ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/multipole/dielectric_new.tex
Revision: 4392
Committed: Fri Nov 20 17:36:32 2015 UTC (9 years, 9 months ago) by gezelter
Content type: application/x-tex
File size: 61683 byte(s)
Log Message:
Latest edits

File Contents

# User Rev Content
1 mlamichh 4353 \documentclass[%
2     aip,
3     jcp,
4     amsmath,amssymb,
5     preprint,%
6     % reprint,%
7     %author-year,%
8     %author-numerical,%
9     ]{revtex4-1}
10    
11     \usepackage{graphicx}% Include figure files
12     \usepackage{dcolumn}% Align table columns on decimal point
13     \usepackage{multirow}
14     \usepackage{bm}% bold math
15     \usepackage{natbib}
16     \usepackage{times}
17     \usepackage{mathptmx}
18     \usepackage[version=3]{mhchem} % this is a great package for formatting chemical reactions
19     \usepackage{url}
20     \usepackage{braket}
21 mlamichh 4389 \usepackage{tabularx}
22     \newcolumntype{Y}{>{\centering\arraybackslash}X}
23 mlamichh 4353
24     \begin{document}
25    
26     \title{Real space electrostatics for multipoles. III. Dielectric Properties}
27    
28     \author{Madan Lamichhane}
29     \affiliation{Department of Physics, University
30     of Notre Dame, Notre Dame, IN 46556}
31     \author{Thomas Parsons}
32     \affiliation{Department of Chemistry and Biochemistry, University
33     of Notre Dame, Notre Dame, IN 46556}
34     \author{Kathie E. Newman}
35     \affiliation{Department of Physics, University
36     of Notre Dame, Notre Dame, IN 46556}
37     \author{J. Daniel Gezelter}
38     \email{gezelter@nd.edu.}
39     \affiliation{Department of Chemistry and Biochemistry, University
40     of Notre Dame, Notre Dame, IN 46556}
41    
42     \date{\today}% It is always \today, today,
43     % but any date may be explicitly specified
44    
45 gezelter 4390 \begin{abstract} We report on the dielectric properties of the
46     shifted potential (SP), gradient shifted force (GSF), and Taylor
47     shifted force (TSF) real-space methods for multipole interactions
48     that were developed in the first two papers in this series. We find
49     that some subtlety is required for computing dielectric properties
50     with the real-space methods, particularly when using the common
51     fluctuation formulae. Three distinct methods for computing the
52     dielectric constant are investigated, including the standard
53     fluctuation formulae, potentials of mean force between solvated
54     ions, and direct measurement of linear solvent polarization in
55     response to applied fields and field gradients.
56 mlamichh 4353 \end{abstract}
57    
58     \maketitle
59    
60     \section{Introduction}
61    
62     Over the past several years, there has been increasing interest in
63 gezelter 4392 pairwise methods for computing electrostatic interactions in
64 gezelter 4390 simulations of condensed
65 mlamichh 4353 systems.\cite{Wolf99,Zahn02,Kast03,Beckd.A.C._Bi0486381,Ma05,Fennell06}
66 gezelter 4390 These techniques were initially developed from the observations and
67     efforts of Wolf {\it et al.} and their work towards an
68     $\mathcal{O}(N)$ Coulombic sum.\cite{Wolf99} Wolf's method of cutoff
69     neutralization is able to obtain excellent agreement with Madelung
70     energies in ionic crystals.\cite{Wolf99}
71 mlamichh 4353
72 gezelter 4390 Zahn \textit{et al.} and Fennell and Gezelter extended this method
73     using shifted force approximations at the cutoff distance in order to
74     conserve total energy in molecular dynamics simulations.\cite{Zahn02,
75     Fennell06} In the previous two papers in this series we developed
76 gezelter 4392 three generalized real space methods: shifted potential (SP), gradient
77     shifted force (GSF), and Taylor shifted force (TSF).\cite{PaperI,
78     PaperII} These methods provide real-space electrostatic interactions
79     for higher order multipoles (e.g. dipoles and quadrupoles) using a
80     finite cutoff sphere with neutralization of the electrostatic moments
81     within the cutoff region. The multipolar generalizations of the
82     shifted force approach provide additional terms in the potential
83     energy so that force and torque vanish smoothly at the cutoff
84     radius. This ensures that the total energy is conserved in molecular
85     dynamics simulations.
86 mlamichh 4353
87 gezelter 4390 One of the most difficult tests of any new electrostatic method is the
88     fidelity with which that method can reproduce the bulk-phase
89     polarizability or equivalently, the dielectric properties of a
90     fluid. Since dielectric properties are macroscopic properties, all
91 gezelter 4392 interactions between molecules in the system contribute. Before the
92     advent of computer simulations, Kirkwood and Onsager developed
93 gezelter 4390 fluctuation formulae for the dielectric properties of dipolar
94     fluids.\cite{Kirkwood39,Onsagar36} Similar developments were made by
95     Logan \textit{et al.} for the bulk polarizability of quadrupolar
96     fluids.\cite{LoganI81,LoganII82,LoganIII82}
97 mlamichh 4353
98 gezelter 4390 % While calculating dielectric properties, the formula should be
99     % modified in such a way so that it can accommodate behaviour of
100     % electrostatic neutrality and smoothness of energy, force and torque
101     % at the cutoff radius. Previously many studies have been conducted to
102     % calculate dipolar and quadrupolar dielectric properties using
103     % computer simulations. \cite{Kirkwood39, Onsagar36,LoganI81,
104     % LoganII82, LoganIII82}
105    
106     In modern simulations, bulk materials are usually treated using
107     periodic replicas of small regions, and this level of approximation
108     requires corrections to the fluctuation formulae that were derived for
109     the bulk fluids. In 1983 Neumann proposed a general formula for
110     evaluating dielectric properties of dipolar fluids using real-space
111     cutoff methods.\cite{Neumann83} Steinhauser and Neumann used this
112     formula to evaluate the corrected dielectric constant for the
113     Stockmayer fluid using two different methods: Ewald-Kornfield (EK) and
114     reaction field (RF) methods.\cite{Neumann-Steinhauser83}
115    
116     % But these methods do not specifically take account of the cutoff
117     % behavior common in real-space electrosatic methods. In 1983 Neumann
118     % proposed a general formula for evaluating dielectric properties for
119     % dipolar fluid using real-space cutoff methods. \cite{Neumann83} In the
120     % same year Steinhauser and Neumann used this formula to evaluate the
121     % correct dielectric constant for the Stockmayer fluid using two
122     % different methods: Ewald-Kornfield (EK) and reaction field (RF)
123     % methods. \cite{Neumann-Steinhauser83} This formula contains a
124     % correction factor which is equal to $\frac{3}{4 \pi} $ times volume
125     % integral of the dipole-dipole interactions for a given electrostatic
126     % cutoff method (See equation
127     % \ref{dipole-diopleTensor}).\cite{Neumann83}
128    
129 gezelter 4392 Zahn \textit{et al.}\cite{Zahn02} utilized this approach and evaluated
130     the correction factor for using damped shifted charge-charge
131     kernel. This was later generalized by Izvekov \textit{et
132     al.},\cite{Izvekov:2008wo} who showed that the expression for the
133     dielectric constant reduces to widely-used \textit{conducting
134 gezelter 4390 boundary} formula for real-space cutoff methods that have first
135 gezelter 4392 derivatives that vanish at the cutoff sphere.
136 gezelter 4390
137 gezelter 4392 In quadrupolar fluids, the relationship between quadrupolar
138     susceptibility and the dielectric constant is not as straightforward
139     as in the dipolar case. The dielectric constant depends on the
140     geometry of the external field perturbation.\cite{Ernst92} Many
141     studies have also been conducted to understand solvation theory using
142     dielectric properties of these
143     fluids,\cite{JeonI03,JeonII03,Chitanvis96} although a correction
144     formula for different cutoff methods has not yet been developed.
145 gezelter 4390
146 gezelter 4392 In this paper we derive general formulae for calculating the
147 gezelter 4390 dielectric properties of quadrupolar fluids. We also evaluate the
148     correction factor for SP, GSF, and TSF methods for both dipolar and
149     quadrupolar fluids interacting via charge-charge, dipole-dipole or
150 gezelter 4392 quadrupole-quadrupole interactions.
151 gezelter 4390
152     We have also calculated the geometrical factor for two ions immersed
153     quadrupolar system to evaluate dielectric constant from the
154     quadrupolar susceptibility. We have used three different methods to
155     compare our results with computer simulations:
156     \begin{enumerate}
157     \item external field and field gradient perturbations,
158     \item fluctuation formulae, and
159     \item the potential of mean force,
160     \end{enumerate}
161     to study dielectric properties of the dipolar and quadrupolar
162     systems.
163    
164     In the external field perturbation, the net polarization of the system
165     is observed as a linear response of the applied field perturbation,
166     where proportionality constant is determined by the electrostatic
167     interaction between the electrostatic multipoles at a given
168     temperature. The fluctuation formula observes the time average
169     fluctuation of the multipolar moment as a function of temperature. The
170     average fluctuation value of the system is determined by the
171     multipole-multipole interactions between molecules at a given
172     temperature. Since the expression of the electrostatic interaction
173     energy, force, and torque in the real space electrostatic methods are
174     different from their original definition, both fluctuation and
175     external field perturbation formula should also be modified
176     accordingly. The potential of mean force method calculates dielectric
177     constant from the potential energy between ions before and after
178     dielectric material is introduced. All of these different methods for
179     calculating dielectric properties will be discussed in detail in the
180     following sections: \ref{subsec:perturbation},
181     \ref{subsec:fluctuation}, and \ref{sec:PMF}.
182    
183 mlamichh 4363 \section{Boltzmann average for orientational polarization}
184     The dielectric properties of the system is mainly arise from two different ways: i) the applied field distort the charge distributions so it produces an induced multipolar moment in each molecule; and ii) the applied field tends to line up originally randomly oriented molecular moment towards the direction of the applied field. In this study, we basically focus on the orientational contribution in the dielectric properties. If we consider a system of molecules in the presence of external field perturbation, the perturbation experienced by any molecule will not be only due to external field or field gradient but also due to the field or field gradient produced by the all other molecules in the system. In the following subsections \ref{subsec:boltzAverage-Dipole} and \ref{subsec:boltzAverage-Quad}, we will discuss about the molecular polarization only due to external field perturbation. The contribution of the field or field gradient due to all other molecules will be taken into account while calculating correction factor in the section \ref{sec:corrFactor}.
