ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/multipole/dielectric_new.tex
Revision: 4389
Committed: Tue Nov 3 16:30:49 2015 UTC (9 years, 10 months ago) by mlamichh
Content type: application/x-tex
File size: 61064 byte(s)
Log Message:
added Methodology

File Contents

# User Rev Content
1 mlamichh 4353 \documentclass[%
2     aip,
3     jcp,
4     amsmath,amssymb,
5     preprint,%
6     % reprint,%
7     %author-year,%
8     %author-numerical,%
9     ]{revtex4-1}
10    
11     \usepackage{graphicx}% Include figure files
12     \usepackage{dcolumn}% Align table columns on decimal point
13     \usepackage{multirow}
14     \usepackage{bm}% bold math
15     \usepackage{natbib}
16     \usepackage{times}
17     \usepackage{mathptmx}
18     \usepackage[version=3]{mhchem} % this is a great package for formatting chemical reactions
19     \usepackage{url}
20     \usepackage{braket}
21 mlamichh 4389 \usepackage{tabularx}
22     \newcolumntype{Y}{>{\centering\arraybackslash}X}
23 mlamichh 4353
24     \begin{document}
25    
26     \title{Real space electrostatics for multipoles. III. Dielectric Properties}
27    
28     \author{Madan Lamichhane}
29     \affiliation{Department of Physics, University
30     of Notre Dame, Notre Dame, IN 46556}
31     \author{Thomas Parsons}
32     \affiliation{Department of Chemistry and Biochemistry, University
33     of Notre Dame, Notre Dame, IN 46556}
34     \author{Kathie E. Newman}
35     \affiliation{Department of Physics, University
36     of Notre Dame, Notre Dame, IN 46556}
37     \author{J. Daniel Gezelter}
38     \email{gezelter@nd.edu.}
39     \affiliation{Department of Chemistry and Biochemistry, University
40     of Notre Dame, Notre Dame, IN 46556}
41    
42     \date{\today}% It is always \today, today,
43     % but any date may be explicitly specified
44    
45     \begin{abstract}
46     Note: This manuscript is a work in progress.
47    
48     We report on the dielectric properties of the shifted potential
49     (SP), gradient shifted force (GSF), and Taylor shifted force (TSF)
50     real-space methods for multipole interactions that were developed in
51     the first two papers in this series. We find that some subtlety is
52     required for computing dielectric properties with the real-space
53     methods, particularly when using the common fluctuation formulae.
54     Three distinct methods for computing the dielectric constant are
55     investigated, including the standard fluctuation formulae,
56     potentials of mean force between solvated ions, and direct
57     measurement of linear solvent polarization in response to applied
58     fields and field gradients.
59     \end{abstract}
60    
61     \maketitle
62    
63     \section{Introduction}
64    
65     Over the past several years, there has been increasing interest in
66     pairwise methods for correcting electrostatic interactions in computer
67     simulations of condensed molecular
68     systems.\cite{Wolf99,Zahn02,Kast03,Beckd.A.C._Bi0486381,Ma05,Fennell06}
69     These techniques were initially developed from the observations and efforts of
70     Wolf {\it et al.} and their work towards an $\mathcal{O}(N)$
71     Coulombic sum.\cite{Wolf99} Wolf's method of cutoff neutralization is
72     able to obtain excellent agreement with Madelung energies in ionic
73 mlamichh 4363 crystals.\cite{Wolf99} Later, Zahn \textit{et al.} and Fennell and Gezelter extended this method which incorporates Wolf's electrostatic energy and modified it to conserve the total energy in molecular dynamic simulation.\cite{Zahn02, Fennell06} In the previous two papers
74     we developed three new generalized real space methods: Shifted potential (SP), Gradeint shifted force (GSF), and Taylor shifted force (TSF).\cite{PaperI, PaperII} These methods evaluate electrostatic interactions for higher order multipoles (dipoles and quadrupoles) using finite cutoff sphere with the neutralization of the electrostatic moment within the cutoff sphere. Furthermore, extra terms added to the potential energy so that force and torque vanish smoothly at the cutoff radius. This ensures that the total energy is conserved in a molecular dynamic simulation.
