energy
196     between ions before and after dielectric material is introduced.
197 gezelter 4400 Computing the PMF between embedded point charges is an additional
198     check on the bulk properties computed via the other two methods.
199 mlamichh 4363
200 gezelter 4400 \section{The Real-Space Methods}
201    
202 gezelter 4404 In the first paper in this series, we derived interaction energies, as
203     well as expressions for the forces and torques for point multipoles
204     interacting via three new real-space methods.\cite{PaperI} The Taylor
205     shifted-force (TSF) method modifies the electrostatic kernel,
206     $f(r) = 1/r$, so that all forces and torques go smoothly to zero at
207     the cutoff radius,
208     \begin{equation}
209     U^{\text{TSF}}_{ab} = M_{a} M_{b} f_n(r).
210     \label{TSF}
211     \end{equation}
212     Here the multipole operator for site $a$, $M_{a}$, is expressed in
213     terms of the point charge, $C_{a}$, dipole, ${\bf D}_{a}$, and
214     quadrupole, $\mathsf{Q}_{a}$, for object $a$, etc. Because each of
215     the multipole operators includes a set of implied gradient operators,
216     an approximate electrostatic kernel, $f_n(r)$ is Taylor-expanded
217     around the cutoff radius, so that $n + 1$ derivatives vanish as
218     $r \rightarrow r_c$. This ensures smooth convergence of the energy,
219     forces, and torques as molecules leave and reenter each others cutoff
220     spheres. The order of the Taylor expansion is determined by the
221     multipolar order of the interaction. That is, smooth
222     quadrupole-quadrupole forces require the fifth derivative to vanish at
223     the cutoff radius, so the appropriate function Taylor expansion will
224     be of fifth order.
225    
226     Following this procedure results in separate radial functions for each
227     of the distinct orientational contributions to the potential. For
228     example, in dipole-dipole interactions, the direct dipole dot product
229     ($\mathbf{D}_{a} \cdot \mathbf{D}_{b}$) is treated differently than
230     the dipole-distance dot products:
231     \begin{equation}
232     U_{\mathbf{D}_{a}\mathbf{D}_{b}}(r)= -\frac{1}{4\pi \epsilon_0} \left[ \left(
233     \mathbf{D}_{a} \cdot
234     \mathbf{D}_{b} \right) v_{21}(r) +
235     \left( \mathbf{D}_{a} \cdot \hat{\mathbf{r}} \right)
236     \left( \mathbf{D}_{b} \cdot \hat{\mathbf{r}} \right) v_{22}(r) \right]
237     \end{equation}
238     The two radial functions, $v_{21}(r)$ and $v_{22}(r)$ are both $1/r^3$
239     in standard electrostatics, but they become distinct in the TSF
240     method, the relative orientations for interacting molecules so that
241     forces and torques vanish smoothly as the molecules drift beyond the
242     cutoff radius.
243    
244     A second and somewhat simpler approach involves shifting the gradient
245     of the Coulomb potential for each particular multipole order,
246     \begin{equation}
247     U^{\text{GSF}}_{ab} = \sum \left[ U(\mathbf{r}, \mathsf{A}, \mathsf{B}) -
248     U(r_c \hat{\mathbf{r}},\mathsf{A}, \mathsf{B}) - (r-r_c)
249     \hat{\mathbf{r}} \cdot \nabla U(r_c \hat{\mathbf{r}},\mathsf{A},
250     \mathsf{B}) \right]
251     \label{generic2}
252     \end{equation}
253     where the sum describes a separate force-shifting that is applied to
254     each orientational contribution to the energy, i.e. $v_{21}$ and
255     $v_{22}$ are shifted separately. In this expression,
256     $\hat{\mathbf{r}}$ is the unit vector connecting the two multipoles
257     ($a$ and $b$) in space, and $\mathsf{A}$ and $\mathsf{B}$ represent
258     the orientations the multipoles. Because this procedure is equivalent
259     to using the gradient of an image multipole placed at the cutoff
260     sphere for shifting the force, this method is called the gradient
261     shifted-force (GSF) approach.
262    
263     Both the TSF and GSF approaches can be thought of as multipolar
264     extensions of the original damped shifted-force (DSF) approach that
265     was developed for point charges. There is also a multipolar extension
266     of the Wolf sum that is obtained by projecting an image multipole onto
267     the surface of the cutoff sphere, and including the interactions with
268     the central multipole and the image. This effectively shifts only the
269     total potential to zero at the cutoff radius,
270     \begin{equation}
271     U^{\text{SP}}_{ab} = \sum \left[ U(\mathbf{r}, \mathsf{A}, \mathsf{B}) -
272     U(r_c \hat{\mathbf{r}},\mathsf{A}, \mathsf{B}) \right]
273     \label{eq:SP}
274     \end{equation}
275     where the sum again describes separate potential shifting that is done
276     for each orientational contribution to the energy. The potential
277     energy between a central multipole and other multipolar sites goes
278     smoothly to zero as $r \rightarrow r_c$, but the forces and torques
279     obtained from this shifted potential (SP) approach are discontinuous
280     at $r_c$.
281    
282     All three of the new real space methods share a common structure: the
283     various orientational contributions to multipolar interaction energies
284     require separate treatment of their radial functions, and these are
285     tabulated for both the raw Coulombic kernel ($1/r$) as well as the
286     damped kernel ($\mathrm{erfc}(\alpha r)/r$), in the first paper of this
287     series.\cite{PaperI} The second paper in this series evaluated the
288     fidelity with which the three new methods reproduced Ewald-based
289     results for a number of model systems.\cite{PaperII} One of the major
290     findings was that moderately-damped GSF simulations produced nearly
291     identical behavior with Ewald-based simulations, but the real-space
292     methods scale linearly with system size.
293    
294 gezelter 4399 \section{Dipolar Fluids and the Dielectric Constant}
295 mlamichh 4353
296 gezelter 4399 Dielectric properties of a fluid arise mainly from responses of the
297     fluid to either applied fields or transient fields internal to the
298     fluid. In response to an applied field, the molecules have electronic
299     polarizabilities, changes to internal bond lengths, and reorientations
300     towards the direction of the applied field. There is an added
301     complication that in the presence of external field, the perturbation
302     experienced by any single molecule is not only due to external field
303     but also to the fields produced by the all other molecules in the
304     system.
305 mlamichh 4353
306 gezelter 4399 \subsection{Response to External Perturbations}
307    
308     In the presence of uniform electric field $\mathbf{E}$, an individual
309     molecule with a permanent dipole moment $p_o$ will realign along the
310     direction of the field with an average polarization given by
311 mlamichh 4353 \begin{equation}
312 gezelter 4400 \braket{\mathbf{p}} = \epsilon_0 \alpha_p \mathbf{E},
313 mlamichh 4353 \end{equation}
314 gezelter 4400 where $\alpha_p = {p_o}^2 / 3 \epsilon_0 k_B T$ is the contribution to
315     molecular polarizability due solely to reorientation dynamics.
316     Because the applied field must overcome thermal motion, the
317     orientational polarization depends inversely on the temperature.
318 mlamichh 4353
319 gezelter 4400 Likewise, a condensed phase system of permanent dipoles will also
320     polarize along the direction of an applied field. The polarization
321     density of the system is
322 mlamichh 4353 \begin{equation}
323 gezelter 4399 \textbf{P} = \epsilon_o \alpha_{D} \mathbf{E}.
324 mlamichh 4353 \label{pertDipole}
325     \end{equation}
326 gezelter 4400 The constant $\alpha_D$ is the macroscopic polarizability, which is an
327     emergent property of the dipolar fluid. Note that the polarizability,
328     $\alpha_D$ is distinct from the dipole susceptibility, $\chi_D$,
329     which is the quantity most directly related to the static dielectric
330     constant, $\epsilon = 1 + \chi_D$.
331 mlamichh 4363
332 gezelter 4399 \subsection{Fluctuation Formula}
333 gezelter 4400 % Using the Ewald sum under tin-foil boundary conditions, $\epsilon$ can
334     % be calculated for systems of orientationally-polarized molecules,
335     % \begin{equation}
336     % \epsilon = 1 + \frac{\langle M^2\rangle}{3\epsilon_0k_\textrm{B}TV},
337     % \label{eq:staticDielectric}
338     % \end{equation}
339     % where $\epsilon_0$ is the permittivity of free space and
340     % $\langle M^2\rangle$ is the fluctuation of the system dipole
341     % moment.\cite{Allen89} The numerator in the fractional term in
342     % equation (\ref{eq:staticDielectric}) is identical to the quantity
343     % calculated in the finite-system Kirkwood $g$ factor ($G_k$):
344     % \begin{equation}
345     % G_k = \frac{\langle M^2\rangle}{N\mu^2},
346     % \label{eq:KirkwoodFactor}
347     % \end{equation}
348     % where $\mu$ is the dipole moment of a single molecule of the
349     % homogeneous system.\cite{NeumannI83,NeumannII83,Neumann84,Neumann85} The
350     % fluctuation term in both equation (\ref{eq:staticDielectric}) and
351     % (\ref{eq:KirkwoodFactor}) is calculated as follows,
352     % \begin{equation}
353     % \begin{split}
354     % \langle M^2\rangle &= \langle\bm{M}\cdot\bm{M}\rangle
355     % - \langle\bm{M}\rangle\cdot\langle\bm{M}\rangle \\
356     % &= \langle M_x^2+M_y^2+M_z^2\rangle
357     % - (\langle M_x\rangle^2 + \langle M_x\rangle^2
358     % + \langle M_x\rangle^2).
359     % \end{split}
360     % \label{eq:fluctBoxDipole}
361     % \end{equation}
362     % This fluctuation term can be accumulated during a simulation; however,
363     % it converges rather slowly, thus requiring multi-nanosecond simulation
364     % times.\cite{Horn04} In the case of tin-foil boundary conditions, the
365     % dielectric/surface term of the Ewald summation is equal to zero.
366 mlamichh 4353
367 gezelter 4400 For a system of dipolar molecules at thermal equilibrium, we can
368     define both a system dipole moment, $\mathbf{M} = \sum_i \mathbf{p}_i$
369     as well as a dipole polarization density,
370     $\mathbf{P} = \braket{\mathbf{M}}/V$.
371 mlamichh 4353
372 gezelter 4400 In the presence of applied field $\mathbf{E}$, the polarization
373     density can be expressed in terms of fluctuations in the net dipole
374     moment,
375 mlamichh 4353 \begin{equation}
376 gezelter 4400 \mathbf{P} = \epsilon_o \frac{\braket{\mathbf{M}^2}-{\braket{\mathbf{M}}}^2}{3 \epsilon_o V k_B T}\bf{E}
377 gezelter 4399 \label{flucDipole}
378 mlamichh 4353 \end{equation}
379 gezelter 4400 This has structural similarity with the Boltzmann average for the
380     polarization of a single molecule. Here
381     $ \braket{\mathbf{M}^2}-{\braket{\mathbf{M}}}^2$ measures fluctuations
382 gezelter 4401 in the net dipole moment,
383 mlamichh 4353 \begin{equation}
384 gezelter 4401 \langle \mathbf{M}^2 \rangle - \langle \mathbf{M} \rangle^2 =
385     \langle M_x^2+M_y^2+M_z^2 \rangle - \left( \langle M_x \rangle^2 +
386     \langle M_y \rangle^2 +
387     \langle M_z \rangle^2 \right).