185    
186     \subsection{Dipole}
187     \label{subsec:boltzAverage-Dipole}
188     Consider a system of molecules with permenent dipole moment $p_o$. In the absense of external field, thermal agitation makes dipole randomly oriented therefore there is no net dipole moment. But external field tends them to line up in the direction of applied field. Here we have considered net field acting due to all other molecules is considered to be zero. Therefore the total Hamiltonian of the molecule is,\cite{Jackson98}
189    
190 mlamichh 4353 \begin{equation}
191     H = H_o - \bf{p_o} .\bf{E},
192     \end{equation}
193     where $H_o$ is a function of the internal coordinates of the molecule. Now Boltzmann average of the dipole moment is given by,
194     \begin{equation}
195     \braket{p_{mol}} = \frac{\displaystyle\int d\Omega\; p_o\; cos\theta\; e^{\frac{p_oE\; cos\theta}{k_B T}}}{\displaystyle\int d\Omega\; e^{\frac{p_oE\;cos\theta}{k_B T}}},
196     \end{equation}
197     where $\bf{E}$ is selected along z-axis. If we consider applied field is small i.e. $\frac{p_oE\; cos\theta}{k_B T} << 1$ then we get,
198    
199     \begin{equation}
200     \braket{p_{mol}} \approx \frac{1}{3}\frac{{p_o}^2}{k_B T}E,
201     \end{equation}
202     where $ \alpha_p = \frac{1}{3}\frac{{p_o}^2}{k_B T}$ is a molecular polarizability. The orientational polarization depends inversely on the temperature and applied field must overcome the thermal agitation.
203    
204 mlamichh 4363
205     \subsection{Quadrupole}
206     \label{subsec:boltzAverage-Quad}
207 mlamichh 4353 Consider a system of molecules with permanent quadrupole moment $q_{\alpha\beta} $. The average quadrupole moment at temperature T in the presence of uniform applied field gradient is given by,\cite{AduGyamfi78, AduGyamfi81}
208     \begin{equation}
209     \braket{q_{\alpha\beta}} \;=\; \frac{\displaystyle\int d\Omega\; e^{-\frac{H}{k_B T}}q_{\alpha\beta}}{\displaystyle\int d\Omega\; e^{-\frac{H}{k_B T}}} \;=\; \frac{\displaystyle\int d\Omega\; e^{\frac{q_{\mu\nu}\;\partial_\nu E_\mu}{k_B T}}q_{\alpha\beta}}{\displaystyle\int d\Omega\; e^{\frac{q_{\mu\nu}\;\partial_\nu E_\mu}{k_B T}}},
210     \label{boltzQuad}
211     \end{equation}
212     where $\int d\Omega = \int_0^{2\pi} \int_0^\pi \int_0^{2\pi}
213     sin\theta\; d\theta\ d\phi\ d\psi$ is the integration over Euler
214     angles, $ H = H_o -q_{\mu\nu}\;\partial_\nu E_\mu $ is the energy of
215     a quadrupole in the gradient of the
216     applied field and $ H_o$ is a function of internal coordinates of the molecule. The energy and quadrupole moment can be transformed into body frame using following relation,
217     \begin{equation}
218     \begin{split}
219 mlamichh 4363 &q_{\alpha\beta} = \eta_{\alpha\alpha'}\;\eta_{\beta\beta'}\;{q}^* _{\alpha'\beta'} \\
220     &H = H_o - q:\vec{\nabla}\vec{E} = H_o - q_{\mu\nu}\;\partial_\nu E_\mu = H_o -\eta_{\mu\mu'}\;\eta_{\nu\nu'}\;{q}^*_{\mu'\nu'}\;\partial_\nu E_\mu.
221 mlamichh 4353 \end{split}
222     \label{energyQuad}
223     \end{equation}
224     Here the starred tensors are the components in the body fixed
225     frame. Substituting equation (\ref{energyQuad}) in the equation (\ref{boltzQuad})
226     and taking linear terms in the expansion we get,
227     \begin{equation}
228 mlamichh 4363 \braket{q_{\alpha\beta}} = \frac{ \int d\Omega \left(1 + \frac{\eta_{\mu\mu'}\;\eta_{\nu\nu'}\;{q}^*_{\mu'\nu'}\;\partial_\nu E_\mu }{k_B T}\right)q_{\alpha\beta}}{ \int d\Omega \left(1 + \frac{\eta_{\mu\mu'}\;\eta_{\nu\nu'}\;{q}^*_{\mu'\nu'}\;\partial_\nu E_\mu }{k_B T}\right)},
229 mlamichh 4353 \end{equation}
230 mlamichh 4363 where $\eta_{\alpha\alpha'}$ is the inverse of the rotation matrix that transforms
231     the body fixed co-ordinates to the space co-ordinates,
232 mlamichh 4353 \[\eta_{\alpha\alpha'}
233     = \left(\begin{array}{ccc}
234 mlamichh 4363 cos\phi\; cos\psi - cos\theta\; sin\phi\; sin\psi & -cos\theta\; cos\psi\; sin\phi - cos\phi\; sin\psi & sin\theta\; sin\phi \\
235     cos\psi\; sin\phi + cos\theta\; cos\phi \; sin\psi & cos\theta\; cos\phi\; cos\psi - sin\phi\; sin\psi & -cos\phi\; sin\theta \\
236 mlamichh 4353 sin\theta\; sin\psi & -cos\psi\; sin\theta & cos\theta
237     \end{array} \right).\]
238     Integration of 1st and 2nd terms in the denominator gives $8 \pi^2$
239     and $8 \pi^2 /3\;\vec{\nabla}.\vec{E}\; Tr(q^*) $ respectively. The
240     second term vanishes for charge free space
241     (i.e. $\vec{\nabla}.\vec{E} \; = \; 0)$. Similarly integration of the
242     1st term in the numerator produces
243     $8 \pi^2 /3\; Tr(q^*)\delta_{\alpha\beta}$ and the 2nd term produces
244     $8 \pi^2 /15k_B T (3{q}^*_{\alpha'\beta'}{q}^*_{\beta'\alpha'} -
245     {q}^*_{\alpha'\alpha'}{q}^*_{\beta'\beta'})\partial_\alpha E_\beta$,
246     if $\vec{\nabla}.\vec{E} \; = \; 0$,
247     $ \partial_\alpha E_\beta = \partial_\beta E_\alpha$ and
248     ${q}^*_{\alpha'\beta'}= {q}^*_{\beta'\alpha'}$. Therefore the
249     Boltzmann average of a quadrupole moment can be written as,
250    
251     \begin{equation}
252     \braket{q_{\alpha\beta}}\; = \; \frac{1}{3} Tr(q^*)\;\delta_{\alpha\beta} + \frac{{\bar{q_o}}^2}{15k_BT}\;\partial_\alpha E_\beta,
253     \end{equation}
254     where $ \alpha_q = \frac{{\bar{q_o}}^2}{15k_BT} $ is a molecular quadrupolarizablity and ${\bar{q_o}}^2=
255     3{q}^*_{\alpha'\beta'}{q}^*_{\beta'\alpha'}-{q}^*_{\alpha'\alpha'}{q}^*_{\beta'\beta'}$ is a square of the net quadrupole moment of a molecule.
256    
257 mlamichh 4363 \section{Macroscopic Polarizability}
258     \label{sec:MacPolarizablity}
259    
260     If we consider a system of dipolar or quadrupolar fluid in the external field perturbation, the net polarization of the system will still be proportional to the applied field perturbation.\cite{Chitanvis96, Stern-Feller03, Salvchov14, Salvchov14_2} In simulation the net polarization of the system is determined by the interaction of molecule with all other molecules as well as external field perturbation. Therefore the macroscopic polarizablity obtained from the simulation always varies with nature of real-space electrostatic interaction methods implemented in the simulation. To determine a susceptibility or dielectric constant of the material (which is a actual physical property of the dipolar or quadrupolar fluid) from the macroscopic polarizablity, we need to incorporate the interaction between molecules which has been discussed in detail in section \ref{sec:corrFactor}. In this section we discuss about the two different methods of calculating macroscopic polarizablity for both dipolar and quadrupolar fluid.
261    
262     \subsection{External field perturbation}
263     \label{subsec:perturbation}
264     In the presence of uniform electric field $\textbf{E}^o$, a system of dipolar molecules polarizes along the direction of the applied field (or field gradient). Therefore the net dipolar polarization $ \textbf{P}$ of the system is,
265 mlamichh 4353 \begin{equation}
266     \textbf{P} = \epsilon_o \alpha_{D}\; \textbf{E}^o.
267     \label{pertDipole}
268     \end{equation}
269 mlamichh 4363 The constant $\alpha_D$ is a macroscopic polarizability, which is a property of the dipolar fluid in a given density and temperature.
270    
271     Similarly, in the presence of external field gradient the system of quadrupolar molecule polarizes along the direction of applied field gradient therefore the net quadrupolar polarization of the system can be given by,
272 mlamichh 4353 \begin{equation}
273     \begin{split}
274     & {Q}_{\alpha\beta} = \frac{1}{3}\; Tr({Q})\; \delta_{\alpha\beta} + \epsilon_o\; \alpha_Q \; \partial_{\alpha} E^o_{\beta}
275     \\ & or \\
276     & \frac{1}{3}\;\Theta_{\alpha\beta} = \epsilon_o\; \alpha_Q \; \partial_{\alpha} E^o_{\beta}
277     \end{split}
278     \label{pertQuad}
279     \end{equation}
280     where $Q_{\alpha\beta}$ is a tensor component of the traced quadrupolar moment of the system, $ \alpha_Q$ is a macroscopic quadrupolarizability has a dimension of $length^{-2}$, and $\Theta_{\alpha\beta} = 3Q_{\alpha\beta}-Tr(Q) $ is the traceless component of the quadrupole moment.