75 mlamichh 4353
76     One of the most difficult tests of any new electrostatic method is the fidelity with which that method can reproduce the bulk-phase polarizability or equivalently, the dielectric properties of a fluid. Since dielectric properties are macroscopic properties, all interactions between molecules in an entire system are significantly important. But it is computationally infeasible to consider every interactions between molecules in the macroscopically large system. Therefore small molecular system with periodic boundary condition and finite cutoff region of interactions is usually considered in computer simulations. While calculating dielectric properties, the formula should be modified in such a way so that it can accommodate behaviour of electrostatic neutrality and smoothness of energy, force and torque at the cutoff radius. Previously many studies have been conducted to calculate dipolar and quadrupolar dielectric properties using computer simulations. \cite{Kirkwood39, Onsagar36,LoganI81, LoganII82, LoganIII82} But these methods do not specifically take account of the cutoff behavior common in real-space electrosatic methods. In 1983 Neumann proposed a general formula for evaluating dielectric properties for dipolar fluid using real-space cutoff methods. \cite{Neumann83} In the same year Steinhauser and Neumann used this formula to evaluate the correct dielectric constant for the Stockmayer fluid using two different methods: Ewald-Kornfield (EK) and reaction field (RF) methods. \cite{Neumann-Steinhauser83} This formula contains a correction factor which is equal to $\frac{3}{4 \pi} $ times volume integral of the dipole-dipole interactions for a given electrostatic cutoff method (See equation \ref{dipole-diopleTensor}).\cite{Neumann83} Similarly Zahn \textit{et al.}\cite{Zahn02} also evaluated correction factor for dipole-dipole interaction using damped shifted charge-charge kernel (see equation \ref{dipole-chargeTensor}). This later generalized by Izvekove \textit{et al.}, which is equal to $\frac{3}{4 \pi} $. \cite{Izvekov:2008wo} When the correction factor is equal to $\frac{3}{4 \pi} $, the expression for the dielectric constant reduces to widely-used \textit{conducting boundary} formula (see equation (\ref{correctionFormula})). Many studies have also been conducted to understand solvation theory using dielectric properties of quadrupolar fluid.\cite{JeonI03, JeonII03, Chitanvis96}. But these studies do not use correction factor straight forwardly to evaluate correct dielectric properties for quadrupolar fluid.
77    
78 mlamichh 4363 In this paper we are proposing general consecutive formulas for calculating the dielectric properties for quadrupolar fluid. Furthermore we have also evaluated the correction factor for SP, GSF, and TSF method for both dipolar and quadrupolar fluid considering charge-charge, dipole-dipole or quadrupole-quadrupole interactions. The relation between quadrupolar susceptibility and dielectric constant is not straight forward for quadrupolar fluid as in the dipolar case. The dielectric constant depends on the geometry of the external field perturbation.\cite{Ernst92} We have also calculated the geometrical factor for two ions immersed quadrupolar system to evaluate dielectric constant from the quadrupolar susceptibility. We have used three different methods: i) external field perturbation, ii) fluctuation formula, and iii) the potential of mean force, to study dielectric properties of the dipolar and quadrupolar system. In the external field perturbation, the net polarization of the system is observed as a linear response of the applied field perturbation, where proportionality constant is determined by the electrostatic interaction between the electrostatic multipoles at a given temperature. The fluctuation formula observes the time average fluctuation of the multipolar moment as a function of temperature. The average fluctuation value of the system is determined by the multipole-multipole interactions between molecules at a given temperature. Since the expression of the electrostatic interaction energy, force, and torque in the real space electrostatic methods are different from their original definition, both fluctuation and external field perturbation formula should also be modified accordingly. The potential of mean force method calculates dielectric constant from the potential energy between ions before and after dielectric material is introduced. All of these different methods for calculating dielectric properties will be discussed in detail in the following sections: \ref{subsec:perturbation}, \ref{subsec:fluctuation}, and \ref{sec:PMF}.
79 mlamichh 4353
80 mlamichh 4363 \section{Boltzmann average for orientational polarization}
81     The dielectric properties of the system is mainly arise from two different ways: i) the applied field distort the charge distributions so it produces an induced multipolar moment in each molecule; and ii) the applied field tends to line up originally randomly oriented molecular moment towards the direction of the applied field. In this study, we basically focus on the orientational contribution in the dielectric properties. If we consider a system of molecules in the presence of external field perturbation, the perturbation experienced by any molecule will not be only due to external field or field gradient but also due to the field or field gradient produced by the all other molecules in the system. In the following subsections \ref{subsec:boltzAverage-Dipole} and \ref{subsec:boltzAverage-Quad}, we will discuss about the molecular polarization only due to external field perturbation. The contribution of the field or field gradient due to all other molecules will be taken into account while calculating correction factor in the section \ref{sec:corrFactor}.