388     \label{eq:flucDip}
389     \end{equation}
390     For the limiting case $\textbf{E} \rightarrow 0 $, the ensemble
391     average of both the net dipole moment $\braket{\mathbf{M}}$ and
392     dipolar polarization $\bf{P}$ tends to vanish but
393     $\braket{\mathbf{M}^2}$ does not. The macroscopic dipole
394     polarizability can therefore be written as,
395     \begin{equation}
396 gezelter 4400 \alpha_D = \frac{\braket{\mathbf{M}^2}-{\braket{\mathbf{M}}}^2}{3 \epsilon_o V k_B T}
397 mlamichh 4353 \end{equation}
398 gezelter 4400 This relationship between a macroscopic property of dipolar material
399     and microscopic fluctuations is true even when the applied field
400     $ \textbf{E} \rightarrow 0 $.
401    
402 gezelter 4399 \subsection{Correction Factors}
403 gezelter 4408 \label{sec:corrFactor}
404 gezelter 4400 In the presence of a uniform external field $ \mathbf{E}^\circ$, the
405     total electric field at $\mathbf{r}$ depends on the polarization
406     density at all other points in the system,\cite{NeumannI83}
407 mlamichh 4353 \begin{equation}
408 gezelter 4400 \mathbf{E}(\mathbf{r}) = \mathbf{E}^\circ(\mathbf{r}) +
409     \frac{1}{4\pi\epsilon_o} \int d\mathbf{r}^\prime
410     \mathbf{T}(\mathbf{r}-\mathbf{r}^\prime)\cdot
411     {\mathbf{P}(\mathbf{r}^\prime)}.
412     \label{eq:localField}
413 mlamichh 4353 \end{equation}
414 gezelter 4400 $\mathbf{T}$ is the dipole interaction tensor connecting dipoles at
415     $\mathbf{r}^\prime$ with the point of interest ($\mathbf{r}$).
416 mlamichh 4353
417 gezelter 4400 In simulations of dipolar fluids, the molecular dipoles may be
418     represented either by closely-spaced point charges or by
419 gezelter 4408 point dipoles (see Fig. \ref{fig:tensor}).
420 mlamichh 4353 \begin{figure}
421 gezelter 4408 \includegraphics[width=\linewidth]{Tensors}
422     \caption{In the real-space electrostatic methods, the molecular dipole
423     tensor, $\mathbf{T}_{\alpha\beta}(r)$, is not the same for
424     charge-charge interactions as for point dipoles (left panel). The
425     same holds true for the molecular quadrupole tensor (right panel),
426     $\mathbf{T}_{\alpha\beta\gamma\delta}(r)$, which can have distinct
427     forms if the molecule is represented by charges, dipoles, or point
428     quadrupoles.}
429     \label{fig:tensor}
430 mlamichh 4353 \end{figure}
431     In the case where point charges are interacting via an electrostatic
432     kernel, $v(r)$, the effective {\it molecular} dipole tensor,
433     $\mathbf{T}$ is obtained from two successive applications of the
434     gradient operator to the electrostatic kernel,
435 mlamichh 4412 \begin{eqnarray}
436 gezelter 4400 \mathbf{T}_{\alpha \beta}(r) =& \nabla_\alpha \nabla_\beta
437 mlamichh 4412 \left(v(r)\right) \\
438 gezelter 4400 =& \delta_{\alpha \beta}
439 mlamichh 4353 \left(\frac{1}{r} v^\prime(r) \right) + \frac{r_{\alpha}
440     r_{\beta}}{r^2} \left( v^{\prime \prime}(r) - \frac{1}{r}
441     v^{\prime}(r) \right)
442     \label{dipole-chargeTensor}
443 mlamichh 4412 \end{eqnarray}
444 mlamichh 4353 where $v(r)$ may be either the bare kernel ($1/r$) or one of the
445     modified (Wolf or DSF) kernels. This tensor describes the effective
446 gezelter 4400 interaction between molecular dipoles ($\mathbf{D}$) in Gaussian units
447     as $-\mathbf{D} \cdot \mathbf{T} \cdot \mathbf{D}$.
448 mlamichh 4353
449 gezelter 4400 When utilizing any of the three new real-space methods for point
450     \textit{dipoles}, the tensor is explicitly constructed,
451 mlamichh 4353 \begin{equation}
452     \mathbf{T}_{\alpha \beta}(r) = \delta_{\alpha \beta} v_{21}(r) +
453     \frac{r_{\alpha} r_{\beta}}{r^2} v_{22}(r)
454     \label{dipole-diopleTensor}
455     \end{equation}
456     where the functions $v_{21}(r)$ and $v_{22}(r)$ depend on the level of
457 gezelter 4400 the approximation.\cite{PaperI,PaperII} Although the Taylor-shifted
458     (TSF) and gradient-shifted (GSF) models produce to the same $v(r)$
459     function for point charges, they have distinct forms for the
460     dipole-dipole interaction.
461 mlamichh 4353
462 gezelter 4400 Using a constitutive relation, the polarization density
463     $\mathbf{P}(\mathbf{r})$ is given by,
464 mlamichh 4353 \begin{equation}
465 gezelter 4400 \mathbf{P}(\mathbf{r}) = \epsilon_o \chi_D
466     \left(\mathbf{E}^\circ(\mathbf{r}) + \frac{1}{4\pi\epsilon_o} \int
467     d\mathbf{r}^\prime \mathbf{T}(\mathbf{r}-\mathbf{r}^\prime ) \cdot \mathbf{P}(\mathbf{r}^\prime)\right).
468 mlamichh 4353 \label{constDipole}
469     \end{equation}
470 gezelter 4400 Note that $\chi_D$ explicitly depends on the details of the dipole
471     interaction tensor. Neumann \textit{et al.}
472     \cite{NeumannI83,NeumannII83,Neumann84,Neumann85} derived an elegant
473     way to modify the fluctuation formula to correct for approximate
474     interaction tensors. This correction was derived using a Fourier
475     representation of the interaction tensor,
476     $\tilde{\mathbf{T}}(\mathbf{k})$, and involves the quantity,
477 mlamichh 4353 \begin{equation}
478 gezelter 4400 A = \frac{3}{4\pi}\tilde{\mathbf{T}}(0) = \frac{3}{4\pi} \int_V
479     d\mathbf{r} \mathbf{T}(\mathbf{r})
480 mlamichh 4353 \end{equation}
481 gezelter 4400 which is the $k \rightarrow 0$ limit of $\tilde{\mathbf{T}}$. Using
482     this quantity (originally called $Q$ in
483     refs. \onlinecite{NeumannI83,NeumannII83,Neumann84,Neumann85}), the
484     dielectric constant can be computed
485 mlamichh 4353 \begin{equation}
486 gezelter 4400 \epsilon = \frac{3+(A + 2)(\epsilon_{CB}-1)}{3 + (A -1)(\epsilon_{CB}-1)}
487     \label{correctionFormula}
488 mlamichh 4353 \end{equation}
489 gezelter 4400 where $\epsilon_{CB}$ is the widely-used conducting boundary
490     expression for the dielectric constant,
491 mlamichh 4353 \begin{equation}
492 gezelter 4400 \epsilon_{CB} = 1 + \frac{\braket{\bf{M}^2}-{\braket{\bf{M}}}^2}{3
493 mlamichh 4412 \epsilon_o V k_B T} = 1 + \alpha_{D}
494 gezelter 4408 \label{conductingBoundary}
495 mlamichh 4353 \end{equation}
496 gezelter 4408 Eqs. (\ref{correctionFormula}) and (\ref{conductingBoundary}) allows
497     estimation of the static dielectric constant from fluctuations easily
498     computed directly from simulations.
499 gezelter 4400
500     % Here $\chi^*_D$ is a dipolar susceptibility can be expressed in terms of dielectric constant as $ \chi^*_D = \epsilon - 1$ which different than macroscopic dipolar polarizability $\alpha_D$ in the sections \ref{subsec:perturbation} and \ref{subsec:fluctuation}. We can split integral into two parts: singular part i.e $|\textbf{r}-\textbf{r}'|\rightarrow 0 $ and non-singular part i.e $|\textbf{r}-\textbf{r}'| > 0 $ . The singular part of the integral can be written as,\cite{NeumannI83, Jackson98}
501     % \begin{equation}
502     % \frac{1}{4\pi\epsilon_o} \int_{|\textbf{r}-\textbf{r}'| \rightarrow 0} d^3r'\; \textbf{T}(\textbf{r}-\textbf{r}')\cdot {\textbf{P}(\textbf{r}')} = - \frac{\textbf{P}(\textbf{r})}{3\epsilon_o}
503     % \label{singular}
504     % \end{equation}
505     % Substituting equation (\ref{singular}) in the equation (\ref{constDipole}) we get,
506     % \begin{equation}
507     % \textbf{P}(\textbf{r}) = 3 \epsilon_o\; \frac{\chi^*_D}{\chi^*_D + 3} \left(\textbf{E}^o(\textbf{r}) + \frac{1}{4\pi\epsilon_o} \int_{|\textbf{r}-\textbf{r}'| > 0} d^3r'\; \textbf{T}(\textbf{r}-\textbf{r}')\cdot {\textbf{P}(\textbf{r}')}\right).
508     % \end{equation}
509     % For both polarization and electric field homogeneous, this can be easily solved using Fourier transformation,
510     % \begin{equation}
511     % \textbf{P}(\mathbf{k}) = 3 \epsilon_o\; \frac{\chi^*_D}{\chi^*_D + 3} \left(1- \frac{3}{4\pi}\;\frac{\chi^*_D}{\chi^*_D + 3}\; \textbf{T}(\mathbf{k})\right)^{-1}\textbf{E}^o(\mathbf{k}).
512     % \end{equation}
513     % For homogeneous applied field Fourier component is non-zero only if $\kappa = 0$. Therefore,
514     % \begin{equation}
515     % \textbf{P}(0) = 3 \epsilon_o\; \frac{\chi^*_D}{\chi^*_D + 3} \left(1- \frac{\chi^*_D}{\chi^*_D + 3}\; A_{dipole})\right)^{-1}\textbf{E}^o({0}).
516     % \label{fourierDipole}
517     % \end{equation}
518     % where $A_{dipole}=\frac{3}{4\pi}T(0) = \frac{3}{4\pi} \int_V d^3r\;T(r)$. Now equation (\ref{fourierDipole}) can be compared with equation (\ref{flucDipole}). Therefore,
519     % \begin{equation}
520     % \frac{\braket{\bf{M}^2}-{\braket{\bf{M}}}^2}{3 \epsilon_o V k_B T} = \frac{3\;\chi^*_D}{\chi^*_D + 3} \left(1- \frac{\chi^*_D}{\chi^*_D + 3}\; A_{dipole})\right)^{-1}
521     % \end{equation}
522     % Substituting $\chi^*_D = \epsilon-1$ and $ \frac{\braket{\bf{M}^2}-{\braket{\bf{M}}}^2}{3 \epsilon_o V k_B T} = \epsilon_{CB}-1 = \alpha_D$ in above equation we get,
523     % \begin{equation}
524     % \epsilon = \frac{3+(A_{dipole} + 2)(\epsilon_{CB}-1)}{3+(A_{dipole} -1)(\epsilon_{CB}-1)} = \frac{3+(A_{dipole} + 2)\alpha_D}{3+(A_{dipole} -1)\alpha_D}
525     % \label{correctionFormula}
526     % \end{equation}
527    
528 gezelter 4404 We have utilized the Neumann \textit{et al.} approach for the three
529 gezelter 4400 new real-space methods, and obtain method-dependent correction
530     factors. The expression for the correction factor also depends on
531     whether the simulation involves point charges or point dipoles to
532     represent the molecular dipoles. These corrections factors are
533     listed in Table \ref{tab:A}.