281    
282 mlamichh 4363
283     \subsection{Fluctuation formula}
284     \label{subsec:fluctuation}
285 mlamichh 4353 For a system of molecules with net dipolar moment $\bf{M}$ at thermal equilibrium of temperature T in the presence of applied field $\bf{E}^o$, the average dipolar polarization can be expressed in terms of fluctuation of the net dipole moment as below,\cite{Stern03}
286     \begin{equation}
287     \braket{\bf{P}} = \epsilon_o \frac{\braket{\bf{M}^2}-{\braket{\bf{M}}}^2}{3 \epsilon_o V k_B T}\bf{E}^o
288     \label{flucDipole}
289     \end{equation}
290 mlamichh 4363 This is similar to the formula for boltzmann average of single dipolar molecule in the subsection \ref{subsec:boltzAverage-Dipole}. Here $\braket{\bf{P}}$ is average polarization and $ \braket{\textbf{M}^2}-{\braket{\textbf{M}}}^2$ is the net dipole fluctuation at temperature T. For the limiting case $\textbf{E}^o \rightarrow 0 $, ensemble average of both net dipole moment $\braket{\textbf{M}}$ and dipolar polarization $\braket{\bf{P}}$ tends to vanish but $\braket{\bf{M}^2}$ will still be non-zero. The dipolar macroscopic polarizability can be written as,
291 mlamichh 4353 \begin{equation}
292     \alpha_D = \frac{\braket{\bf{M}^2}-{\braket{\bf{M}}}^2}{3 \epsilon_o V k_B T}
293     \end{equation}
294     This is a macroscopic property of dipolar material which is true even if applied field $ \textbf{E}^o \rightarrow 0 $.
295    
296     Analogous formula can also be written for a system with quadrupolar molecules,
297     \begin{equation}
298     \braket{Q_{\alpha\beta}} = \frac{1}{3} Tr(\textbf{Q})\; \delta_{\alpha\beta} + \epsilon_o \frac{\braket{\textbf{Q}^2}-{\braket{\textbf{Q}}}^2}{15 \epsilon_o V k_B T}{\partial_\alpha E^o_\beta}
299     \label{flucQuad}
300     \end{equation}
301     where $Q_{\alpha\beta}$ is a component of system quadrupole moment, $\bf{Q}$ is net quadrupolar moment which can be expressed as $\textbf{Q}^2 =3Q_{\alpha\beta}Q_{\alpha\beta}-(Tr\textbf{Q})^2 $. The macroscopic quadrupolarizability is given by,
302     \begin{equation}
303     \alpha_Q = \frac{\braket{\textbf{Q}^2}-{\braket{\textbf{Q}}}^2}{15 \epsilon_o V k_B T}
304     \label{propConstQuad}
305     \end{equation}
306    
307 mlamichh 4363
308 mlamichh 4353 \section{Potential of mean force}
309     In this method, we will measure the interaction between a positive and negative charge at varying distances after introducing a dipolar (or quadrupolar) material between them. The potential of mean force (PMF) between two ions in a liquid is obtained by constraining their distance and measuring the mean constraint force required to hold them at a fixed distance $r.$ The PMF is obtained from a sequence of simulations as,
310     \begin{equation}
311     w(r) = \int_{\inf}^{r}\braket{\frac{\partial f}{\partial r'}}dr',
312     \end{equation}
313     where $\braket{\partial f/\partial r'}$ is the mean constraint force.
314     Since the ions have a protecting Lennard-Jones (LJ) potential,
315     \begin{equation}
316     w(r) = w_{LJ}(r) + \frac{q_iq_j}{4\pi \epsilon_o \epsilon(r)}U_{method}(r).
317 mlamichh 4363 \label{eq:pmf}
318 mlamichh 4353 \end{equation}
319     Here $w_{LJ}$ is the PMF calculated without electrostatic interactions and $U_{method}(r)$ is the radial function for the charge-charge interaction, which is different for various real space truncation methods.
320    
321     The quadrupole molecule can only couple with the gradient of the electric field and the region between two opposite point charges has both an electric field and a gradient of the electric field present. Therefore, this methodology should be usable to determine the dielectric constant for both the dipolar and quadrupolar fluid.
322     \label{sec:PMF}
323    
324     \section{Correction factor}
325 mlamichh 4363 \label{sec:corrFactor}
326 mlamichh 4353 Since equations (\ref{pertDipole}, \ref{pertQuad}, \ref{flucDipole}, and \ref{flucQuad}) provide relation between polarization (dipolar or quadrupolar) and applied field (uniform field or field gradient), $\chi_d$ (or $ \chi_q$) is actually a macroscopic polarizability (or quadrupolarizability), which is different than the dipolar (or quadrupolar) susceptibility of the fluid. Actual constitutive relation should have a relation between polarization and Maxwell field (or field gradient) at different point in the sample. We can obtain susceptibility of the fluid from its macroscopic polarizability using correction factor evaluated below.
327     \subsection{Dipolar system}
328     In the presence of an external field $ \textbf{E}$ polarization $\textbf{E}$ will be induced in a dipolar system. The total electrostatic field (or Maxwell electric field) at point $\bf{r}$ in a system is,\cite{Neumann83}
329     \begin{equation}
330     \textbf{E}(\textbf{r}) = \textbf{E}^o(\textbf{r}) + \frac{1}{4\pi\epsilon_o} \int d^3r' \textbf{T}(\textbf{r}-\textbf{r}')\cdot {\textbf{P}(\textbf{r}')}.
331     \end{equation}
332    
333     We can consider the cases of Stockmayer (dipolar) soft spheres that are represented either by two closely-spaced point charges or by a single point dipole (see Fig. \ref{fig:stockmayer}).
334     \begin{figure}
335     \includegraphics[width=3in]{DielectricFigure}
336     \caption{With the real-space electrostatic methods, the effective
337     dipole tensor, $\mathbf{T}$, governing interactions between
338     molecular dipoles is not the same for charge-charge interactions as
339     for point dipoles.}
340     \label{fig:stockmayer}
341     \end{figure}
342     In the case where point charges are interacting via an electrostatic
343     kernel, $v(r)$, the effective {\it molecular} dipole tensor,
344     $\mathbf{T}$ is obtained from two successive applications of the
345     gradient operator to the electrostatic kernel,
346     \begin{equation}
347     \mathbf{T}_{\alpha \beta}(r) = \nabla_\alpha \nabla_\beta \left(v(r)\right) = \delta_{\alpha \beta}
348     \left(\frac{1}{r} v^\prime(r) \right) + \frac{r_{\alpha}
349     r_{\beta}}{r^2} \left( v^{\prime \prime}(r) - \frac{1}{r}
350     v^{\prime}(r) \right)
351     \label{dipole-chargeTensor}
352     \end{equation}
353     where $v(r)$ may be either the bare kernel ($1/r$) or one of the
354     modified (Wolf or DSF) kernels. This tensor describes the effective
355     interaction between molecular dipoles ($\mathbf{D}$) in Gaussian
356     units as $-\mathbf{D} \cdot \mathbf{T} \cdot \mathbf{D}$.
357    
358     When utilizing the new real-space methods for point dipoles, the
359     tensor is explicitly constructed,
360     \begin{equation}
361     \mathbf{T}_{\alpha \beta}(r) = \delta_{\alpha \beta} v_{21}(r) +
362     \frac{r_{\alpha} r_{\beta}}{r^2} v_{22}(r)
363     \label{dipole-diopleTensor}
364     \end{equation}
365     where the functions $v_{21}(r)$ and $v_{22}(r)$ depend on the level of
366     the approximation. Although the Taylor-shifted (TSF) and
367     gradient-shifted (GSF) models produce to the same $v(r)$ function for
368     point charges, they have distinct forms for the dipole-dipole
369     interactions.
370    
371     Using constitutive relation, the polarization density $\textbf{P}(\textbf{r})$ is given by,
372     \begin{equation}
373     \textbf{P}(\textbf{r}) = \epsilon_o\; \chi^*_D \left(\textbf{E}^o(\textbf{r}) + \frac{1}{4\pi\epsilon_o} \int d^3r' \textbf{T}(\textbf{r}-\textbf{r}')\cdot {\textbf{P}(\textbf{r}')}\right).
374     \label{constDipole}
375     \end{equation}
376     Here $\chi^*_D$ is a dipolar susceptibility can be expressed in terms of dielectric constant as $ \chi^*_D = \epsilon - 1$ which different than macroscopic dipolar polarizability $\alpha_D$ in the sections \ref{sec:perturbation} and \ref{sec:fluctuation}. We can split integral into two parts: singular part i.e $|\textbf{r}-\textbf{r}'|\rightarrow 0 $ and non-singular part i.e $|\textbf{r}-\textbf{r}'| > 0 $ . The singular part of the integral can be written as,\cite{Neumann83, Jackson98}
377     \begin{equation}
378     \frac{1}{4\pi\epsilon_o} \int_{|\textbf{r}-\textbf{r}'| \rightarrow 0} d^3r'\; \textbf{T}(\textbf{r}-\textbf{r}')\cdot {\textbf{P}(\textbf{r}')} = - \frac{\textbf{P}(\textbf{r})}{3\epsilon_o}
379     \label{singular}
380     \end{equation}
381     Substituting equation (\ref{singular}) in the equation (\ref{constDipole}) we get,
382     \begin{equation}
383     \textbf{P}(\textbf{r}) = 3 \epsilon_o\; \frac{\chi^*_D}{\chi^*_D + 3} \left(\textbf{E}^o(\textbf{r}) + \frac{1}{4\pi\epsilon_o} \int_{|\textbf{r}-\textbf{r}'| > 0} d^3r'\; \textbf{T}(\textbf{r}-\textbf{r}')\cdot {\textbf{P}(\textbf{r}')}\right).
384     \end{equation}
385     For both polarization and electric field homogeneous, this can be easily solved using Fourier transformation,
386     \begin{equation}
387     \textbf{P}(\kappa) = 3 \epsilon_o\; \frac{\chi^*_D}{\chi^*_D + 3} \left(1- \frac{3}{4\pi}\;\frac{\chi^*_D}{\chi^*_D + 3}\; \textbf{T}({\kappa})\right)^{-1}\textbf{E}^o({\kappa}).