82    
83     \subsection{Dipole}
84     \label{subsec:boltzAverage-Dipole}
85     Consider a system of molecules with permenent dipole moment $p_o$. In the absense of external field, thermal agitation makes dipole randomly oriented therefore there is no net dipole moment. But external field tends them to line up in the direction of applied field. Here we have considered net field acting due to all other molecules is considered to be zero. Therefore the total Hamiltonian of the molecule is,\cite{Jackson98}
86    
87 mlamichh 4353 \begin{equation}
88     H = H_o - \bf{p_o} .\bf{E},
89     \end{equation}
90     where $H_o$ is a function of the internal coordinates of the molecule. Now Boltzmann average of the dipole moment is given by,
91     \begin{equation}
92     \braket{p_{mol}} = \frac{\displaystyle\int d\Omega\; p_o\; cos\theta\; e^{\frac{p_oE\; cos\theta}{k_B T}}}{\displaystyle\int d\Omega\; e^{\frac{p_oE\;cos\theta}{k_B T}}},
93     \end{equation}
94     where $\bf{E}$ is selected along z-axis. If we consider applied field is small i.e. $\frac{p_oE\; cos\theta}{k_B T} << 1$ then we get,
95    
96     \begin{equation}
97     \braket{p_{mol}} \approx \frac{1}{3}\frac{{p_o}^2}{k_B T}E,
98     \end{equation}
99     where $ \alpha_p = \frac{1}{3}\frac{{p_o}^2}{k_B T}$ is a molecular polarizability. The orientational polarization depends inversely on the temperature and applied field must overcome the thermal agitation.
100    
101 mlamichh 4363
102     \subsection{Quadrupole}
103     \label{subsec:boltzAverage-Quad}
104 mlamichh 4353 Consider a system of molecules with permanent quadrupole moment $q_{\alpha\beta} $. The average quadrupole moment at temperature T in the presence of uniform applied field gradient is given by,\cite{AduGyamfi78, AduGyamfi81}
105     \begin{equation}
106     \braket{q_{\alpha\beta}} \;=\; \frac{\displaystyle\int d\Omega\; e^{-\frac{H}{k_B T}}q_{\alpha\beta}}{\displaystyle\int d\Omega\; e^{-\frac{H}{k_B T}}} \;=\; \frac{\displaystyle\int d\Omega\; e^{\frac{q_{\mu\nu}\;\partial_\nu E_\mu}{k_B T}}q_{\alpha\beta}}{\displaystyle\int d\Omega\; e^{\frac{q_{\mu\nu}\;\partial_\nu E_\mu}{k_B T}}},
107     \label{boltzQuad}
108     \end{equation}
109     where $\int d\Omega = \int_0^{2\pi} \int_0^\pi \int_0^{2\pi}
110     sin\theta\; d\theta\ d\phi\ d\psi$ is the integration over Euler
111     angles, $ H = H_o -q_{\mu\nu}\;\partial_\nu E_\mu $ is the energy of
112     a quadrupole in the gradient of the
113     applied field and $ H_o$ is a function of internal coordinates of the molecule. The energy and quadrupole moment can be transformed into body frame using following relation,
114     \begin{equation}
115     \begin{split}
116 mlamichh 4363 &q_{\alpha\beta} = \eta_{\alpha\alpha'}\;\eta_{\beta\beta'}\;{q}^* _{\alpha'\beta'} \\
117     &H = H_o - q:\vec{\nabla}\vec{E} = H_o - q_{\mu\nu}\;\partial_\nu E_\mu = H_o -\eta_{\mu\mu'}\;\eta_{\nu\nu'}\;{q}^*_{\mu'\nu'}\;\partial_\nu E_\mu.