534 mlamichh 4353 \begin{table}
535 gezelter 4400 \caption{Expressions for the dipolar correction factor ($A$) for the
536     real-space electrostatic methods in terms of the damping parameter
537 mlamichh 4353 ($\alpha$) and the cutoff radius ($r_c$). The Ewald-Kornfeld result
538 gezelter 4400 derived in Refs. \onlinecite{Adams80,Adams81,NeumannI83} is shown
539     for comparison using the Ewald convergence parameter ($\kappa$)
540     and the real-space cutoff value ($r_c$). }
541 mlamichh 4353 \label{tab:A}
542 gezelter 4411 \begin{tabular}{|l|c|c|}
543 gezelter 4408 \toprule
544 gezelter 4400 Method & point charges & point dipoles \\
545 gezelter 4408 \colrule
546 gezelter 4411 Spherical Cutoff (SC)& \multicolumn{2}{c|}{$\mathrm{erf}(r_c \alpha) -
547     \frac{2 \alpha r_c}{\sqrt{\pi}} e^{-\alpha^2
548     r_c^2}$} \\ \colrule
549     Shifted Potental (SP) & $ \mathrm{erf}(r_c \alpha) - \frac{2
550     \alpha r_c}{\sqrt{\pi}} e^{-\alpha^2
551     r_c^2}$ & $\mathrm{erf}(r_c \alpha)
552     -\frac{2 \alpha
553     r_c}{\sqrt{\pi}}\left(1+\frac{2\alpha^2
554     {r_c}^2}{3}
555     \right)e^{-\alpha^2{r_c}^2}
556     $\\ \colrule
557     Gradient-shifted (GSF) & 1 & $\mathrm{erf}(\alpha r_c)-\frac{2
558     \alpha r_c}{\sqrt{\pi}} \left(1 +
559     \frac{2 \alpha^2 r_c^2}{3} +
560     \frac{\alpha^4
561     r_c^4}{3}\right)e^{-\alpha^2 r_c^2} $ \\ \colrule
562     Taylor-shifted (TSF) &\multicolumn{2}{c|}{1} \\ \colrule
563     Ewald-Kornfeld (EK) & \multicolumn{2}{c|}{$\mathrm{erf}(r_c \kappa) -
564 gezelter 4408 \frac{2 \kappa r_c}{\sqrt{\pi}} e^{-\kappa^2
565     r_c^2}$} \\
566     \botrule
567     \end{tabular}
568 mlamichh 4353 \end{table}
569 gezelter 4400 Note that for point charges, the GSF and TSF methods produce estimates
570     of the dielectric that need no correction, and the TSF method likewise
571     needs no correction for point dipoles.
572 gezelter 4399
573     \section{Quadrupolar Fluids and the Quadrupolar Susceptibility}
574     \subsection{Response to External Perturbations}
575    
576 gezelter 4400 A molecule with a permanent quadrupole, $\mathsf{q}$, will align in
577     the presence of an electric field gradient $\nabla\mathbf{E}$. The
578     anisotropic polarization of the quadrupole is given
579     by,\cite{AduGyamfi78,AduGyamfi81}
580 gezelter 4399 \begin{equation}
581 gezelter 4400 \braket{\mathsf{q}} - \frac{\mathbf{I}}{3}
582     \mathrm{Tr}(\mathsf{q}) = \epsilon_o \alpha_q \nabla\mathbf{E},
583 gezelter 4399 \end{equation}
584 gezelter 4400 where $\alpha_q = q_o^2 / 15 \epsilon_o k_B T $ is a molecular quadrupole
585     polarizablity and $q_o$ is an effective quadrupole moment for the molecule,
586     \begin{equation}
587     q_o^2 = 3 \mathsf{q}:\mathsf{q} - \mathrm{Tr}(\mathsf{q})^2.
588     \end{equation}
589 gezelter 4399
590 gezelter 4400 In the presence of an external field gradient, a system of quadrupolar
591     molecules also organizes with an anisotropic polarization,
592 gezelter 4399 \begin{equation}
593 gezelter 4400 \mathsf{Q} - \frac{\mathbf{I}}{3} \mathrm{Tr}(\mathsf{Q}) = \epsilon_o
594     \alpha_Q \nabla\mathbf{E}
595     \end{equation}
596     where $\mathsf{Q}$ is the traced quadrupole density of the system and
597     $\alpha_Q$ is a macroscopic quadrupole polarizability which has
598     dimensions of $\mathrm{length}^{-2}$. Equivalently, the traceless form
599     may be used,
600     \begin{equation}
601     \mathsf{\Theta} = 3 \epsilon_o \alpha_Q \nabla\mathbf{E},
602 gezelter 4399 \label{pertQuad}
603     \end{equation}
604 gezelter 4400 where
605     $\mathsf{\Theta} = 3\mathsf{Q} - \mathbf{I} \mathrm{Tr}(\mathsf{Q})$
606     is the traceless tensor that also describes the system quadrupole
607     density. It is this tensor that will be utilized to derive correction
608     factors below.
609    
610 gezelter 4399 \subsection{Fluctuation Formula}
611 gezelter 4400 As in the dipolar case, we may define a system quadrupole moment,
612     $\mathsf{M}_Q = \sum_i \mathsf{q}_i$ and the traced quadrupolar
613     density, $\mathsf{Q} = \mathsf{M}_Q / V$. A fluctuation formula can
614     be written for a system comprising quadrupolar
615     molecules,\cite{LoganI81,LoganII82,LoganIII82}
616 gezelter 4399 \begin{equation}
617 gezelter 4400 \mathsf{Q} - \frac{\mathbf{I}}{3} \mathrm{Tr}(\mathsf{Q}) = \epsilon_o
618     \frac{\braket{\mathsf{M}_Q^2}-{\braket{\mathsf{M}_Q}}^2}{15 \epsilon_o
619     V k_B T} \cdot \nabla\mathbf{E}.
620 gezelter 4399 \label{flucQuad}
621     \end{equation}
622 gezelter 4400 Some care is needed in the definitions of the averaged quantities. These
623     refer to the effective quadrupole moment of the system, and they are
624     computed as follows,
625     \begin{align}
626     \braket{\mathsf{M}_Q^2} &= \braket{3 \mathsf{M}_Q:\mathsf{M}_Q -
627     \mathrm{Tr}(\mathsf{M}_Q)^2 }\\
628     \braket{\mathsf{M}_Q}^2 &= 3 \braket{\mathsf{M}_Q}:\braket{\mathsf{M}_Q} -
629     \mathrm{Tr}(\braket{\mathsf{M}_Q})^2
630 gezelter 4401 \label{eq:flucQuad}
631 gezelter 4400 \end{align}
632     The macroscopic quadrupolarizability is given by,
633 gezelter 4399 \begin{equation}
634 gezelter 4400 \alpha_Q = \frac{\braket{\mathsf{M}_Q^2}-{\braket{\mathsf{M}_Q}}^2}{15 \epsilon_o V k_B T}
635 gezelter 4399 \label{propConstQuad}
636     \end{equation}
637 gezelter 4400 This relationship between a macroscopic property of a quadrupolar
638     fluid and microscopic fluctuations should be true even when the
639     applied field gradient $\nabla \mathbf{E} \rightarrow 0$.
640 gezelter 4399
641     \subsection{Correction Factors}
642 gezelter 4400 In this section we generalize the treatment of Neumann \textit{et al.}
643     for quadrupolar fluids. Interactions involving multiple quadrupoles
644     are rank 4 tensors, and we therefore describe quantities in this
645     section using Einstein notation.
646    
647     In the presence of a uniform external field gradient,
648     $\partial_\alpha {E}^\circ_\beta $, the total field gradient at
649     $\mathbf{r}$ depends on the quadrupole polarization density at all
650     other points in the system,
651 mlamichh 4353 \begin{equation}
652 gezelter 4400 \partial_\alpha E_\beta(\mathbf{r}) = \partial_\alpha
653 mlamichh 4412 {E}^\circ_\beta(\mathbf{r}) + \frac{1}{8\pi \epsilon_o}\int
654 gezelter 4400 T_{\alpha\beta\gamma\delta}({\mathbf{r}-\mathbf{r}^\prime})
655     Q_{\gamma\delta}(\mathbf{r}^\prime) d\mathbf{r}^\prime
656 mlamichh 4353 \label{gradMaxwell}
657     \end{equation}
658 gezelter 4400 where and $T_{\alpha\beta\gamma\delta}$ is the quadrupole interaction
659     tensor connecting quadrupoles at $\mathbf{r}^\prime$ with the point of
660     interest ($\mathbf{r}$).
661 mlamichh 4353
662 gezelter 4408 % \begin{figure}
663     % \includegraphics[width=3in]{QuadrupoleFigure}
664     % \caption{With the real-space electrostatic methods, the molecular
665     % quadrupole tensor, $\mathbf{T}_{\alpha\beta\gamma\delta}(r)$,
666     % governing interactions between molecules is not the same for
667     % quadrupoles represented via sets of charges, point dipoles, or by
668     % single point quadrupoles.}
669     % \label{fig:quadrupolarFluid}
670     % \end{figure}
671 gezelter 4400
672     In simulations of quadrupolar fluids, the molecular quadrupoles may be
673     represented by closely-spaced point charges, by multiple point
674     dipoles, or by a single point quadrupole (see
675 gezelter 4408 Fig. \ref{fig:tensor}). In the case where point charges are
676 gezelter 4400 interacting via an electrostatic kernel, $v(r)$, the effective
677     molecular quadrupole tensor can obtained from four successive
678     applications of the gradient operator to the electrostatic kernel,
679     \begin{eqnarray}
680     T_{\alpha\beta\gamma\delta}(\mathbf{r}) &=& \nabla_\alpha \nabla_\beta
681     \nabla_\gamma \nabla_\delta v(r) \\
682     &=& \left(\delta_{\alpha\beta}\delta_{\gamma\delta} +
683     \delta_{\alpha\gamma}\delta_{\beta\delta}+
684     \delta_{\alpha\delta}\delta_{\beta\gamma}\right)\left(-\frac{v^\prime(r)}{r^3}
685     + \frac{v^{\prime \prime}(r)}{r^2}\right) \nonumber \\
686     & &+ \left(\delta_{\alpha\beta} r_\gamma r_\delta + 5 \mathrm{~permutations}
687     \right) \left(\frac{3v^\prime(r)}{r^5}-\frac{3v^{\prime \prime}(r)}{r^4} +
688     \frac{v^{\prime \prime \prime}(r)}{r^3}\right) \nonumber \\
689     & &+ r_\alpha r_\beta r_\gamma r_\delta
690     \left(-\frac{15v^\prime(r)}{r^7}+\frac{15v^{\prime \prime}(r)}{r^6}-\frac{6v^{\prime
691     \prime \prime}(r)}{r^5} + \frac{v^{\prime \prime \prime \prime}(r)}{r^4}\right),
692 mlamichh 4353 \label{quadCharge}
693 gezelter 4400 \end{eqnarray}
694     where $v(r)$ can either be the electrostatic kernel ($1/r$) or one of
695     the modified (Wolf or DSF) kernels.