388     \end{equation}
389     For homogeneous applied field Fourier component is non-zero only if $\kappa = 0$. Therefore,
390     \begin{equation}
391     \textbf{P}(0) = 3 \epsilon_o\; \frac{\chi^*_D}{\chi^*_D + 3} \left(1- \frac{\chi^*_D}{\chi^*_D + 3}\; A_{dipole})\right)^{-1}\textbf{E}^o({0}).
392     \label{fourierDipole}
393     \end{equation}
394     where $A_{dipole}=\frac{3}{4\pi}T(0) = \frac{3}{4\pi} \int_V d^3r\;T(r)$. Now equation (\ref{fourierDipole}) can be compared with equation (\ref{flucDipole}). Therefore,
395     \begin{equation}
396     \frac{\braket{\bf{M}^2}-{\braket{\bf{M}}}^2}{3 \epsilon_o V k_B T} = \frac{3\;\chi^*_D}{\chi^*_D + 3} \left(1- \frac{\chi^*_D}{\chi^*_D + 3}\; A_{dipole})\right)^{-1}
397     \end{equation}
398 mlamichh 4363 Substituting $\chi^*_D = \epsilon-1$ and $ \frac{\braket{\bf{M}^2}-{\braket{\bf{M}}}^2}{3 \epsilon_o V k_B T} = \epsilon_{CB}-1 = \alpha_D$ in above equation we get,
399 mlamichh 4353 \begin{equation}
400 mlamichh 4363 \epsilon = \frac{3+(A_{dipole} + 2)(\epsilon_{CB}-1)}{3+(A_{dipole} -1)(\epsilon_{CB}-1)} = \frac{3+(A_{dipole} + 2)\alpha_D}{3+(A_{dipole} -1)\alpha_D}
401 mlamichh 4353 \label{correctionFormula}
402     \end{equation}
403     where $\epsilon_{CB}$ is dielectric constant obtained from conducting boundary condition. Equation (\ref{correctionFormula}) calculates actual dielectric constant from the dielectric constant obtained from the conducting boundary condition (which can be obtained directly from the simulation) using correction factor. The correction factor is different for different real-space cutoff methods. The expression for correction factor assuming a single point dipole or two closely spaced point charges for SP, GSF, and TSF method is listed in Table \ref{tab:A}.
404     \begin{table}
405     \caption{Expressions for the dipolar correction factor ($A$) for the real-space electrostatic methods in terms of the damping parameter
406     ($\alpha$) and the cutoff radius ($r_c$). The Ewald-Kornfeld result
407     derived in Refs. \onlinecite{Adams:1980rt,Adams:1981fr,Neumann83} is shown for comparison using the Ewald
408     convergence parameter ($\kappa$) and the real-space cutoff value ($r_c$). }
409     \label{tab:A}
410     {%
411     \begin{tabular}{l|c|c|c|}
412    
413     Method & $A_\mathrm{charges}$ & $A_\mathrm{dipoles}$ \\
414     \hline
415     Spherical Cutoff (SC) & $\mathrm{erf}(r_c \alpha) - \frac{2 \alpha r_c}{\sqrt{\pi}} e^{-\alpha^2 r_c^2}$ & $\mathrm{erf}(r_c \alpha) - \frac{2 \alpha r_c}{\sqrt{\pi}} e^{-\alpha^2 r_c^2}$ \\
416     Shifted Potental (SP) & $ \mathrm{erf}(r_c \alpha) - \frac{2 \alpha r_c}{\sqrt{\pi}} e^{-\alpha^2 r_c^2}$ & $\mathrm{erf}(r_c \alpha) -\frac{2 \alpha r_c}{\sqrt{\pi}}\left(1+\frac{2\alpha^2 {r_c}^2}{3} \right)e^{-\alpha^2{r_c}^2} $\\
417     Gradient-shifted (GSF) & 1 & $\mathrm{erf}(\alpha r_c)-\frac{2 \alpha r_c}{\sqrt{\pi}} \left(1 + \frac{2 \alpha^2 r_c^2}{3} + \frac{\alpha^4 r_c^4}{3}\right)e^{-\alpha^2 r_c^2} $ \\
418     Taylor-shifted (TSF) & 1 & 1 \\
419     Ewald-Kornfeld (EK) & $\mathrm{erf}(r_c \kappa) - \frac{2 \kappa r_c}{\sqrt{\pi}} e^{-\kappa^2 r_c^2}$ & $\mathrm{erf}(r_c \kappa) - \frac{2 \kappa r_c}{\sqrt{\pi}} e^{-\kappa^2 r_c^2}$ \\\hline
420     \end{tabular}%
421     }
422     \end{table}
423     \subsection{Quadrupolar system}
424     In the presence of the field gradient $\partial_\alpha {E}_\beta $, a
425     non-vanishing quadrupolar polarization (quadrupole moment per unit
426     volume) $\bar{Q}_{\alpha\beta}$ will be induced in the entire volume
427     of a sample. The total field at any point $\vec{r}$ in the sample is
428     given by,
429     \begin{equation}
430     \partial_\alpha E_\beta(\textbf{r}) = \partial_\alpha {E^o}_\beta(\textbf{r}) + \frac{1}{4\pi \epsilon_o}\int T_{\alpha\beta\gamma\delta}(|{\textbf{r}-\textbf{r}'}|)\;{Q}_{\gamma\delta}(\textbf{r}')\; d^3r'
431     \label{gradMaxwell}
432     \end{equation}
433     where $\partial_\alpha {E^o}_\beta$ is the applied field gradient and $ T_{\alpha\beta\gamma\delta}$ is the quadrupole-quadrupole interaction tensor. We can represent quadrupole as a group of four closely spaced charges, two closely spaced point dipoles or single point quadrupole (see Fig. \ref{fig:quadrupolarFluid}). The quadrupole-quadrupole interaction tensor from the charge representation can obtained from the application of the four successive gradient operator to the electrostatic kernel $v(r)$.
434    
435     \begin{equation}
436     \begin{split}
437     T_{\alpha\beta\gamma\delta}(r) &=\nabla_\alpha \nabla_\beta \nabla_\gamma \nabla_\delta\;v(r)
438     \\ &= \left(\delta_{\alpha\beta}\delta_{\gamma\delta} + \delta_{\alpha\gamma}\delta_{\beta\delta}+ \delta_{\alpha\delta}\delta_{\beta\gamma}\right)\left(-\frac{v'(r)}{r^3} + \frac{v''(r)}{r^2}\right)
439     \\ &+ \left(\delta_{\alpha\beta} r_\gamma r_\delta + 5 \; permutations \right) \left(\frac{3v'(r)}{r^5}-\frac{3v''(r)}{r^4} + \frac{v'''(r)}{r^3}\right)
440     \\ &+ r_\alpha r_\beta r_\gamma r_\delta\; \left(-\frac{15v'(r)}{r^7}+\frac{15v''(r)}{r^6}-\frac{6v'''(r)}{r^5} + \frac{v''''(r)}{r^4}\right),
441     \end{split}
442     \label{quadCharge}
443     \end{equation}
444     where $v(r)$ can either be electrostatic kernel for spherical truncation or one of the modified (Wolf or DSF) method. Similarly in point dipole representation the qaudrupole-quadrupole interaction tensor can be obtained from the applications of the two successive gradient in the dipole-dipole interaction tensor,
445    
446     \begin{equation}
447     \begin{split}
448     T_{\alpha\beta\gamma\delta}(r) &=\nabla_\alpha \nabla_\beta \;v_{\gamma\delta}(r)
449     \\ &= \delta_{\alpha\beta}\delta_{\gamma\delta} \frac{v'_{21}(r)}{r} + \left(\delta_{\alpha\gamma}\delta_{\beta\delta}+ \delta_{\alpha\delta}\delta_{\beta\gamma}\right)\frac{v_{22}(r)}{r^2}
450     \\ &+ \delta_{\gamma\delta} r_\alpha r_\beta \left(\frac{v''_{21}(r)}{r^2}-\frac{v'_{21}(r)}{r^3} \right)
451     \\ &+\left(\delta_{\alpha\beta} r_\gamma r_\delta + \delta_{\alpha\gamma} r_\beta r_\delta +\delta_{\alpha\delta} r_\gamma r_\beta + \delta_{\beta\gamma} r_\alpha r_\delta +\delta_{\beta\delta} r_\alpha r_\gamma \right) \left(\frac{v'_{22}(r)}{r^3}-\frac{2v_{22}(r)}{r^4}\right)
452     \\ &+ r_\alpha r_\beta r_\gamma r_\delta\; \left(\frac{v''_{22}(r)}{r^4}-\frac{5v'_{22}(r)}{r^5}+\frac{8v_{22}(r)}{r^6}\right),
453     \end{split}
454     \label{quadDip}
455     \end{equation}
456     where $v_{\gamma\delta}(r)$ is the electrostatic dipole-dipole interaction tensor, which is different for different electrostatic cut off methods. Similarly $v_{21}(r) \;and\; v_{22}(r)$ are the radial function for different real space cutoff methods defined in Paper I of the series.\cite{PaperI} Using point quadrupole representation the quadrupole-quadrupole interaction can be constructed as,
457     \begin{equation}
458     \begin{split}
459     T_{\alpha\beta\gamma\delta}(r) &= \left(\delta_{\alpha\beta}\delta_{\gamma\delta} + \delta_{\alpha\gamma}\delta_{\beta\delta}+ \delta_{\alpha\delta}\delta_{\beta\gamma}\right)v_{41}(r) + \delta_{\gamma\delta} r_\alpha r_\beta \frac{v_{42}(r)}{r^2} \\ &+ r_\alpha r_\beta r_\gamma r_\delta\; \left(\frac{v_{43}(r)}{r^4}\right),
460     \end{split}
461     \label{quadRadial}
462     \end{equation}
463     where $v_{41}(r),\; v_{42}(r), \; \text{and} \; v_{43}(r)$ are defined in Paper I of the series. \cite{PaperI} They have different functional forms for different electrostatic cutoff methods.