118 mlamichh 4353 \end{split}
119     \label{energyQuad}
120     \end{equation}
121     Here the starred tensors are the components in the body fixed
122     frame. Substituting equation (\ref{energyQuad}) in the equation (\ref{boltzQuad})
123     and taking linear terms in the expansion we get,
124     \begin{equation}
125 mlamichh 4363 \braket{q_{\alpha\beta}} = \frac{ \int d\Omega \left(1 + \frac{\eta_{\mu\mu'}\;\eta_{\nu\nu'}\;{q}^*_{\mu'\nu'}\;\partial_\nu E_\mu }{k_B T}\right)q_{\alpha\beta}}{ \int d\Omega \left(1 + \frac{\eta_{\mu\mu'}\;\eta_{\nu\nu'}\;{q}^*_{\mu'\nu'}\;\partial_\nu E_\mu }{k_B T}\right)},
126 mlamichh 4353 \end{equation}
127 mlamichh 4363 where $\eta_{\alpha\alpha'}$ is the inverse of the rotation matrix that transforms
128     the body fixed co-ordinates to the space co-ordinates,
129 mlamichh 4353 \[\eta_{\alpha\alpha'}
130     = \left(\begin{array}{ccc}
131 mlamichh 4363 cos\phi\; cos\psi - cos\theta\; sin\phi\; sin\psi & -cos\theta\; cos\psi\; sin\phi - cos\phi\; sin\psi & sin\theta\; sin\phi \\
132     cos\psi\; sin\phi + cos\theta\; cos\phi \; sin\psi & cos\theta\; cos\phi\; cos\psi - sin\phi\; sin\psi & -cos\phi\; sin\theta \\
133 mlamichh 4353 sin\theta\; sin\psi & -cos\psi\; sin\theta & cos\theta
134     \end{array} \right).\]
135     Integration of 1st and 2nd terms in the denominator gives $8 \pi^2$
136     and $8 \pi^2 /3\;\vec{\nabla}.\vec{E}\; Tr(q^*) $ respectively. The
137     second term vanishes for charge free space
138     (i.e. $\vec{\nabla}.\vec{E} \; = \; 0)$. Similarly integration of the
139     1st term in the numerator produces
140     $8 \pi^2 /3\; Tr(q^*)\delta_{\alpha\beta}$ and the 2nd term produces
141     $8 \pi^2 /15k_B T (3{q}^*_{\alpha'\beta'}{q}^*_{\beta'\alpha'} -
142     {q}^*_{\alpha'\alpha'}{q}^*_{\beta'\beta'})\partial_\alpha E_\beta$,
143     if $\vec{\nabla}.\vec{E} \; = \; 0$,
144     $ \partial_\alpha E_\beta = \partial_\beta E_\alpha$ and
145     ${q}^*_{\alpha'\beta'}= {q}^*_{\beta'\alpha'}$. Therefore the
146     Boltzmann average of a quadrupole moment can be written as,
147    
148     \begin{equation}
149     \braket{q_{\alpha\beta}}\; = \; \frac{1}{3} Tr(q^*)\;\delta_{\alpha\beta} + \frac{{\bar{q_o}}^2}{15k_BT}\;\partial_\alpha E_\beta,
150     \end{equation}
151     where $ \alpha_q = \frac{{\bar{q_o}}^2}{15k_BT} $ is a molecular quadrupolarizablity and ${\bar{q_o}}^2=
152     3{q}^*_{\alpha'\beta'}{q}^*_{\beta'\alpha'}-{q}^*_{\alpha'\alpha'}{q}^*_{\beta'\beta'}$ is a square of the net quadrupole moment of a molecule.
153    
154 mlamichh 4363 \section{Macroscopic Polarizability}
155     \label{sec:MacPolarizablity}
156    
157     If we consider a system of dipolar or quadrupolar fluid in the external field perturbation, the net polarization of the system will still be proportional to the applied field perturbation.\cite{Chitanvis96, Stern-Feller03, Salvchov14, Salvchov14_2} In simulation the net polarization of the system is determined by the interaction of molecule with all other molecules as well as external field perturbation. Therefore the macroscopic polarizablity obtained from the simulation always varies with nature of real-space electrostatic interaction methods implemented in the simulation. To determine a susceptibility or dielectric constant of the material (which is a actual physical property of the dipolar or quadrupolar fluid) from the macroscopic polarizablity, we need to incorporate the interaction between molecules which has been discussed in detail in section \ref{sec:corrFactor}. In this section we discuss about the two different methods of calculating macroscopic polarizablity for both dipolar and quadrupolar fluid.