696 mlamichh 4353
697 gezelter 4400 Similarly, when representing quadrupolar molecules with multiple point
698 gezelter 4413 \textit{dipoles}, the molecular quadrupole interaction tensor can be
699     obtained using two successive applications of the gradient operator to
700     the dipole interaction tensor,
701 gezelter 4400 \begin{eqnarray}
702     T_{\alpha\beta\gamma\delta}(\mathbf{r}) &=& \nabla_\alpha \nabla_\beta
703 gezelter 4413 T_{\gamma\delta}(\mathbf{r}) \\
704 gezelter 4400 & = & \delta_{\alpha\beta}\delta_{\gamma\delta} \frac{v^\prime_{21}(r)}{r} +
705     \left(\delta_{\alpha\gamma}\delta_{\beta\delta}+
706     \delta_{\alpha\delta}\delta_{\beta\gamma}\right)\frac{v_{22}(r)}{r^2}
707     \nonumber\\
708     & &+ \delta_{\gamma\delta} r_\alpha r_\beta
709     \left(\frac{v^{\prime \prime}_{21}(r)}{r^2}-\frac{v^\prime_{21}(r)}{r^3} \right)\nonumber \\
710     & &+\left(\delta_{\alpha\beta} r_\gamma r_\delta +
711     \delta_{\alpha\gamma} r_\beta r_\delta +\delta_{\alpha\delta}
712     r_\gamma r_\beta + \delta_{\beta\gamma} r_\alpha r_\delta
713     +\delta_{\beta\delta} r_\alpha r_\gamma \right)
714     \left(\frac{v^\prime_{22}(r)}{r^3}-\frac{2v_{22}(r)}{r^4}\right)
715     \nonumber \\
716     & &+ r_\alpha r_\beta r_\gamma r_\delta
717     \left(\frac{v^{\prime
718     \prime}_{22}(r)}{r^4}-\frac{5v^\prime_{22}(r)}{r^5}+\frac{8v_{22}(r)}{r^6}\right),
719 mlamichh 4353 \label{quadDip}
720 gezelter 4400 \end{eqnarray}
721 gezelter 4413 where $T_{\gamma\delta}(\mathbf{r})$ is a dipole-dipole interaction
722 gezelter 4400 tensor that depends on the level of the
723     approximation.\cite{PaperI,PaperII} Similarly $v_{21}(r)$ and
724     $v_{22}(r)$ are the radial function for different real space cutoff
725     methods defined in the first paper in this series.\cite{PaperI}
726    
727     For quadrupolar liquids modeled using point quadrupoles, the
728     interaction tensor can be constructed as,
729     \begin{eqnarray}
730 mlamichh 4412 T_{\alpha\beta\gamma\delta}(\mathbf{r}) &=&
731 gezelter 4400 \left(\delta_{\alpha\beta}\delta_{\gamma\delta}
732     +
733     \delta_{\alpha\gamma}\delta_{\beta\delta}+
734     \delta_{\alpha\delta}\delta_{\beta\gamma}\right)v_{41}(r)
735 mlamichh 4412 + (\delta_{\gamma\delta} r_\alpha r_\beta + \mathrm{ 5\; permutations}) \frac{v_{42}(r)}{r^2} \nonumber \\
736 gezelter 4400 & & + r_\alpha r_\beta r_\gamma r_\delta \left(\frac{v_{43}(r)}{r^4}\right),
737 mlamichh 4353 \label{quadRadial}
738 gezelter 4400 \end{eqnarray}
739     where again $v_{41}(r)$, $v_{42}(r)$, and $v_{43}(r)$ are radial
740     functions defined in Paper I of the series. \cite{PaperI} Note that
741     these radial functions have different functional forms depending on
742     the level of approximation being employed.
743    
744     The integral in equation (\ref{gradMaxwell}) can be divided into two
745     parts, $|\mathbf{r}-\mathbf{r}^\prime|\rightarrow 0 $ and
746     $|\mathbf{r}-\mathbf{r}^\prime|> 0$. Since the self-contribution to
747 gezelter 4408 the field gradient vanishes at the singularity (see the supporting
748     information), equation (\ref{gradMaxwell}) can be written as,
749 mlamichh 4353 \begin{equation}
750 gezelter 4400 \partial_\alpha E_\beta(\mathbf{r}) = \partial_\alpha {E}^\circ_\beta(\mathbf{r}) +
751 mlamichh 4412 \frac{1}{8\pi \epsilon_o}\int\limits_{|\mathbf{r}-\mathbf{r}^\prime|> 0 }
752 gezelter 4400 T_{\alpha\beta\gamma\delta}(\mathbf{r}-\mathbf{r}^\prime)
753     {Q}_{\gamma\delta}(\mathbf{r}^\prime) d\mathbf{r}^\prime.
754 mlamichh 4353 \end{equation}
755 gezelter 4400 If $\mathbf{r} = \mathbf{r}^\prime$ is excluded from the integration,
756     the total gradient can be most easily expressed in terms of
757     traceless quadrupole density as below,\cite{LoganI81}
758 mlamichh 4353 \begin{equation}
759 gezelter 4400 \partial_\alpha E_\beta(\mathbf{r}) = \partial_\alpha
760 mlamichh 4412 {E}^\circ_\beta(\mathbf{r}) + \frac{1}{24\pi
761 gezelter 4400 \epsilon_o}\int\limits_{|\mathbf{r}-\mathbf{r}^\prime|> 0 }
762     T_{\alpha\beta\gamma\delta}(\mathbf{r}-\mathbf{r}^\prime) \Theta_{\gamma\delta}(\mathbf{r}') d\mathbf{r}^\prime,
763 mlamichh 4353 \end{equation}
764 gezelter 4400 where
765     $\Theta_{\alpha\beta} = 3Q_{\alpha\beta} - \delta_{\alpha\beta}Tr(Q)$
766     is the traceless quadrupole density. In analogy to
767 gezelter 4413 Eq. (\ref{pertQuad}) above, the quadrupole polarization density may
768     now be related to the quadrupolar susceptibility, $\chi_Q$,
769 mlamichh 4353 \begin{equation}
770 gezelter 4400 \frac{1}{3}{\Theta}_{\alpha\beta}(\mathbf{r}) = \epsilon_o {\chi}_Q
771 mlamichh 4412 \left[\partial_\alpha {E}^\circ_\beta(\mathbf{r}) + \frac{1}{24\pi
772 gezelter 4400 \epsilon_o}\int\limits_{|\mathbf{r}-\mathbf{r}^\prime|> 0 }
773     T_{\alpha\beta\gamma\delta}(\mathbf{r}-\mathbf{r}^\prime)
774 mlamichh 4412 \Theta_{\gamma\delta}(\mathbf{r}^\prime) d\mathbf{r}^\prime \right].
775 mlamichh 4353 \end{equation}
776 mlamichh 4412 For periodic boundaries and with a uniform imposed
777 gezelter 4400 $\partial_\alpha E^\circ_\beta$, the quadrupole density
778     ${\Theta}_{\alpha\beta}$ will be uniform over the entire space. After
779     performing a Fourier transform (see the Appendix in
780     ref. \onlinecite{NeumannI83}) we obtain,
781 mlamichh 4353 \begin{equation}
782 gezelter 4400 \frac{1}{3}\tilde{\Theta}_{\alpha\beta}(\mathbf{k})=
783     \epsilon_o {\chi}_Q \left[{\partial_\alpha
784 mlamichh 4412 \tilde{E}^\circ_\beta}(\mathbf{k})+ \frac{1}{24\pi
785 gezelter 4400 \epsilon_o} \tilde{T}_{\alpha\beta\gamma\delta}(\mathbf{k})
786     \tilde{\Theta}_{\gamma\delta}(\mathbf{k})\right].
787 mlamichh 4412 \label{fourierQuad}
788 mlamichh 4353 \end{equation}
789 gezelter 4413 If the applied field gradient is homogeneous over the entire volume,
790     ${\partial_ \alpha \tilde{E}^\circ_\beta}(\mathbf{k}) = 0 $ except at
791     $ \mathbf{k} = 0$. Similarly, the quadrupolar polarization density can
792     also considered uniform over entire space. As in the dipolar case,
793     \cite{NeumannI83} the only relevant contribution from the interaction
794     tensor will also be when $\mathbf{k} = 0$. Therefore equation
795     (\ref{fourierQuad}) can be written as,
796 mlamichh 4412 \begin{equation}
797     \frac{1}{3}\tilde{\Theta}_{\alpha\beta}(\mathrm{0})=
798     \epsilon_o {\chi}_Q \left[{\partial_\alpha
799     \tilde{E}^\circ_\beta}(\mathrm{0})+ \frac{1}{24\pi
800     \epsilon_o} \tilde{T}_{\alpha\beta\gamma\delta}(\mathrm{0})
801     \tilde{\Theta}_{\gamma\delta}(\mathrm{0})\right].
802     \label{fourierQuadZeroK}
803     \end{equation}
804 gezelter 4413 The quadrupolar tensor
805 gezelter 4415 $\tilde{T}_{\alpha\beta\gamma\delta}(\mathrm{0})$ is a rank 4 tensor
806 gezelter 4413 with 81 elements. The only non-zero elements, however, are those with
807     two doubly-repeated indices, \textit{i.e.}
808     $\tilde{T}_{aabb}(\mathrm{0})$ and all permutations of these indices.
809     The special case of quadruply-repeated indices,
810     $\tilde{T}_{aaaa}(\mathrm{0})$ also survives (see appendix
811     \ref{ap:quadContraction}). Furthermore, for the both diagonal and
812     non-diagonal components of the quadrupolar polarization
813     $\tilde{\Theta}_{\alpha\beta}$, we can contract the second term in
814     equation \ref{fourierQuadZeroK} (see appendix
815     \ref{ap:quadContraction}):
816 mlamichh 4412 \begin{equation}
817 gezelter 4413 \tilde{T}_{\alpha\beta\gamma\delta}(\mathrm{0})\tilde{\Theta}_{\gamma\delta}(\mathrm{0})=
818     8 \pi \mathrm{B} \tilde{\Theta}_{\alpha\beta}(\mathrm{0}).
819 mlamichh 4412 \label{quadContraction}
820     \end{equation}
821 gezelter 4413 Here $\mathrm{B} = \tilde{T}_{abab}(\mathrm{0}) / 4 \pi$ for
822     $a \neq b$. Using this quadrupolar contraction we can solve equation
823 gezelter 4415 \ref{fourierQuadZeroK} as follows
824 gezelter 4400 \begin{eqnarray}
825 mlamichh 4412 \frac{1}{3}\tilde{\Theta}_{\alpha\beta}(\mathrm{0}) &=& \epsilon_o
826 gezelter 4400 {\chi}_Q
827     \left[{\partial_\alpha
828 mlamichh 4412 \tilde{E}^\circ_\beta}(\mathrm{0})+
829 gezelter 4413 \frac{\mathrm{B}}{3
830 mlamichh 4412 \epsilon_o}
831     {\tilde{\Theta}}_{\alpha\beta}(\mathrm{0})\right]
832     \nonumber \\
833     &=& \left[\frac{\epsilon_o {\chi}_Q} {1-{\chi}_Q \mathrm{B}}\right]
834 gezelter 4413 {\partial_\alpha \tilde{E}^\circ_\beta}(\mathrm{0}).
835 gezelter 4415 \label{fourierQuad2}
836 mlamichh 4412 \end{eqnarray}
837 gezelter 4413 In real space, the correction factor,
838     \begin{equation}
839     \mathrm{B} = \frac{1}{4 \pi} \tilde{T}_{abab}(0) = \frac{1}{4 \pi} \int_V {T}_{abab}(\mathbf{r}) d\mathbf{r},
840     \end{equation}
841 mlamichh 4412 %If the applied field gradient is homogeneous over the
842     %entire volume, ${\partial_ \alpha \tilde{E}^\circ_\beta}(\mathbf{k}) = 0 $ except at
843     %$ \mathbf{k} = 0$. As in the dipolar case, the only relevant
844     %contribution of the interaction tensor will also be when $\mathbf{k} = 0$.
845     %Therefore equation (\ref{fourierQuad}) can be written as,
846     %\begin{equation}
847     %\frac{1}{3}{\tilde{\Theta}}_{\alpha\beta}({0}) = \epsilon_o {\chi}_Q
848     %\left(1-\frac{1}{4\pi} {\chi}_Q \tilde{T}_{\alpha\beta\alpha\beta}({0})\right)^{-1} \partial_\alpha \tilde{E}^\circ_\beta({0})
849     %\label{fourierQuad2}
850     %\end{equation}
851     %where $\tilde{T}_{\alpha\beta\alpha\beta}({0})$ can be evaluated as,
852     %\begin{equation}
853     %\tilde{T}_{\alpha\beta\alpha\beta}({0}) = \int_V {T}_{\alpha\beta\alpha\beta}(\mathbf{r})d\mathbf{r}
854     %\label{realTensorQaud}
855     %\end{equation}
856     %We may now define a quantity to represent the contribution from the
857     %$\mathbf{k} = 0$ portion of the interaction tensor,
858     %\begin{equation}
859     %B = \frac{1}{4 \pi} \int_V T_{\alpha \beta \alpha \beta}(\mathbf{r})
860     %d\mathbf{r}
861     %\end{equation}
862 gezelter 4400 which has been integrated over the interaction volume $V$ and has
863     units of $\mathrm{length}^{-2}$.