464     \begin{figure}
465     \includegraphics[width=3in]{QuadrupoleFigure}
466     \caption{With the real-space electrostatic methods, the effective
467     quadrupolar tensor, $\mathbf{T}_{\alpha\beta\gamma\delta}(r)$, governing interactions between molecular quadrupoles can be represented by interaction of charges, point dipoles or single point quadrupoles.}
468     \label{fig:quadrupolarFluid}
469     \end{figure}
470     The integral in equation (\ref{gradMaxwell}) can be divided into two parts, $|\textbf{r}-\textbf{r}'|\rightarrow 0 $ and $|\textbf{r}-\textbf{r}'|> 0$. Since the total
471     field gradient due to quadrupolar fluid vanishes at the singularity (see Appendix \ref{singularQuad}), equation (\ref{gradMaxwell}) can be written as,
472     \begin{equation}
473     \partial_\alpha E_\beta(\textbf{r}) = \partial_\alpha {E^o}_\beta(\textbf{r}) +
474     \frac{1}{4\pi \epsilon_o}\int\limits_{|\textbf{r}-\textbf{r}'|> 0 }
475     T_{\alpha\beta\gamma\delta}(|\textbf{r}-\textbf{r}'|)\;{Q}_{\gamma\delta}(\textbf{r}')\;
476     d^3r'.
477     \end{equation}
478     If $\textbf{r} = \textbf{r}'$ is excluded from the integration, the gradient of the electric can be expressed in terms of traceless quadrupole moment as below, \cite{LoganI81}
479     \begin{equation}
480     \partial_\alpha E_\beta(\textbf{r}) = \partial_\alpha {E^o}_\beta(\textbf{r}) + \frac{1}{12\pi \epsilon_o}\int\limits_{|\textbf{r}-\textbf{r}'|> 0 } T_{\alpha\beta\gamma\delta}(|\textbf{r}-\textbf{r}'|)\;{\Theta}_{\gamma\delta}(\textbf{r}')\; d^3r',
481     \end{equation}
482     where $\Theta_{\alpha\beta} = 3Q_{\alpha\beta} - \delta_{\alpha\beta}Tr(Q)$
483     is the traceless quadrupole moment. The total quadrupolar polarization is written as,
484     \begin{equation}
485     {Q}_{\alpha\beta}(\textbf{r}) = \frac{1}{3}\delta_{\alpha\beta}\;Tr({Q})+\epsilon_o {\chi}^*_Q\;\partial_\alpha E_\beta(\textbf{r}),
486     \label{constQaud}
487     \end{equation}
488     In the equation (\ref{constQaud}), $\partial_{\alpha}E_{\beta}$ is Maxwell field gradient and ${\chi}^*_Q$ is the actual quadrupolar susceptibility of the fluid which is different than the proportionality constant $\chi_q $ in the equation (\ref{propConstQuad}). In terms of traceless quadrupole moment, equation (\ref{constQaud}) can be written as,
489     \begin{equation}
490     \frac{1}{3}{\Theta}_{\alpha\beta}(\textbf{r}) = \epsilon_o {\chi}^*_Q \; \partial_\alpha E_\beta (\textbf{r})= \epsilon_o {\chi}^*_Q \left(\partial_\alpha {E^o}_\beta(\textbf{r}) + \frac{1}{12\pi \epsilon_o}\int\limits_{|\textbf{r}-\textbf{r}'|> 0 } T_{\alpha\beta\gamma\delta}(|\textbf{r}-\textbf{r}'|)\;{\Theta}_{\gamma\delta}(\textbf{r}')\; d^3r'\right)
491     \end{equation}
492     For toroidal boundary conditions, both $\partial_\alpha E_\beta$ and
493 mlamichh 4363 ${\Theta}_{\alpha\beta}$ are uniform over the entire space. After
494 mlamichh 4353 performing a Fourier transform (see the Appendix in the Neumann's Paper \cite{Neumann83}) we get,
495     \begin{equation}
496     \frac{1}{3}{{\Theta}}_{\alpha\beta}({\kappa})=
497     \epsilon_o {\chi}^*_Q \;\left[{\partial_\alpha
498     {E^o}_\beta}({\kappa})+ \frac{1}{12\pi
499     \epsilon_o}\;{T}_{\alpha\beta\gamma\delta}({\kappa})\;
500     {{\Theta}}_{\gamma\delta}({\kappa})\right]
501     \end{equation}
502     Since the quadrupolar polarization is in the direction of the applied
503     field, we can write
504     ${{\Theta}}_{\gamma\delta}({\kappa}) =
505     {{\Theta}}_{\alpha\beta}({\kappa})$
506     and
507     ${T}_{\alpha\beta\gamma\delta}({\kappa}) =
508 mlamichh 4363 {T}_{\alpha\beta\alpha\beta}({\kappa})$. Therefore we can consider each component of the interaction tensor as scalar and perform calculation.
509 mlamichh 4353 \begin{equation}
510     \begin{split}
511     \frac{1}{3}{{\Theta}}_{\alpha\beta}({\kappa}) &= \epsilon_o {\chi}^*_Q \left[{\partial_\alpha E^o_\beta}({\kappa})+ \frac{1}{12\pi \epsilon_o}{T}_{\alpha\beta\alpha\beta}({\kappa})\;{{\Theta}}_{\alpha\beta}({\kappa})\right] \\
512     &= \epsilon_o {\chi}^*_Q\;\left(1-\frac{1}{4\pi} {\chi}^*_Q\;
513     {T}_{\alpha\beta\alpha\beta}({\kappa})\right)^{-1}
514     {\partial_\alpha E^o_\beta}({\kappa})
515     \end{split}
516     \label{fourierQuad}
517     \end{equation}
518 mlamichh 4363 If the field gradient is homogeneous over the
519 mlamichh 4353 entire volume, ${\partial_ \alpha E_\beta}({\kappa}) = 0 $ except at
520     $ {\kappa} = 0$, hence it is sufficient to know
521     ${T}_{\alpha\beta\alpha\beta}({\kappa})$ at $ {\kappa} =
522     0$. Therefore equation (\ref{fourierQuad}) can be written as,
523     \begin{equation}
524     \begin{split}
525     \frac{1}{3}{{\Theta}}_{\alpha\beta}({0}) &= \epsilon_o {\chi}^*_Q\; \left(1-\frac{1}{4\pi} {\chi}^*_Q\;{T}_{\alpha\beta\alpha\beta}({0})\right)^{-1} \partial_\alpha E^o_\beta({0})
526     \end{split}
527     \label{fourierQuad2}
528     \end{equation}
529     where $ {T}_{\alpha\beta\alpha\beta}({0})$ can be evaluated as,
530     \begin{equation}
531     {T}_{\alpha\beta\alpha\beta}({0}) = \int {T}_{\alpha\beta\alpha\beta}\;(\textbf{r})d^3r
532     \label{realTensorQaud}
533     \end{equation}
534    
535     In terms of traced quadrupole moment equation (\ref{fourierQuad2}) can be written as,
536     \begin{equation}
537     {{Q}}_{\alpha\beta} = \frac{1}{3}\delta_{\alpha\beta}\;Tr({Q}) + \epsilon_o\; {\chi}^*_Q\left(1-\frac{1}{4\pi} {\chi}^*_Q\;{T}_{\alpha\beta\alpha\beta}({0})\right)^{-1}\; \partial_\alpha E^o_\beta
538     \label{tracedConstQuad}
539     \end{equation}
540     Comparing (\ref{tracedConstQuad}) and (\ref{flucQuad}) we get,
541     \begin{equation}
542     \begin{split}
543     &\frac{\braket{{Q^2}} - \braket{Q}^2}{15 \epsilon_o Vk_BT}\; =\; {\chi}^*_Q\;\left(1-\frac{1}{4\pi} {\chi}^*_Q\;{T}_{\alpha\beta\alpha\beta}({0})\right)^{-1}, \\
544     &{\chi}^*_Q \;=\; \frac{\braket{{Q^2}} - \braket{Q}^2}{15 \epsilon_o Vk_BT}\left(1 + \frac{1}{4\pi} \frac{\braket{{Q^2}} - \braket{Q}^2}{15 \epsilon_o Vk_BT}\;{T}_{\alpha\beta\alpha\beta}({0})\right)^{-1}
545     \end{split}
546     \end{equation}
547     Finally the quadrupolar susceptibility cab be written in terms of quadrupolar correction factor ($A_{quad}$) as below,
548     \begin{equation}
549 mlamichh 4363 {\chi}^*_Q \;=\; \frac{\braket{{Q^2}} - \braket{Q}^2}{15 \epsilon_o Vk_BT}\left(1 + \frac{\braket{{Q^2}} - \braket{Q}^2}{15 \epsilon_o Vk_BT}\; A_{quad}\right)^{-1} = \alpha_Q\left(1 + \alpha_Q\; A_{quad}\right)^{-1}
550     \label{eq:quadrupolarSusceptiblity}
551 mlamichh 4353 \end{equation}
552     where $A_{quad} = \frac{1}{4\pi}\int {T}_{\alpha\beta\alpha\beta}\;(\textbf{r})d^3r $ has dimension of the $length^{-2}$ is different for different cutoff methods which is listed in Table \ref{tab:B}. The dielectric constant associated with the quadrupolar susceptibility is defined as,\cite{Ernst92}
553    
554     \begin{equation}
555 mlamichh 4363 \epsilon = 1 + \chi^*_Q\; G = 1 + G \; \alpha_Q\left(1 + \alpha_Q\; A_{quad}\right)^{-1}
556     \label{eq:dielectricFromQuadrupoles}
557 mlamichh 4353 \end{equation}
558     where $G = \frac{\displaystyle\int_V |\partial_\alpha E^o_\beta|^2 d^3r}{\displaystyle\int_V{|E^o|}^2 d^3r}$ is a geometrical factor depends on the nature of the external field perturbation. This is true when the quadrupolar fluid is homogeneous over the sample. Since quadrupolar molecule couple with the gradient of the field, the distribution of the quadrupoles is inhomogeneous for varying field gradient. Hence the distribution function should also be taken into account to calculate actual geometrical factor in the presence of non-uniform gradient field. Therefore,
559     \begin{equation}
560     G = \frac{\displaystyle\int_V\; g(r, \theta, \phi)\; |\partial_\alpha E^o_\beta|^2 d^3r}{\displaystyle\int_V{|E^o|}^2 d^3r}
561 mlamichh 4363 \label{eq:geometricalFactor}
562 mlamichh 4353 \end{equation}
563     where $g(r,\theta, \phi)$ is a distribution function of the quadrupoles in with respect to origin at the center of line joining two probe charges.