864 mlamichh 4353
865 gezelter 4415 In terms of the traced quadrupole moment, equation (\ref{fourierQuad2})
866 gezelter 4413 can be written,
867 mlamichh 4353 \begin{equation}
868 gezelter 4400 \mathsf{Q} - \frac{\mathbf{I}}{3} \mathrm{Tr}(\mathsf{Q})
869 mlamichh 4412 = \frac{\epsilon_o {\chi}_Q}{1- {\chi}_Q \mathrm{B}} \nabla \mathbf{E}^\circ
870 mlamichh 4353 \label{tracedConstQuad}
871     \end{equation}
872 gezelter 4400 Comparing (\ref{tracedConstQuad}) and (\ref{flucQuad}) we obtain,
873 mlamichh 4353 \begin{equation}
874 gezelter 4400 \frac{\braket{\mathsf{M}_Q^2}-{\braket{\mathsf{M}_Q}}^2}{15 \epsilon_o
875 mlamichh 4412 V k_B T} = \frac{\chi_Q} {1 - \chi_Q \mathrm{B}},
876 mlamichh 4353 \end{equation}
877 gezelter 4400 or equivalently,
878 mlamichh 4353 \begin{equation}
879 gezelter 4400 \chi_Q = \frac{\braket{\mathsf{M}_Q^2}-{\braket{\mathsf{M}_Q}}^2}{15 \epsilon_o
880 mlamichh 4412 V k_B T} \left(1 + \mathrm{B} \frac{\braket{\mathsf{M}_Q^2}-{\braket{\mathsf{M}_Q}}^2}{15 \epsilon_o
881 gezelter 4400 V k_B T} \right)^{-1}
882     \label{eq:finalForm}
883 mlamichh 4353 \end{equation}
884 gezelter 4400 Eq. (\ref{eq:finalForm}) now expresses a bulk property (the
885 gezelter 4413 quadrupolar susceptibility, $\chi_Q$) in terms of a fluctuation in the
886     system quadrupole moment and a quadrupolar correction factor
887     ($\mathrm{B}$). The correction factors depend on the cutoff method
888     being employed in the simulation, and these are listed in Table
889     \ref{tab:B}.
890 mlamichh 4353
891 gezelter 4400 In terms of the macroscopic quadrupole polarizability, $\alpha_Q$,
892     which may be thought of as the ``conducting boundary'' version of the
893     susceptibility,
894 mlamichh 4353 \begin{equation}
895 mlamichh 4412 \chi_Q = \frac{\alpha_Q}{1 + \mathrm{B} \alpha_Q}.
896 gezelter 4408 \label{eq:quadrupolarSusceptiblity}
897 mlamichh 4353 \end{equation}
898 mlamichh 4412 If an electrostatic method produces $\mathrm{B} \rightarrow 0$, the computed
899 gezelter 4400 quadrupole polarizability and quadrupole susceptibility converge to
900     the same value.
901    
902     \begin{sidewaystable}
903 gezelter 4415 \caption{Expressions for the quadrupolar correction factor
904     ($\mathrm{B}$) for the real-space electrostatic methods in terms
905     of the damping parameter ($\alpha$) and the cutoff radius
906     ($r_c$). The units of the correction factor are
907     $ \mathrm{length}^{-2}$ for quadrupolar fluids.}
908 mlamichh 4353 \label{tab:B}
909 gezelter 4415 \begin{tabular}{|l|c|c|c|}
910 gezelter 4408 Method & charges & dipoles & quadrupoles \\\colrule
911 gezelter 4415 Spherical Cutoff (SC) & \multicolumn{3}{c|}{$ -\frac{8 \alpha^5
912 gezelter 4413 {r_c}^3e^{-\alpha^2 r_c^2}}{15\sqrt{\pi}} $}\\ \colrule
913 mlamichh 4412 Shifted Potental (SP) & $ -\frac{8 \alpha^5 {r_c}^3e^{-\alpha^2 r_c^2}}{15\sqrt{\pi}} $ & $- \frac{3 \mathrm{erfc(r_c\alpha)}}{5{r_c}^2}- \frac{2 \alpha e^{-\alpha^2 r_c^2}(9+6\alpha^2 r_c^2+4\alpha^4 r_c^4)}{15{\sqrt{\pi}r_c}}$& $ -\frac{16 \alpha^7 {r_c}^5 e^{-\alpha^2 r_c^2 }}{45\sqrt{\pi}}$ \\
914     Gradient-shifted (GSF) & $- \frac{8 \alpha^5 {r_c}^3e^{-\alpha^2 r_c^2}}{15\sqrt{\pi}} $ & 0 & $-\frac{4{\alpha}^7{r_c}^5 e^{-\alpha^2 r_c^2}(-1+2\alpha ^2 r_c^2)}{45\sqrt{\pi}}$\\
915     Taylor-shifted (TSF) & $ -\frac{8 \alpha^5 {r_c}^3e^{-\alpha^2 r_c^2}}{15\sqrt{\pi}} $ & $\frac{4\;\mathrm{erfc(\alpha r_c)}}{{5r_c}^2} + \frac{8\alpha e^{-\alpha^2{r_c}^2}\left(3+ 2\alpha^2 {r_c}^2 +\alpha^4{r_c}^4 \right)}{15\sqrt{\pi}r_c}$ & $\frac{2\;\mathrm{erfc}(\alpha r_c )}{{r_c}^2} + \frac{4{\alpha}e^{-\alpha^2 r_c^2}\left(45 + 30\alpha ^2 {r_c}^2 + 12\alpha^4 {r_c}^4 + 3\alpha^6 {r_c}^6 + 2 \alpha^8 {r_c}^8\right)}{45\sqrt{\pi}{r_c}}$ \\
916 gezelter 4408 \colrule
917 gezelter 4415 Ewald-Kornfeld (EK) & \multicolumn{3}{c|}{$ -\frac{8 \kappa^5 {r_c}^3e^{-\kappa^2 r_c^2}}{15\sqrt{\pi}}$} \\
918 gezelter 4408 \botrule
919 gezelter 4400 \end{tabular}
920     \end{sidewaystable}
921 gezelter 4399
922     \section{Screening of Charges by Multipolar Fluids}
923 gezelter 4401 \label{sec:PMF}
924     In a dipolar fluid, the static dielectric constant is also a measure
925     of the ability of the fluid to screen charges from one another. A set
926     of point charges creates an inhomogeneous field in the fluid, and the
927     fluid responds to this field as if it was created externally or via
928     local polarization fluctuations. For this reason, the dielectric
929     constant can be used to estimate an effective potential between two
930     point charges ($C_i$ and $C_j$) embedded in the fluid,
931 gezelter 4399 \begin{equation}
932 gezelter 4401 U_\mathrm{effective} = \frac{C_i C_j}{4 \pi \epsilon_0 \epsilon
933     r_{ij}}.
934     \label{eq:effectivePot}
935 gezelter 4399 \end{equation}
936 gezelter 4401
937     The same set of point charges can also create an inhomogeneous field
938     \textit{gradient}, and this will cause a response in a quadrupolar
939     fluid that will also cause an effective screening. As discussed above,
940     however, the relevant phyiscal property in quadrupolar fluids is the
941     susceptibility, $\chi_Q$. The screening dielectric associated with
942     the quadrupolar susceptibility is defined as,\cite{Ernst92}
943 gezelter 4399 \begin{equation}
944 gezelter 4401 \epsilon = 1 + \chi_Q G = 1 + G \frac{\alpha_Q}{1 + \alpha_Q B}
945     \label{eq:dielectricFromQuadrupoles}
946 gezelter 4399 \end{equation}
947 gezelter 4401 where $G$ is a geometrical factor that depends on the geometry of the
948     field perturbation,
949     \begin{equation}
950     G = \frac{\int_V \left| \nabla \mathbf{E}^\circ \right|^2 d\mathbf{r}}
951     {\int_V \left|\mathbf{E}^\circ\right|^2 d\mathbf{r}}
952     \end{equation}
953     integrated over the interaction volume. Note that this geometrical
954     factor is also required to compute effective dielectric constants even
955     when the field gradient is homogeneous over the entire sample.
956 gezelter 4399
957 gezelter 4401 To measure effective screening in a multipolar fluid, we compute an
958     effective interaction potential, the potential of mean force (PMF),
959     between positively and negatively charged ions when they screened by
960     the intervening fluid. The PMF is obtained from a sequence of
961     simulations in which two ions are constrained to a fixed distance, and
962     the average constraint force to hold them at a fixed distance $r$ is
963     collected during a long simulation,\cite{Wilfred07}
964 gezelter 4400 \begin{equation}
965 gezelter 4401 w(r) = \int_{r_o}^{r}\left\langle \frac{\partial f}{\partial r^\prime}
966     \right\rangle_{r^\prime} dr^\prime + 2k_BT \ln\left(\frac{r}{r_o}\right) + w(r_o),
967     \label{eq:pmf}
968 gezelter 4400 \end{equation}
969 gezelter 4401 where $\braket{\partial f/\partial r^\prime}_{r^\prime}$ is the mean
970     constraint force required to hold the ions at distance $r^\prime$,
971     $2k_BT \log(r/r_o)$ is the Fixman factor,\cite{Fixman:1974fk} and
972     $r_o$ is a reference position (usually taken as a large separation
973     betwen the ions). If the dielectric constant is a good measure of the
974     screening at all inter-ion separations, we would expect $w(r)$ to have
975     the form in Eq. (\ref{eq:effectivePot}). Because real fluids are not
976     continuum dielectrics, the effective dielectric constant is a function
977     of the interionic separation,
978 gezelter 4400 \begin{equation}
979 gezelter 4401 \epsilon(r) = \frac{u_\mathrm{raw}(r) }{w(r)}
980 gezelter 4400 \end{equation}
981 gezelter 4401 where $u_\mathrm{raw}(r)$ is the direct charge-charge interaction
982     potential that is in use during the simulation. $\epsilon(r)$ may
983     vary considerably from the bulk estimates at short distances, although
984     it should converge to the bulk value as the separation between the
985     ions increases.
986 gezelter 4400
987 gezelter 4399 \section{Simulation Methodology}
988 gezelter 4401 To test the formalism developed in the preceding sections, we have
989     carried out computer simulations using three different techniques: i)
990     simulations in the presence of external fields, ii) equilibrium
991     calculations of box moment fluctuations, and iii) potentials of mean
992     force (PMF) between embedded ions. In all cases, the fluids were
993     composed of point multipoles protected by a Lennard-Jones potential.
994     The parameters used in the test systems are given in table
995     \ref{Tab:C}.