564     \begin{table}
565     \caption{Expressions for the quadrupolar correction factor ($A$) for the real-space electrostatic methods in terms of the damping parameter
566     ($\alpha$) and the cutoff radius ($r_c$). The dimension of the correction factor is $ length^{-2}$ in case of quadrupolar fluid.}
567     \label{tab:B}
568     \centering
569     \resizebox{\columnwidth}{!}{%
570    
571     \begin{tabular}{l|c|c|c|c|}
572    
573     Method & $A_\mathrm{charges}$ & $A_\mathrm{dipoles}$ &$A_\mathrm{quadrupoles}$ \\\hline
574     Spherical Cutoff (SC) & $ -\frac{8 \alpha^5 {r_c}^3}{3\sqrt{\pi}} e^{-\alpha^2 r_c^2}$ & $ -\frac{8 \alpha^5 {r_c}^3}{3\sqrt{\pi}} e^{-\alpha^2 r_c^2}$ & $ -\frac{8 {\alpha}^5 {r_c}^3}{3\sqrt{\pi}} e^{-\alpha^2 r_c^2}$ \\
575     Shifted Potental (SP) & $ -\frac{8 \alpha^5 {r_c}^3}{3\sqrt{\pi}} e^{-\alpha^2 r_c^2}$ & $- \frac{8 \alpha^5 {r_c}^3}{3\sqrt{\pi}} e^{-\alpha^2 r_c^2}$& $ -\frac{16 \alpha^7 {r_c}^5}{9\sqrt{\pi}} e^{-\alpha^2 r_c^2}$ \\
576     Gradient-shifted (GSF) & $- \frac{8 \alpha^5 {r_c}^3}{3\sqrt{\pi}} e^{-\alpha^2 r_c^2}$ & 0 & $-\frac{4{\alpha}^7{r_c}^5 }{9\sqrt{\pi}}e^{-\alpha^2 r_c^2}(-1+2\alpha ^2 r_c^2)$\\
577     Taylor-shifted (TSF) & $ -\frac{8 \alpha^5 {r_c}^3}{3\sqrt{\pi}} e^{-\alpha^2 r_c^2}$ & $\frac{4\;\mathrm{erfc(\alpha r_c)}}{{r_c}^2} + \frac{8 \alpha}{3\sqrt{\pi}r_c}e^{-\alpha^2 {r_c}^2}\left(3+ 2 \alpha^2 {r_c}^2 + \alpha^4 {r_c}^4\right) $ & $\frac{10\;\mathrm{erfc}(\alpha r_c )}{{r_c}^2} + \frac{4{\alpha}}{9\sqrt{\pi}{r_c}}e^{-\alpha^2 r_c^2}\left(45 + 30\alpha ^2 {r_c}^2 + 12\alpha^4 {r_c}^4 + 3\alpha^6 {r_c}^6 + 2 \alpha^8 {r_c}^8\right)$ \\\hline
578     \end{tabular}%
579     }
580     \end{table}
581     \section{Methodology}
582 mlamichh 4389 We have used three different simulation methods: i) external field perturbation, ii) fluctuation formula, and iii) potential of mean force (PMF), to calculate dielectric properties for dipolar and quadrupolar fluid. In case of dipolar system we calculated macroscopic polarzability using first two methods separately and derived the dielectric constant utilizing equation (\ref{correctionFormula}). Similarly we used equation (\ref{eq:pmf}) to calculate dielectric constant from dipolar fluid using PMF method. For quadrupolar fluid, we have calculated quadrupolarizablity using fluctuation formula and external field perturbation and derived quadrupolar susceptibility using equation (\ref{eq:quadrupolarSusceptiblity}). Since dielectric constant due to quadrupolar fluid depends on the nature of gradient of the field applied in the system, we have used geometrical factor (in equation \ref{eq:geometricalFactor}) and quadrupolar susceptibility to evaluate dielectric constant for two ions dissolved quadrupolar fluid (see equation \ref{eq:dielectricFromQuadrupoles}) . The the dielectric constant evaluated using equation (\ref{eq:dielectricFromQuadrupoles}) has been compared with the result evaluated from PMF method (i.e. equation \ref{eq:pmf}). We have also used three different test systems for both dipolar and quadrupolar fluids. The parameters used in the test systems are given in table \ref{Tab:C}.
583 mlamichh 4353
584 mlamichh 4389 \begin{table}
585     \caption{\label{Tab:C}}
586     \begin{tabularx}{\textwidth}{r|cc|YYccc|Yccc} \hline
587     & \multicolumn{2}{c|}{LJ parameters} &
588     \multicolumn{5}{c|}{Electrostatic moments} & & & & \\
589     Test system & $\sigma$& $\epsilon$ & $C$ & $D$ &
590     $Q_{xx}$ & $Q_{yy}$ & $Q_{zz}$ & mass & $I_{xx}$ & $I_{yy}$ &
591     $I_{zz}$ \\ \cline{6-8}\cline{10-12}
592     & (\AA) & (kcal/mol) & (e) & (debye) & \multicolumn{3}{c|}{(debye \AA)} & (amu) & \multicolumn{3}{c}{(amu
593     \AA\textsuperscript{2})} \\ \hline
594     Stockmayer fluid & 3.41 & 0.2381 & - & 1.4026 &-&-&-& 39.948 & 11.613 & 11.613 & 0.0 \\
595     Quadrupolar fluid & 2.985 & 0.265 & - & - & 0.0 & 0.0 &-2.139 & 18.0153 & 43.0565 & 43.0565 & 0.0 \\
596     \ce{q+} & 1.0 & 0.1 & +1 & - & - & - & - & 22.98 & - & - & - \\
597     \ce{q-} & 1.0 & 0.1 & -1 & - & - & - & - & 22.98 & - & - & - \\ \hline
598     \end{tabularx}
599     \end{table}
600 mlamichh 4363
601 mlamichh 4389 First test system consists of point dipolar or quadrupolar molecules in the presence of constant field or gradient field. Since there is no isolated charge within the system, the divergence of the field should be zero $ i.e. \vec{\nabla} .\vec{E} = 0$. This condition is satisfied by selecting applied potential as described in Appendix \ref{Ap:fieldOrGradient}. When constant electric field or field gradient applied to the system, the molecules align along the direction of the applied field. We evaluate ensemble average of the box dipole or quadrupole moment as a response field or field gradient. The macroscopic polarizability of the system is derived using ratio between system multipolar moment and applied field or field gradient. This method works properly only at the linear response region of field or field gradient.
602 mlamichh 4353
603 mlamichh 4389 Second test system consists of box of point dipolar or quadrupolar molecules is simulated for 1 ns in NVE ensemble after equilibration in the absence of any external perturbation. The fluctuation of the ensemble average of the box multipolar moment i.e. $\braket{A^2} - \braket{A}^2 $ is measured at the fixed temperature and density for a given multipolar fluid. Finally the macroscopic polraizability of the system at a particular density is derived using equation (\ref{flucQuad}).
604    
605     Final system consists of dipolar or quadrupolar fluids with two oppositely charged ions immersed in it. These ions are constraint to be at fixed distance throughout the simulation. We run separate simulations for different constraint distances. Finally we calculated dielectric constant using ratio between the force between the two ions in the absence of medium and the average constraint force during the simulation. Since the constraint force is pretty noisy we run each simulation for long run to reduce simulation error.
606    
607     \subsection{Implementation}
608     We have used real-space electrostatic methods implemented in OpenMD \cite{openmd2.3} software to evaluate electrostatic interactions between the molecules. In our simulations we used all three different real-space electrostatic methods: SP, GSF, and TSF developed in the previous paper \cite{PaperI} in the series. The radius of the cutoff sphere is taken to be $12 \r{A}$. Each real space method can be tuned using different values of damping parameter. We have selected ten different values of damping parameter (unit-${\r{A}}^{-1}$); 0.0, 0.05, 0.1, 0.15, 0.175, 0.2, 0.225, 0.25, 0.3, and 0.35 in our simulations. The short range interaction in the simulations is incorporated with 6-12 Lennard Jones interaction method.
609    
610     To derive the box multipolar (dipolar or quadrupolar) moment, we added the component each individual molecule in the space frame and taken ensemble average of the snapshots of the whole simulation. The first component of the fluctuation of the dipolar moment is derived by using relation $\braket{M^2} = \braket{{M_x}^2 + {M_y}^2 + {M_z}^2}$, where $M_x$, $M_y$, and $M_z $ are x, y and z components of the box quadrupole moment. Similarly the first term in the quadrupolar system is derived using relation $ \braket{Q^2} = \braket{3 Q:Q - TrQ^2} $, where $ Q $ is the box quadrupole moment, double dot represent the outer product of the quadrupolar matrices, and $TrQ$ is the trace of the box quadrupolar moment. The second component of the fluctuation formula has been derived using square of the ensemble average of the box dipole moment.The applied constant field or field gradient in the test systems has been taken in the form described in the Appendix \ref{Ap:fieldOrGradient}.
611     \subsection{Model systems}
612     To evaluate dielectric properties for dipolar systems using perturbation and fluctuation formula methods, we have taken system of 2048 Stockmayer molecules with reduced density $ \rho^* = 0.822$, temperature $T^* = 1.15 $, moment of inertia $I^* = 0.025 $, and dipole moment $ \mu^* = \sqrt{3.0} $. Test systems are equilibrated for 500 ps and run for $1\; ns$ and components of box dipole moment are obtained at every femtosecond. The systems are run in the presence of constant external field from $ 0 - 10\; \times\; 10^{-4}\;V/{\r{A}}$ in the step of $ 10 ^{-4}\; V/\r{A}$ for each simulation. For pmf method, Two dipolar molecules in the above system are converted into $q+$ and $q-$ ions and constrained to remain in fixed distance in simulation. The constrained distance is varied from $5\;\r{A} - 12\; \r{A} $ for different simulations. In pmf method all simulations are equilibrated for 500 ps in NVT ensemble and run for 5 ns in NVE ensemble to print constraint force at an interval of 20 fs.
613    
614     Quadrupolar systems consists 4000 linear point quadrupolar molecules with density $ 2.338\; g/cm^3$ at temperature $ 500\; ^oK $. For both perturbation and fluctuation methods, test systems are equalibrated for 200 ps in NVT ensemble and run for 500 ps in NVE ensemble. To find the ensemble average of the box quadrupole moment and fluctuation of the quadrupole moment the components of box quadrupole moments are printed every 100 fs. Each simulations are repeated at different values of applied constant gradients from $ 0 - 9 \times 10^{-2}\; V/\r{A}^2 $. To find dielectric constant using pmf method, two ions in the systems are converted into $q+$ and $q-$ ions and constrained to remain at fixed distance in the simulation. These constraint distances are varied from $5\;\r{A} - 12\; \r{A} $ at the step of $0.1\; \r{A} $ for different simulations. For calculating dielectric constant, the test systems are run for 500 ps to equlibrate and run for 5 ns to print constraint force at a time interval of 20 fs.
615    
616     \section{Results}
617    
618 mlamichh 4353 \section{Conclusion}
619    
620     \newpage
621    
622     \appendix
623     \section{Point-multipolar interactions with a spatially-varying electric field}
624    
625     We can treat objects $a$, $b$, and $c$ containing embedded collections
626     of charges. When we define the primitive moments, we sum over that
627     collections of charges using a local coordinate system within each
628     object. The point charge, dipole, and quadrupole for object $a$ are
629     given by $C_a$, $\mathbf{D}_a$, and $\mathsf{Q}_a$, respectively.
630     These are the primitive multipoles which can be expressed as a
631     distribution of charges,
632     \begin{align}
633     C_a =&\sum_{k \, \text{in }a} q_k , \label{eq:charge} \\
634     D_{a\alpha} =&\sum_{k \, \text{in }a} q_k r_{k\alpha}, \label{eq:dipole}\\
635     Q_{a\alpha\beta} =& \frac{1}{2} \sum_{k \, \text{in } a} q_k
636     r_{k\alpha} r_{k\beta} . \label{eq:quadrupole}
637     \end{align}
638     Note that the definition of the primitive quadrupole here differs from
639     the standard traceless form, and contains an additional Taylor-series
640     based factor of $1/2$. In Paper 1, we derived the forces and torques
641     each object exerts on the others.
642    
643     Here we must also consider an external electric field that varies in
644     space: $\mathbf E(\mathbf r)$. Each of the local charges $q_k$ in
645     object $a$ will then experience a slightly different field. This
646     electric field can be expanded in a Taylor series around the local
647     origin of each object. A different Taylor series expansion is carried
648     out for each object.
649    
650     For a particular charge $q_k$, the electric field at that site's
651     position is given by:
652     \begin{equation}
653     E_\gamma + \nabla_\delta E_\gamma r_{k \delta}
654     + \frac {1}{2} \nabla_\delta \nabla_\varepsilon E_\gamma r_{k \delta}
655     r_{k \varepsilon} + ...
656     \end{equation}
657     Note that the electric field is always evaluated at the origin of the
658     objects, and treating each object using point multipoles simplifies
659     this greatly.
660    
661     To find the force exerted on object $a$ by the electric field, one
662     takes the electric field expression, and multiplies it by $q_k$, and
663     then sum over all charges in $a$:
664    
665     \begin{align}
666     F_\gamma &= \sum_{k \textrm{~in~} a} q_k \lbrace E_\gamma + \nabla_\delta E_\gamma r_{k \delta}
667     + \frac {1}{2} \nabla_\delta \nabla_\varepsilon E_\gamma r_{k \delta}
668     r_{k \varepsilon} + ... \rbrace \\
669     &= C_a E_\gamma + D_{a \delta} \nabla_\delta E_\gamma
670     + Q_{a \delta \varepsilon} \nabla_\delta \nabla_\varepsilon E_\gamma +
671     ...
672     \end{align}
673    
674     Similarly, the torque exerted by the field on $a$ can be expressed as
675     \begin{align}
676     \tau_\alpha &= \sum_{k \textrm{~in~} a} (\mathbf r_k \times q_k \mathbf E)_\alpha \\
677     & = \sum_{k \textrm{~in~} a} \epsilon_{\alpha \beta \gamma} q_k
678     r_{k\beta} E_\gamma(\mathbf r_k) \\
679     & = \epsilon_{\alpha \beta \gamma} D_\beta E_\gamma
680     + 2 \epsilon_{\alpha \beta \gamma} Q_{\beta \delta} \nabla_\delta
681     E_\gamma + ...
682     \end{align}
683    
684     The last term is essentially identical with form derived by Torres del
685     Castillo and M\'{e}ndez Garrido,\cite{Torres-del-Castillo:2006uo} although their derivation
686     utilized a traceless form of the quadrupole that is different than the
687     primitive definition in use here. We note that the Levi-Civita symbol
688     can be eliminated by utilizing the matrix cross product in an
689     identical form as in Ref. \onlinecite{Smith98}:
690     \begin{equation}
691     \left[\mathsf{A} \times \mathsf{B}\right]_\alpha = \sum_\beta
692     \left[\mathsf{A}_{\alpha+1,\beta} \mathsf{B}_{\alpha+2,\beta}
693     -\mathsf{A}_{\alpha+2,\beta} \mathsf{B}_{\alpha+1,\beta}
694     \right]
695     \label{eq:matrixCross}
696     \end{equation}
697     where $\alpha+1$ and $\alpha+2$ are regarded as cyclic permuations of
698     the matrix indices. In table \ref{tab:UFT} we give compact
699     expressions for how the multipole sites interact with an external
700     field that has exhibits spatial variations.
701    
702     \begin{table}
703     \caption{Potential energy $(U)$, force $(\mathbf{F})$, and torque
704     $(\mathbf{\tau})$ expressions for a multipolar site embedded in an
705     electric field with spatial variations, $\mathbf{E}(\mathbf{r})$.
706     \label{tab:UFT}}
707     \begin{tabular}{r|ccc}
708     & Charge & Dipole & Quadrupole \\ \hline
709     $U$ & $C \phi(\mathbf{r})$ & $-\mathbf{D} \cdot \mathbf{E}(\mathbf{r})$ & $- \mathsf{Q}:\nabla \mathbf{E}(\mathbf{r})$ \\
710     $\mathbf{F}$ & $C \mathbf{E}(\mathbf{r})$ & $+\mathbf{D} \cdot \nabla \mathbf{E}(\mathbf{r})$ & $+\mathsf{Q} : \nabla\nabla\mathbf{E}(\mathbf{r})$ \\
711     $\mathbf{\tau}$ & & $\mathbf{D} \times \mathbf{E}(\mathbf{r})$ & $+2 \mathsf{Q} \times \nabla \mathbf{E}(\mathbf{r})$
712     \end{tabular}
713     \end{table}
714     \section{Gradient of the field due to quadrupolar polarization}
715     \label{singularQuad}
716     In this section, we will discuss the gradient of the field produced by
717     quadrupolar polarization. For this purpose, we consider a distribution
718     of charge ${\rho}(r)$ which gives rise to an electric field
719     $\vec{E}(r)$ and gradient of the field $\vec{\nabla} \vec{E}(r)$
720     throughout space. The total gradient of the electric field over volume
721     due to the all charges within the sphere of radius $R$ is given by
722     (cf. Jackson equation 4.14):
723     \begin{equation}
724     \int_{r<R} \vec{\nabla}\vec{E}\;d^3r = -\int_{r=R} R^2 \vec{E}\;\hat{n}\; d\Omega
725     \label{eq:8}
726     \end{equation}
727     where $d\Omega$ is the solid angle and $\hat{n}$ is the normal vector
728     of the surface of the sphere which is equal to
729     $sin[\theta]cos[\phi]\hat{x} + sin[\theta]sin[\phi]\hat{y} +
730     cos[\theta]\hat{z}$
731     in spherical coordinates. For the charge density ${\rho}(r')$, the
732     total gradient of the electric field can be written as (cf. Jackson
733     equation 4.16),
734     \begin{equation}
735     \int_{r<R} \vec{\nabla}\vec{E}\; d^3r=-\int_{r=R} R^2\; \vec{\nabla}\Phi\; \hat{n}\; d\Omega =-\frac{1}{4\pi\;\epsilon_o}\int_{r=R} R^2\; \vec{\nabla}\;\left(\int \frac{\rho(r')}{|\vec{r}-\vec{r'}|}\;d^3r'\right) \hat{n}\; d\Omega
736     \label{eq:9}
737     \end{equation}
738     The radial function in the equation (\ref{eq:9}) can be expressed in
739     terms of spherical harmonics as (cf. Jackson equation 3.70),
740     \begin{equation}
741     \frac{1}{|\vec{r} - \vec{r'}|} = 4\pi \sum_{l=0}^{\infty}\sum_{m=-l}^{m=l}\frac{1}{2l+1}\;\frac{{r^l_<}}{{r^{l+1}_>}}\;{Y^*}_{lm}(\theta', \phi')\;Y_{lm}(\theta, \phi)
742     \label{eq:10}
743     \end{equation}
744     If the sphere completely encloses the charge density then $ r_< = r'$ and $r_> = R$. Substituting equation (\ref{eq:10}) into (\ref{eq:9}) we get,
745     \begin{equation}
746     \begin{split}
747     \int_{r<R} \vec{\nabla}\vec{E}\;d^3r &=-\frac{R^2}{\epsilon_o}\int_{r=R} \; \vec{\nabla}\;\left(\int \rho(r')\sum_{l=0}^{\infty}\sum_{m=-l}^{m=l}\frac{1}{2l+1}\;\frac{{r'^l}}{{R^{l+1}}}\;{Y^*}_{lm}(\theta', \phi')\;Y_{lm}(\theta, \phi)\;d^3r'\right) \hat{n}\; d\Omega \\
748     &= -\frac{R^2}{\epsilon_o}\sum_{l=0}^{\infty}\sum_{m=-l}^{m=l}\frac{1}{2l+1}\;\int \rho(r')\;{r'^l}\;{Y^*}_{lm}(\theta', \phi')\left(\int_{r=R}\vec{\nabla}\left({R^{-(l+1)}}\;Y_{lm}(\theta, \phi)\right)\hat{n}\; d\Omega \right)d^3r
749     '
750     \end{split}
751     \label{eq:11}
752     \end{equation}
753     The gradient of the product of radial function and spherical harmonics
754     is given by (cf. Arfken, p.811 eq. 16.94):
755     \begin{equation}
756     \begin{split}
757     \vec{\nabla}\left[ f(r)\;Y_{lm}(\theta, \phi)\right] = &-\left(\frac{l+1}{2l+1}\right)^{1/2}\; \left[\frac{\partial}{\partial r}-\frac{l}{r} \right]f(r)\; Y_{l, l+1, m}(\theta, \phi)\\ &+ \left(\frac{l}{2l+1}\right)^{1/2}\left[\frac
758     {\partial}{\partial r}+\frac{l}{r} \right]f(r)\; Y_{l, l-1, m}(\theta, \phi).