996 mlamichh 4353
997 mlamichh 4389 \begin{table}
998 gezelter 4401 \caption{\label{Tab:C}The parameters used in simulations to evaluate
999     the dielectric response of the new real-space methods.}
1000 mlamichh 4389 \begin{tabularx}{\textwidth}{r|cc|YYccc|Yccc} \hline
1001     & \multicolumn{2}{c|}{LJ parameters} &
1002     \multicolumn{5}{c|}{Electrostatic moments} & & & & \\
1003     Test system & $\sigma$& $\epsilon$ & $C$ & $D$ &
1004     $Q_{xx}$ & $Q_{yy}$ & $Q_{zz}$ & mass & $I_{xx}$ & $I_{yy}$ &
1005     $I_{zz}$ \\ \cline{6-8}\cline{10-12}
1006     & (\AA) & (kcal/mol) & (e) & (debye) & \multicolumn{3}{c|}{(debye \AA)} & (amu) & \multicolumn{3}{c}{(amu
1007     \AA\textsuperscript{2})} \\ \hline
1008 gezelter 4401 Dipolar fluid & 3.41 & 0.2381 & - & 1.4026 &-&-&-& 39.948 & 11.613 & 11.613 & 0.0 \\
1009     Quadrupolar fluid & 2.985 & 0.265 & - & - & 0.0 & 0.0 &-2.139 & 18.0153 & 43.0565 & 43.0565 & 0.0 \\
1010 mlamichh 4389 \ce{q+} & 1.0 & 0.1 & +1 & - & - & - & - & 22.98 & - & - & - \\
1011     \ce{q-} & 1.0 & 0.1 & -1 & - & - & - & - & 22.98 & - & - & - \\ \hline
1012     \end{tabularx}
1013     \end{table}
1014 mlamichh 4363
1015 gezelter 4401 The first of the test systems consists entirely of fluids of point
1016     dipolar or quadrupolar molecules in the presence of constant field or
1017     field gradients. Since there are no isolated charges within the
1018     system, the divergence of the field will be zero, \textit{i.e.}
1019     $\vec{\nabla} \cdot \mathbf{E} = 0$. This condition can be satisfied
1020     by using the relatively simple applied potential as described in the
1021     supporting information.
1022 mlamichh 4353
1023 gezelter 4401 When a constant electric field or field gradient is applied to the
1024     system, the molecules align along the direction of the applied field,
1025     and polarize to a degree determined both by the strength of the field
1026     and the fluid's polarizibility. We have calculated ensemble averages
1027     of the box dipole and quadrupole moments as a function of the strength
1028     of the applied fields. If the fields are sufficiently weak, the
1029     response is linear in the field strength, and one can easily compute
1030     the polarizability directly from the simulations.
1031 mlamichh 4389
1032 gezelter 4401 The second set of test systems consists of equilibrium simulations of
1033     fluids of point dipolar or quadrupolar molecules simulated in the
1034     absence of any external perturbation. The fluctuation of the ensemble
1035     averages of the box multipolar moment was calculated for each of the
1036     multipolar fluids. The box multipolar moments were computed as simple
1037     sums over the instantaneous molecular moments, and fluctuations in
1038     these quantities were obtained from Eqs. (\ref{eq:flucDip}) and
1039     (\ref{eq:flucQuad}). The macroscopic polarizabilities of the system at
1040     a were derived using Eqs.(\ref{flucDipole}) and (\ref{flucQuad}).
1041 mlamichh 4389
1042 gezelter 4401 The final system consists of dipolar or quadrupolar fluids with two
1043     oppositely charged ions embedded within the fluid. These ions are
1044     constrained to be at fixed distance throughout a simulation, although
1045     they are allowed to move freely throughout the fluid while satisfying
1046     that constraint. Separate simulations were run at a range of
1047     constraint distances. A dielectric screening factor was computed using
1048     the ratio between the potential between the two ions in the absence of
1049     the fluid medium and the PMF obtained from the simulations.
1050 mlamichh 4389
1051 gezelter 4401 We carried out these simulations for all three of the new real-space
1052     electrostatic methods (SP, GSF, and TSF) that were developed in the
1053     first paper (Ref. \onlinecite{PaperI}) in the series. The radius of
1054     the cutoff sphere was taken to be 12~\AA. Each of the real space
1055     methods also depends on an adjustable damping parameter $\alpha$ (in
1056     units of $\mathrm{length}^{-1}$). We have selected ten different
1057     values of damping parameter: 0.0, 0.05, 0.1, 0.15, 0.175, 0.2, 0.225,
1058     0.25, 0.3, and 0.35~\AA$^{-1}$ in our simulations of the dipolar
1059     liquids, while four values were chosen for the quadrupolar fluids:
1060     0.0, 0.1, 0.2, and 0.3~\AA$^{-1}$.
1061 mlamichh 4389
1062 gezelter 4401 For each of the methods and systems listed above, a reference
1063     simulation was carried out using a multipolar implementation of the
1064     Ewald sum.\cite{Smith82,Smith98} A default tolerance of
1065     $1 \times 10^{-8}$~kcal/mol was used in all Ewald calculations,
1066     resulting in Ewald coefficient 0.3119~\AA$^{-1}$ for a cutoff radius
1067     of 12~\AA. All of the electrostatics and constraint methods were
1068     implemented in our group's open source molecular simulation program,
1069     OpenMD,\cite{Meineke05,openmd} which was used for all calculations in
1070     this work.
1071    
1072     Dipolar systems contained 2048 Lennard-Jones-protected point dipolar
1073     (Stockmayer) molecules with reduced density $\rho^* = 0.822$,
1074     temperature $T^* = 1.15$, moment of inertia $I^* = 0.025$, and dipole
1075     moment $\mu^* = \sqrt{3.0}$. These systems were equilibrated for
1076     0.5~ns in the canonical (NVT) ensemble. Data collection was carried
1077     out over a 1~ns simulation in the microcanonical (NVE) ensemble. Box
1078     dipole moments were sampled every fs. For simulations with external
1079 gezelter 4408 perturbations, field strengths ranging from $0 - 10 \times
1080 gezelter 4415 10^{-4}$~V/\AA\ with increments of $ 10^{-4}$~V/\AA\ were carried out
1081 gezelter 4408 for each system.
1082 gezelter 4401
1083     Quadrupolar systems contained 4000 linear point quadrupoles with a
1084 gezelter 4408 density $2.338 \mathrm{~g/cm}^3$ at a temperature of 500~K. These
1085 gezelter 4401 systems were equilibrated for 200~ps in a canonical (NVT) ensemble.
1086     Data collection was carried out over a 500~ps simulation in the
1087 gezelter 4408 microcanonical (NVE) ensemble. Components of box quadrupole moments
1088     were sampled every 100 fs. For quadrupolar simulations with external
1089 gezelter 4401 field gradients, field strengths ranging from
1090 gezelter 4408 $0 - 9 \times 10^{-2}$~V/\AA$^2$ with increments of
1091     $10^{-2}$~V/\AA$^2$ were carried out for each system.
1092 gezelter 4401
1093     To carry out the PMF simulations, two of the multipolar molecules in
1094     the test system were converted into \ce{q+} and \ce{q-} ions and
1095     constrained to remain at a fixed distance for the duration of the
1096 gezelter 4408 simulation. The constrained distance was then varied from 5--12~\AA.
1097     In the PMF calculations, all simulations were equilibrated for 500 ps
1098     in the NVT ensemble and run for 5 ns in the microcanonical (NVE)
1099     ensemble. Constraint forces were sampled every 20~fs.
1100 mlamichh 4389
1101     \section{Results}
1102 mlamichh 4397 \subsection{Dipolar fluid}
1103     \begin{figure}
1104 gezelter 4401 \includegraphics[width=5in]{dielectricFinal_Dipole.pdf}
1105     \caption{The polarizability ($\alpha_D$), correction factor ($A$), and
1106     dielectric constant ($\epsilon$) for the test dipolar fluid. The
1107     left panels were computed using external fields, and those on the
1108     right are the result of equilibrium fluctuations. In the GSF and SP
1109     methods, the corrections are large in with small values of $\alpha$,
1110     and a optimal damping coefficient is evident around 0.25 \AA$^{-1}$.
1111     The dashed lines in the upper panel indicate back-calculation of the
1112 gezelter 4404 polarizability using the Ewald estimate (Refs. \onlinecite{Adams81}
1113     and \onlinecite{NeumannI83}) for the dielectric constant.}
1114 mlamichh 4397 \label{fig:dielectricDipole}
1115     \end{figure}
1116 gezelter 4401 The macroscopic polarizability ($\alpha_D$) for the dipolar fluid is
1117 gezelter 4408 shown in the upper panels in Fig. \ref{fig:dielectricDipole}. The
1118 gezelter 4401 polarizability obtained from the both perturbation and fluctuation
1119     approaches are in excellent agreement with each other. The data also
1120     show a stong dependence on the damping parameter for both the Shifted
1121     Potential (SP) and Gradient Shifted force (GSF) methods, while Taylor
1122     shifted force (TSF) is largely independent of the damping
1123     parameter.
1124 mlamichh 4397
1125 gezelter 4401 The calculated correction factors discussed in section
1126 gezelter 4408 \ref{sec:corrFactor} are shown in the middle panels. Because the TSF
1127 gezelter 4401 method has $A = 1$ for all values of the damping parameter, the
1128     computed polarizabilities need no correction for the dielectric
1129     calculation. The value of $A$ varies with the damping parameter in
1130     both the SP and GSF methods, and inclusion of the correction yields
1131     dielectric estimates (shown in the lower panel) that are generally too
1132 gezelter 4408 large until the damping reaches $\sim$~0.25~\AA$^{-1}$. Above this
1133     value, the dielectric constants are generally in good agreement with
1134     previous simulation results.\cite{NeumannI83}
1135 mlamichh 4397
1136 gezelter 4401 Figure \ref{fig:dielectricDipole} also contains back-calculations of
1137     the polarizability using the reference (Ewald) simulation
1138     results.\cite{NeumannI83} These are indicated with dashed lines in the
1139     upper panels. It is clear that the expected polarizability for the SP
1140     and GSF methods are quite close to results obtained from the
1141     simulations. This indicates that the correction formula for the
1142     dipolar fluid (Eq. \ref{correctionFormula}) is quite sensitive when
1143     the value of $\mathrm{A}$ deviates significantly from unity.
1144    
1145     These results also suggest an optimal value for the damping parameter
1146 gezelter 4408 of ($\alpha \sim 0.2-0.3$~\AA$^{-1}$ when evaluating dielectric
1147     constants of point dipolar fluids using either the perturbation and
1148     fluctuation approaches for the new real-space methods.
1149 gezelter 4401
1150 mlamichh 4397 \begin{figure}
1151 gezelter 4401 \includegraphics[width=4in]{ScreeningFactor_Dipole.pdf}
1152     \caption{The distance-dependent screening factor, $\epsilon(r)$,
1153     between two ions immersed in the dipolar fluid. The new methods are
1154     shown in separate panels, and different values of the damping
1155     parameter ($\alpha$) are indicated with different symbols. All of
1156     the methods appear to be converging to the bulk dielectric constant
1157 gezelter 4415 ($\sim 65$) at large ion separations.}
1158 mlamichh 4397 \label{fig:ScreeningFactor_Dipole}
1159     \end{figure}
1160 gezelter 4401 We have also evaluated the distance-dependent screening factor,
1161     $\epsilon(r)$, between two oppositely charged ions when they are
1162     placed in the dipolar fluid. These results were computed using
1163     Eq. \ref{eq:pmf} and are shown in Fig.
1164     \ref{fig:ScreeningFactor_Dipole}.
1165 mlamichh 4397
1166 gezelter 4401 The screening factor is similar to the dielectric constant, but
1167     measures a local property of the ions in the fluid and depends on both
1168     ion-dipole and dipole-dipole interactions. These interactions depend
1169     on the distance between ions as well as the electrostatic interaction
1170     methods utilized in the simulations. The screening should converge to
1171     the dielectric constant when the field due to ions is small. This
1172     occurs when the ions are separated (or when the damping parameter is
1173     large). In Fig. \ref{fig:ScreeningFactor_Dipole} we observe that for
1174     the higher value of damping alpha \textit{i.e.}
1175 gezelter 4408 $\alpha = 0.2$~\AA$^{-1}$ and $0.3$~\AA$^{-1}$ and large separation
1176 gezelter 4401 between ions, the screening factor does indeed approach the correct
1177     dielectric constant.