759     \end{split}
760     \label{eq:12}
761     \end{equation}
762     Using equation (\ref{eq:12}) we get,
763     \begin{equation}
764     \vec{\nabla}\left({R^{-(l+1)}}\;Y_{lm}(\theta, \phi)\right) = [(l+1)(2l+1)]^{1/2}\; Y_{l,l+1,m}(\theta, \phi) \; \frac{1}{R^{l+2}},
765     \label{eq:13}
766     \end{equation}
767     where $ Y_{l,l+1,m}(\theta, \phi)$ is the vector spherical harmonics
768     which can be expressed in terms of spherical harmonics as shown in
769     below (cf. Arfkan p.811),
770     \begin{equation}
771     Y_{l,l+1,m}(\theta, \phi) = \sum_{m_1, m_2} C(l+1,1,l|m_1,m_2,m)\; {Y_{l+1}}^{m_1}(\theta,\phi)\; \hat{e}_{m_2},
772     \label{eq:14}
773     \end{equation}
774     where $C(l+1,1,l|m_1,m_2,m)$ is a Clebsch-Gordan coefficient and
775     $\hat{e}_{m_2}$ is a spherical tensor of rank 1 which can be expressed
776     in terms of Cartesian coordinates,
777     \begin{equation}
778     {\hat{e}}_{+1} = - \frac{\hat{x}+i\hat{y}}{\sqrt{2}},\quad {\hat{e}}_{0} = \hat{z},\quad and \quad {\hat{e}}_{-1} = \frac{\hat{x}-i\hat{y}}{\sqrt{2}}
779     \label{eq:15}
780     \end{equation}
781     The normal vector $\hat{n} $ can be expressed in terms of spherical tensor of rank 1 as shown in below,
782     \begin{equation}
783     \hat{n} = \sqrt{\frac{4\pi}{3}}\left(-{Y_1}^{-1}{\hat{e}}_1 -{Y_1}^{1}{\hat{e}}_{-1} + {Y_1}^{0}{\hat{e}}_0 \right)
784     \label{eq:16}
785     \end{equation}
786     The surface integral of the product of $\hat{n}$ and
787     ${Y_{l+1}}^{m_1}(\theta, \phi)$ gives,
788     \begin{equation}
789     \begin{split}
790     \int \hat{n}\;{Y_{l+1}}^{m_1}\;d\Omega &= \int \sqrt{\frac{4\pi}{3}}\left(-{Y_1}^{-1}{\hat{e}}_1 -{Y_1}^{1}{\hat{e}}_{-1} + {Y_1}^{0}{\hat{e}}_0 \right)\;{Y_{l+1}}^{m_1}\; d\Omega \\
791     &= \int \sqrt{\frac{4\pi}{3}}\left({{Y_1}^{1}}^* {\hat{e}}_1 +{{Y_1}^{-1}}^* {\hat{e}}_{-1} + {{Y_1}^{0}}^* {\hat{e}}_0 \right)\;{Y_{l+1}}^{m_1}\; d\Omega \\
792     &= \sqrt{\frac{4\pi}{3}}\left({\delta}_{l+1, 1}\;{\delta}_{1, m_1}\;{\hat{e}}_1 + {\delta}_{l+1, 1}\;{\delta}_{-1, m_1}\;{\hat{e}}_{-1}+ {\delta}_{l+1, 1}\;{\delta}_{0, m_1} \;{\hat{e}}_0\right),
793     \end{split}
794     \label{eq:17}
795     \end{equation}
796     where ${Y_{l}}^{-m} = (-1)^m\;{{Y_{l}}^{m}}^* $ and
797     $ \int {{Y_{l}}^{m}}^*\;{Y_{l'}}^{m'}\;d\Omega =
798     \delta_{ll'}\delta_{mm'} $.
799     Non-vanishing values of equation \ref{eq:17} require $l = 0$,
800     therefore the value of $ m = 0 $. Since the values of $ m_1$ are -1,
801     1, and 0 then $m_2$ takes the values 1, -1, and 0, respectively
802     provided that $m = m_1 + m_2$. Equation \ref{eq:11} can therefore be
803     modified,
804     \begin{equation}
805     \begin{split}
806     \int_{r<R} \vec{\nabla}\vec{E}\;d^3r = &- \sqrt{\frac{4\pi}{{3}}}\;\frac{1}{\epsilon_o}\int \rho(r')\;{Y^*}_{00}(\theta', \phi')[ C(1, 1, 0|-1,1,0)\;{\hat{e}_{-1}}{\hat{e}_{1}}\\ &+ C(1, 1, 0|-1,1,0)\;{\hat{e}_{1}}{\hat{e}_{-1}}+C(
807     1, 1, 0|0,0,0)\;{\hat{e}_{0}}{\hat{e}_{0}} ]\; d^3r'.
808     \end{split}
809     \label{eq:18}
810     \end{equation}
811     After substituting ${Y^*}_{00} = \frac{1}{\sqrt{4\pi}} $ and using the
812     values of the Clebsch-Gorden coefficients: $ C(1, 1, 0|-1,1,0) =
813     \frac{1}{\sqrt{3}}, \; C(1, 1, 0|-1,1,0)= \frac{1}{\sqrt{3}}$ and $
814     C(1, 1, 0|0,0,0) = -\frac{1}{\sqrt{3}}$ in equation \ref{eq:18} we
815     obtain,
816     \begin{equation}
817     \begin{split}
818     \int_{r<R} \vec{\nabla}\vec{E}\;d^3r &= -\sqrt{\frac{4\pi}{{3}}}\;\frac{1}{\epsilon_o}\int \rho(r')\;d^3r'\left({\hat{e}_{-1}}{\hat{e}_{1}}+{\hat{e}_{1}}{\hat{e}_{-1}}-{\hat{e}_{0}}{\hat{e}_{0}}\right)\\
819     &= - \sqrt{\frac{4\pi}{{3}}}\;\frac{1}{\epsilon_o}\;C_{total}\;\left({\hat{e}_{-1}}{\hat{e}_{1}}+{\hat{e}_{1}}{\hat{e}_{-1}}-{\hat{e}_{0}}{\hat{e}_{0}}\right).
820     \end{split}
821     \label{eq:19}
822     \end{equation}
823     Equation (\ref{eq:19}) gives the total gradient of the field over a
824     sphere due to the distribution of the charges. For quadrupolar fluids
825     the total charge within a sphere is zero, therefore
826     $ \int_{r<R} \vec{\nabla}\vec{E}\;d^3r = 0 $. Hence the quadrupolar
827     polarization produces zero net gradient of the field inside the
828     sphere.
829    
830 mlamichh 4389 \section{Applied field or field gradient}
831     \label{Ap:fieldOrGradient}
832 mlamichh 4353
833 mlamichh 4389 To satisfy the condition $ \nabla . E = 0 $, within the box of molecules we have taken electrostatic potential in the following form
834     \begin{equation}
835     \begin{split}
836     \phi(x, y, z) =\; &-g_o \left(\frac{1}{2}(a_1\;b_1 - \frac{cos\psi}{3})\;x^2+\frac{1}{2}(a_2\;b_2 - \frac{cos\psi}{3})\;y^2 + \frac{1}{2}(a_3\;b_3 - \frac{cos\psi}{3})\;z^2 \right. \\
837     & \left. + \frac{(a_1\;b_2 + a_2\;b_1)}{2} x\;y + \frac{(a_1\;b_3 + a_3\;b_1)}{2} x\;z + \frac{(a_2\;b_3 + a_3\;b_2)}{2} y\;z \right),
838     \end{split}
839     \label{eq:appliedPotential}
840     \end{equation}
841     where $a = (a_1, a_2, a_3)$ and $b = (b_1, b_2, b_3)$ are basis vectors determine coefficients in x, y, and z direction. And $g_o$ and $\psi$ are overall strength of the potential and angle between basis vectors respectively. The electric field derived from the above potential is,
842     \[\bf{E}
843     =\frac{g_o}{2} \left(\begin{array}{ccc}
844     2(a_1\; b_1 - \frac{cos\psi}{3})\;x \;+ (a_1\; b_2 \;+ a_2\; b_1)\;y + (a_1\; b_3 \;+ a_3\; b_1)\;z \\
845     (a_2\; b_1 \;+ a_1\; b_2)\;x + 2(a_2\; b_2 \;- \frac{cos\psi}{3})\;y + (a_2\; b_3 \;+ a_3\; b_3)\;z \\
846     (a_3\; b_1 \;+ a_3\; b_2)\;x + (a_3\; b_2 \;+ a_2\; b_3)y + 2(a_3\; b_3 \;- \frac{cos\psi}{3})\;z
847     \end{array} \right).\]
848     The gradient of the applied field derived from the potential can be written in the following form,
849     \[\nabla\bf{E}
850     = \frac{g_o}{2}\left(\begin{array}{ccc}
851     2(a_1\; b_1 - \frac{cos\psi}{3}) & (a_1\; b_2 \;+ a_2\; b_1) & (a_1\; b_3 \;+ a_3\; b_1)\;z \\
852     (a_2\; b_1 \;+ a_1\; b_2) & 2(a_2\; b_2 \;- \frac{cos\psi}{3}) & (a_2\; b_3 \;+ a_3\; b_3)\;z \\
853     (a_3\; b_1 \;+ a_3\; b_2) & (a_3\; b_2 \;+ a_2\; b_3) & 2(a_3\; b_3 \;- \frac{cos\psi}{3})\;z
854     \end{array} \right).\]
855 mlamichh 4353 \newpage
856    
857     \bibliography{multipole}
858    
859     \end{document}