1178 mlamichh 4397
1179 gezelter 4414 REVISIT AFTER EWALD RESULTS:
1180 gezelter 4401 It is also notable that the TSF method again displays smaller
1181     perturbations away from the correct dielectric screening behavior. We
1182     also observe that for TSF method yields high dielectric screening even
1183     for lower values of $\alpha$.
1184    
1185     At short distances, the presence of the ions creates a strong local
1186     field that acts to align nearby dipoles nearly perfectly in opposition
1187     to the field from the ions. This has the effect of increasing the
1188     effective screening when the ions are brought close to one another.
1189    
1190     This is due to the absence of corrections for dipole-dipole
1191     interactions as discussed above. However, the TSF remains quite
1192     perturbative for ion-dipole interactions, an effect that is most
1193     apparent at small ion separations.
1194    
1195 mlamichh 4397 \subsection{Quadrupolar fluid}
1196     \begin{figure}
1197 gezelter 4401 \includegraphics[width=4in]{polarizabilityFinal_Quad.pdf}
1198     \caption{The quadrupole polarizability ($\alpha_Q$), correction factor
1199     ($B$), and susceptibility ($\chi_Q$) for the test quadrupolar
1200     fluid. The left panels were computed using external field gradients,
1201     and those on the right are the result of equilibrium fluctuations.
1202     The GSF and SP methods allow nearly unmodified use of the
1203     ``conducting boundary'' or polarizability results in place of the
1204 gezelter 4404 bulk susceptibility.}
1205 mlamichh 4397 \label{fig:dielectricQuad}
1206     \end{figure}
1207 gezelter 4401 The polarizability ($\alpha_Q$), correction factor ($B$), and
1208     susceptibility ($\chi_Q$) for the quadrupolar fluid is plotted against
1209     damping parameter Fig. \ref{fig:dielectricQuad}. In quadrupolar
1210     fluids, both the polarizability and susceptibility have units of
1211     $\mathrm{length}^2$ Although the susceptibility has dimensionality, it
1212     is the relevant measure of macroscopic quadrupolar
1213     properties.\cite{JeonI03, JeonII03}. The left panel in
1214     Fig. \ref{fig:dielectricQuad} shows results obtained from the applied
1215     field gradient simulations whereas the results from the equilibrium
1216     fluctuation formula are plotted in the right panels.
1217 mlamichh 4397
1218 gezelter 4401 The susceptibility for the quadrupolar fluid is obtained from
1219     quadrupolarizability and a correction factor using
1220     Eq. (\ref{eq:quadrupolarSusceptiblity}). The susceptibilities are
1221     shown in the bottom panels of Fig. \ref{fig:dielectricQuad}. All three
1222     methods: (SP, GSF, and TSF) produce similar susceptibilities over the
1223     range of damping parameters. This shows that susceptibility derived
1224     using the quadrupolarizability and the correction factors are
1225     essentially independent of the electrostatic method utilized in the
1226     simulation.
1227 mlamichh 4397
1228     \begin{figure}
1229 gezelter 4401 \includegraphics[width=5in]{ScreeningFactor_Quad.pdf}
1230     \caption{\label{fig:screenQuad} The distance-dependent screening
1231     factor, $\epsilon(r)$, between two ions immersed in the quadrupolar
1232     fluid. Results from the perturbation and fluctuation methods are
1233     shown in right and central panels. Here the susceptibility is
1234     calculated from the simulation and the geometrical factor is
1235     evaluated analytically, using the field and field-gradient produced
1236     by ions. The right hand panel shows the screening factor obtained
1237     from the PMF calculations.}
1238 mlamichh 4397 \end{figure}
1239 gezelter 4401 A more difficult test of the quadrupolar susceptibility is made by
1240     comparing with direct calculation of the electrostatic screening using
1241     the potential of mean force (PMF). Since the effective dielectric
1242     constant for a quadrupolar fluid depends on the geometry of the field
1243     and field gradient, this is not a physical property of the quadrupolar
1244     fluid.
1245 mlamichh 4397
1246 gezelter 4401 The geometrical factor for embedded ions changes with the ion
1247     separation distance. It is therefore reasonable to treat the
1248     dielectric constant as a distance-dependent screening factor. Since
1249     the quadrupolar molecules couple with the gradient of the field, the
1250     distribution of the quadrupoles will be inhomogeneously distributed
1251     around the point charges. Hence the distribution of quadrupolar
1252     molecules should be taken into account when computing the geometrical
1253     factors in the presence of this perturbation,
1254     \begin{eqnarray}
1255     G &=& \frac{\int_V g(\mathbf{r}) \left|\nabla \mathbf{E}^\circ
1256     \right|^2 d\mathbf{r}}{\int_V\left|\mathbf{E}^\circ\right|^2
1257     d\mathbf{r}} \nonumber \\ \nonumber \\
1258     &=& \frac{ 2 \pi \int_{-1}^{1} \int_{0}^{R} r^2 g(r,
1259     \cos\theta) \left|\nabla \mathbf{E}^\circ \right|^2 dr d\cos\theta }{\int_V\left|\mathbf{E}^\circ\right|^2 d\mathbf{r}}
1260     \label{eq:geometricalFactor}
1261     \end{eqnarray}
1262     where $g(r,\cos\theta)$ is a distribution function for the quadrupoles
1263     with respect to an origin at midpoint of a line joining the two probe
1264     charges.
1265    
1266     The effective screening factor is plotted against ion separation
1267     distance in Fig. \ref{fig:screenQuad}. The screening evaluated from
1268     the perturbation and fluctuation methods are shown in right and
1269     central panels. Here the susceptibility is calculated from the
1270     simulation and the geometrical factor is evaluated analytically, using
1271     the field and field-gradient produced by ions. The right hand panel
1272     shows the screening factor obtained from the PMF calculations.
1273    
1274     We note that the screening factor obtained from both the perturbation
1275     and fluctuation formula show good agreement with the screening factor
1276     calculated using PMF method. As there are no large differences in
1277     quadrupole-quadruople interactions for various real-space
1278     methods,\cite{PaperI,PaperII} we generally good agreement for the
1279     screening factors using any of the real space methods.
1280    
1281 gezelter 4404 \section{Conclusions}
1282     We have used both perturbation and fluctuation approaches to evaluate
1283     dielectric properties for dipolar and quadrupolar fluids. The static
1284     dielectric constant is the relevant bulk property for dipolar fluids,
1285     while the quadrupolar susceptibility plays a similar role for
1286     quadrupoles. Corrections to both the static dielectric constant and
1287     the quadrupolar susceptibility were derived for three new real space
1288     electrostatic methods, and these corrections were tested against a
1289     third measure of dielectric screening, the potential of mean force
1290     between two ions immersed in the fluids.
1291 gezelter 4401
1292 gezelter 4404 For the dipolar fluids, we find that the polarizability evaluated
1293     using the perturbation and fluctuation methods show excellent
1294     agreement, indicating that equilibrium calculations of the dipole
1295     fluctuations are good measures of bulk polarizability. One of the
1296     findings of the second paper in this series is that the moderately
1297     damped GSF and SP methods were most suitable for molecular dynamics
1298     and Monte Carlo simulations, respectively.\cite{PaperII}
1299 mlamichh 4353
1300 gezelter 4404 The dielectric constant evaluated using the computed polarizability
1301     and correction factors agrees well with the previous Ewald-based
1302     simulation results \cite{Adams81,NeumannI83} for moderate damping
1303 gezelter 4408 parameters in the range 0.25--0.3~\AA~$^{-1}$.
1304 mlamichh 4353
1305 gezelter 4404 Although the TSF method alters many dynamic and structural features in
1306     multipolar liquids,\cite{PaperII} it is surprisingly good at computing
1307     bulk dielectric properties at nearly all ranges of the damping
1308     parameter. In fact, the correction factor, $A = 1$, for the TSF
1309     method so the conducting boundary formula is essentially correct when
1310     using this method for point dipolar fluids.
1311 mlamichh 4397
1312 gezelter 4404 The dielectric correction formula (equation ~\ref{correctionFormula})
1313     is extremely sensitive when the correction factor ($A$) deviates from
1314     1, and this behavior is also seen in the effective screening of ions
1315     embedded in the fluid.
1316 mlamichh 4353
1317 gezelter 4404 As in the dipolar case, the quadpole polarizability evaluated from
1318     both perturbation and fluctuation simulations show excellent
1319     agreement, again confirming that equilibrium fluctuation calculations
1320     are sufficient to reproduce bulk dielectric properties in these
1321     fluids. The quadrupolar susceptibility calculated via our derived
1322     correction factors tends to produce the same result for all three real
1323     space methods. Similarly, the screening factor calculated using the
1324     susceptibility and a weighted geometric factor provides good agreement
1325     with results obtained directly via potentials of mean force. For
1326     quadrupolar fluids, the distance dependence of the electrostatic
1327     interaction is significantly reduced and the correction factors are
1328     all small. These points suggest that how an electrostatic method
1329     treats the cutoff radius become less consequential for higher order
1330     multipoles.
1331    
1332     For this reason, we renew our recommendation that the
1333     moderately-damped GSF method is an excellent choice for molecular
1334     dynamics simulation where point-multipole interactions are being
1335     utilized to compute bulk properties of fluids.
1336 mlamichh 4353
1337 mlamichh 4412 \appendix
1338 gezelter 4413 \section{Contraction of the quadrupolar tensor with the traceless
1339     quadrupole moment }
1340 mlamichh 4412 \label{ap:quadContraction}
1341 gezelter 4413 For quadrupolar liquids modeled using point quadrupoles, the
1342     interaction tensor is shown in Eq. (\ref{quadRadial}). The Fourier
1343     transformation of this tensor for $ \mathbf{k} = 0$ is,
1344 mlamichh 4412 \begin{equation}
1345     \tilde{T}_{\alpha\beta\gamma\delta}(0) = \int_V T_{\alpha\beta\gamma\delta}(\mathbf{r}) d \mathbf{r}
1346     \end{equation}
1347 gezelter 4413 On the basis of symmetry, the 81 elements can be placed in four
1348     different groups: $\tilde{T}_{aaaa}$, $\tilde{T}_{aaab}$,
1349     $\tilde{T}_{aabb}$, and $\tilde{T}_{aabc}$, where $a$, $b$, and $c$,
1350 gezelter 4414 and can take on distinct values from the set $\left\{x, y, z\right\}$.
1351     The elements belonging to each of these groups can be obtained using
1352     permutations of the indices. Integration of all of the elements shows
1353     that only the groups with indices ${aaaa}$ and ${aabb}$ are non-zero.
1354 gezelter 4413
1355     We can derive values of the components of $\tilde{T}_{aaaa}$ and
1356     $\tilde{T}_{aabb}$ as follows;
1357 mlamichh 4412 \begin{eqnarray}
1358 gezelter 4413 \tilde{T}_{xxxx}(0) &=&
1359 mlamichh 4412 \int_{\textrm{V}}
1360 gezelter 4414 \left[ 3v_{41}(R)+6x^2v_{42}(r)/r^2 + x^4\,v_{43}(r)/r^4 \right] d\mathbf{r} \nonumber \\
1361 mlamichh 4412 &=&12\pi \int_0^{r_c}
1362 gezelter 4414 \left[ v_{41}(r)+\frac{2}{3} v_{42}(r) + \frac{1}{15}v_{43}(r) \right] r^2\,dr =
1363 gezelter 4413 \mathrm{12 \pi B}
1364 mlamichh 4412 \end{eqnarray}
1365     and
1366     \begin{eqnarray}
1367 gezelter 4413 \tilde{T}_{xxyy}(0)&=&
1368     \int_{\textrm{V}}
1369 gezelter 4414 \left[ v_{41}(R)+(x^2+y^2) v_{42}(r)/r^2 + x^2 y^2\,v_{43}(r)/r^4 \right] d\mathbf{r} \nonumber \\
1370 gezelter 4413 &=&4\pi \int_0^{r_c}
1371 gezelter 4414 \left[ v_{41}(r)+\frac{2}{3} v_{42}(r) + \frac{1}{15}v_{43}(r) \right] r^2\,dr =
1372 gezelter 4413 \mathrm{4 \pi B}.
1373 mlamichh 4412 \end{eqnarray}
1374 gezelter 4413 These integrals yield the same values for all permutations of the
1375     indices in both tensor element groups. In equation
1376     \ref{fourierQuadZeroK}, for a particular value of the quadrupolar
1377     polarization $\tilde{\Theta}_{aa}$ we can contract
1378     $\tilde{T}_{aa\gamma\delta}(0)$ with $\tilde{\Theta}_{\gamma\delta}$,
1379     using the traceless properties of the quadrupolar moment,
1380 mlamichh 4412 \begin{eqnarray}
1381 gezelter 4413 \tilde{T}_{xx\gamma\delta}(0)\tilde{\Theta}_{\gamma\delta}(0) &=& \tilde{T}_{xxxx}(0)\tilde{\Theta}_{xx}(0) + \tilde{T}_{xxyy}(0)\tilde{\Theta}_{yy}(0) + \tilde{T}_{xxzz}(0)\tilde{\Theta}_{zz}(0) \nonumber \\
1382     &=& 12 \pi \mathrm{B}\tilde{\Theta}_{xx}(0) +
1383     4 \pi \mathrm{B}\tilde{\Theta}_{yy}(0) +
1384     4 \pi \mathrm{B}\tilde{\Theta}_{zz}(0) \nonumber \\
1385     &=& 8 \pi \mathrm{B}\tilde{\Theta}_{xx}(0) + 4 \pi
1386     \mathrm{B}\left(\tilde{\Theta}_{xx}(0)+\tilde{\Theta}_{yy}(0) +
1387     \tilde{\Theta}_{zz}(0)\right) \nonumber \\
1388     &=& 8 \pi \mathrm{B}\tilde{\Theta}_{xx}(0)
1389 mlamichh 4412 \end{eqnarray}
1390 gezelter 4413 Similarly for a quadrupolar polarization $\tilde{\Theta}_{xy}$ in
1391     equation \ref{fourierQuadZeroK}, we can contract
1392     $\tilde{T}_{xy\gamma\delta}(0)$ with $\tilde{\Theta}_{\gamma\delta}$,
1393     using the only surviving terms of the tensor,
1394 mlamichh 4412 \begin{eqnarray}
1395 gezelter 4413 \tilde{T}_{xy\gamma\delta}(0)\tilde{\Theta}_{\gamma\delta}(0) &=& \tilde{T}_{xyxy}(0)\tilde{\Theta}_{xy}(0) + \tilde{T}_{xyyx}(0)\tilde{\Theta}_{yx}(0) \nonumber \\
1396     &=& 4 \pi \mathrm{B}\tilde{\Theta}_{xy}(0) +
1397     4 \pi \mathrm{B}\tilde{\Theta}_{yx}(0) \nonumber \\
1398     &=& 8 \pi \mathrm{B}\tilde{\Theta}_{xy}(0)
1399 mlamichh 4412 \end{eqnarray}
1400 gezelter 4413 Here, we have used the symmetry of the quadrupole tensor to combine
1401     the symmetric terms. Therefore we can write matrix contraction for
1402     $\tilde{T}_{\alpha\beta\gamma\delta}(\mathrm{0})$ and
1403     $ \tilde{\Theta}_{\gamma\delta}(\mathrm{0})$ in a general form,
1404 mlamichh 4412 \begin{equation}
1405 gezelter 4413 \tilde{T}_{\alpha\beta\gamma\delta}(\mathrm{0})\tilde{\Theta}_{\gamma\delta}(\mathrm{0})
1406     = 8 \pi \mathrm{B} \tilde{\Theta}_{\alpha\beta}(\mathrm{0}),
1407 mlamichh 4412 \label{contract}
1408     \end{equation}
1409 gezelter 4413 which is the same as Eq. (\ref{quadContraction}).
1410 mlamichh 4412
1411 gezelter 4413 When the molecular quadrupoles are represented by point charges, the
1412     symmetry of the quadrupolar tensor is same as for point quadrupoles
1413     (see Eqs.~\ref{quadCharge} and \ref{quadRadial}). However, for
1414     molecular quadrupoles represented by point dipoles, the symmetry of
1415     the quadrupolar tensor must be handled separately (compare
1416     equations~\ref{quadDip} and~\ref{quadRadial}). Although there is a
1417 gezelter 4414 difference in symmetry, the final result (Eq.~\ref{contract}) also holds
1418     true for dipolar representations.
1419 gezelter 4413
1420 gezelter 4414 \section{Quadrupolar correction factor for the Ewald-Kornfeld (EK)
1421     method}
1422     The interaction tensor between two point quadrupoles in the Ewald
1423     method may be expressed,\cite{Smith98,NeumannII83}
1424     \begin{align}
1425     {T}_{\alpha\beta\gamma\delta}(\mathbf{r}) = &\frac{4\pi}{V
1426     }\sum_{k\neq0}^{\infty}
1427     e^{-k^2 / 4
1428     \kappa^2} e^{-i\mathbf{k}\cdot
1429     \mathbf{r}} \left(\frac{r_\alpha r_\beta k_\delta k_\gamma}{k^2}\right) \nonumber \\
1430     &+ \left(\delta_{\alpha\beta}\delta_{\gamma\delta}+\delta_{\alpha\gamma}\delta_{\beta\delta}+\delta_{\alpha\delta}\delta_{\beta\gamma}\right)
1431     B_2(r) \nonumber \\
1432     &- \left(\delta_{\gamma\delta} r_\alpha r_\beta + \mathrm{ 5\; permutations}\right) B_3(r) \nonumber \\
1433     &+ \left(r_\alpha r_\beta r_\gamma r_\delta \right) B_4(r)
1434 mlamichh 4412 \label{ewaldTensor}
1435 gezelter 4414 \end{align}
1436     where $B_n(r)$ are radial functions defined in reference
1437     \onlinecite{Smith98},
1438     \begin{align}
1439     B_2(r) =& \frac{3}{r^5} \left(\frac{2r\kappa e^{-r^2 \kappa^2}}{\sqrt{\pi}}+\frac{4r^3\kappa^3 e^{-r^2 \kappa^2}}{3\sqrt{\pi}}+\mathrm{erfc(\kappa r)} \right) \\
1440     B_3(r) =& - \frac{15}{r^7}\left(\frac{2r\kappa e^{-r^2 \kappa^2}}{\sqrt{\pi}}+\frac{4r^3\kappa^3 e^{-r^2 \kappa^2}}{3\sqrt{\pi}}+\frac{8r^5\kappa^5 e^{-r^2 \kappa^2}}{15\sqrt{\pi}}+\mathrm{erfc(\kappa r)} \right) \\
1441     B_4(r) =& \frac{105}{r^9}\left(\frac{2r\kappa e^{-r^2
1442     \kappa^2}}{\sqrt{\pi}}+\frac{4r^3\kappa^3 e^{-r^2 \kappa^2}}{3\sqrt{\pi}}+\frac{8r^5\kappa^5 e^{-r^2 \kappa^2}}{15\sqrt{\pi}}
1443     + \frac{16r^7\kappa^7 e^{-r^2 \kappa^2}}{105\sqrt{\pi}} + \mathrm{erfc(\kappa r)} \right)
1444     \end{align}
1445    
1446     We can divide ${T}_{\alpha\beta\gamma\delta}(\mathbf{r})$ into three
1447     parts:
1448 mlamichh 4412 \begin{eqnarray}
1449 gezelter 4414 & & \mathbf{T}(\mathbf{r}) =
1450     \mathbf{T}^\mathrm{K}(\mathbf{r}) +
1451     \mathbf{T}^\mathrm{R1}(\mathbf{r}) +
1452     \mathbf{T}^\mathrm{R2}(\mathbf{r})
1453 mlamichh 4412 \end{eqnarray}
1454 gezelter 4414 where the first term is the reciprocal space portion. Since the
1455     quadrupolar correction factor $B = \tilde{T}_{abab}(0) / 4\pi$ and
1456 gezelter 4415 $\mathbf{k} = 0 $ is excluded from the reciprocal space sum,
1457 gezelter 4414 $\mathbf{T}^\mathrm{K}$ will not contribute.\cite{NeumannII83} The
1458     remaining terms,
1459     \begin{equation}
1460     \mathbf{T}^\mathrm{R1}(\mathbf{r}) = \mathbf{T}^\mathrm{bare}(\mathbf{r}) \left(\frac{2r\kappa e^{-r^2
1461     \kappa^2}}{\sqrt{\pi}}+\frac{4r^3\kappa^3 e^{-r^2 \kappa^2}}{3\sqrt{\pi}}+\frac{8r^5\kappa^5 e^{-r^2 \kappa^2}}{15\sqrt{\pi}}
1462     + \frac{16r^7\kappa^7 e^{-r^2 \kappa^2}}{105\sqrt{\pi}} + \mathrm{erfc(\kappa r)} \right)
1463     \end{equation}
1464 mlamichh 4412 and
1465     \begin{eqnarray}
1466 gezelter 4414 T^\mathrm{R2}_{\alpha\beta\gamma\delta}(\mathbf{r}) = &+& \left(\delta_{\gamma\delta} r_\alpha r_\beta + \mathrm{ 5\; permutations}\right) \frac{16 \kappa^7 e^{-r^2 \kappa^2}}{7\sqrt{\pi}} \nonumber \\
1467     &-&\left(\delta_{\alpha\beta}\delta_{\gamma\delta}+\delta_{\alpha\gamma}\delta_{\beta\delta}+\delta_{\alpha\delta}\delta_{\beta\gamma}\right) \left(\frac{8 \kappa^5 e^{-r^2 \kappa^2}}{5\sqrt{\pi}}+ \frac{16 r^2\kappa^7 e^{-r^2 \kappa^2}}{35\sqrt{\pi} }\right)
1468 mlamichh 4412 \end{eqnarray}
1469 gezelter 4414 are contributions from the real space
1470     sum.\cite{Adams76,Adams80,Adams81} Here
1471     $\mathbf{T}^\mathrm{bare}(\mathbf{r})$ is the unmodified quadrupolar
1472     tensor (for undamped quadrupoles). Due to the angular symmetry of the
1473     unmodified tensor, the integral of
1474     $\mathbf{T}^\mathrm{R1}(\mathbf{r})$ will vanish when integrated over
1475     a spherical region. The only term contributing to the correction
1476     factor (B) is therefore
1477     $T^\mathrm{R2}_{\alpha\beta\gamma\delta}(\mathbf{r})$, which allows us
1478     to derive the correction factor for the Ewald-Kornfeld (EK) method,
1479 mlamichh 4412 \begin{eqnarray}
1480 gezelter 4414 \mathrm{B} &=& \frac{1}{4\pi} \int_V T^\mathrm{R2}_{abab}(\mathbf{r}) \nonumber \\
1481     &=& -\frac{8r_c^3 \kappa^5 e^{-\kappa^2 r_c^2}}{15\sqrt{\pi}}
1482 mlamichh 4412 \end{eqnarray}
1483 gezelter 4414 which is essentially identical with the correction factor from the
1484     direct spherical cutoff (SC) method.
1485 mlamichh 4353 \newpage
1486 mlamichh 4397 \bibliography{dielectric_new}
1487 mlamichh 4353
1488     \end{document}