158    
159     \subsection{External field perturbation}
160     \label{subsec:perturbation}
161     In the presence of uniform electric field $\textbf{E}^o$, a system of dipolar molecules polarizes along the direction of the applied field (or field gradient). Therefore the net dipolar polarization $ \textbf{P}$ of the system is,
162 mlamichh 4353 \begin{equation}
163     \textbf{P} = \epsilon_o \alpha_{D}\; \textbf{E}^o.
164     \label{pertDipole}
165     \end{equation}
166 mlamichh 4363 The constant $\alpha_D$ is a macroscopic polarizability, which is a property of the dipolar fluid in a given density and temperature.
167    
168     Similarly, in the presence of external field gradient the system of quadrupolar molecule polarizes along the direction of applied field gradient therefore the net quadrupolar polarization of the system can be given by,
169 mlamichh 4353 \begin{equation}
170     \begin{split}
171     & {Q}_{\alpha\beta} = \frac{1}{3}\; Tr({Q})\; \delta_{\alpha\beta} + \epsilon_o\; \alpha_Q \; \partial_{\alpha} E^o_{\beta}
172     \\ & or \\
173     & \frac{1}{3}\;\Theta_{\alpha\beta} = \epsilon_o\; \alpha_Q \; \partial_{\alpha} E^o_{\beta}
174     \end{split}
175     \label{pertQuad}
176     \end{equation}
177     where $Q_{\alpha\beta}$ is a tensor component of the traced quadrupolar moment of the system, $ \alpha_Q$ is a macroscopic quadrupolarizability has a dimension of $length^{-2}$, and $\Theta_{\alpha\beta} = 3Q_{\alpha\beta}-Tr(Q) $ is the traceless component of the quadrupole moment.
178    
179 mlamichh 4363
180     \subsection{Fluctuation formula}
181     \label{subsec:fluctuation}
182 mlamichh 4353 For a system of molecules with net dipolar moment $\bf{M}$ at thermal equilibrium of temperature T in the presence of applied field $\bf{E}^o$, the average dipolar polarization can be expressed in terms of fluctuation of the net dipole moment as below,\cite{Stern03}
183     \begin{equation}
184     \braket{\bf{P}} = \epsilon_o \frac{\braket{\bf{M}^2}-{\braket{\bf{M}}}^2}{3 \epsilon_o V k_B T}\bf{E}^o
185     \label{flucDipole}
186     \end{equation}
187 mlamichh 4363 This is similar to the formula for boltzmann average of single dipolar molecule in the subsection \ref{subsec:boltzAverage-Dipole}. Here $\braket{\bf{P}}$ is average polarization and $ \braket{\textbf{M}^2}-{\braket{\textbf{M}}}^2$ is the net dipole fluctuation at temperature T. For the limiting case $\textbf{E}^o \rightarrow 0 $, ensemble average of both net dipole moment $\braket{\textbf{M}}$ and dipolar polarization $\braket{\bf{P}}$ tends to vanish but $\braket{\bf{M}^2}$ will still be non-zero. The dipolar macroscopic polarizability can be written as,
188 mlamichh 4353 \begin{equation}
189     \alpha_D = \frac{\braket{\bf{M}^2}-{\braket{\bf{M}}}^2}{3 \epsilon_o V k_B T}
190     \end{equation}
191     This is a macroscopic property of dipolar material which is true even if applied field $ \textbf{E}^o \rightarrow 0 $.
192    
193     Analogous formula can also be written for a system with quadrupolar molecules,
194     \begin{equation}
195     \braket{Q_{\alpha\beta}} = \frac{1}{3} Tr(\textbf{Q})\; \delta_{\alpha\beta} + \epsilon_o \frac{\braket{\textbf{Q}^2}-{\braket{\textbf{Q}}}^2}{15 \epsilon_o V k_B T}{\partial_\alpha E^o_\beta}
196     \label{flucQuad}
197     \end{equation}
198     where $Q_{\alpha\beta}$ is a component of system quadrupole moment, $\bf{Q}$ is net quadrupolar moment which can be expressed as $\textbf{Q}^2 =3Q_{\alpha\beta}Q_{\alpha\beta}-(Tr\textbf{Q})^2 $. The macroscopic quadrupolarizability is given by,
199     \begin{equation}
200     \alpha_Q = \frac{\braket{\textbf{Q}^2}-{\braket{\textbf{Q}}}^2}{15 \epsilon_o V k_B T}
201     \label{propConstQuad}
202     \end{equation}
203    
204 mlamichh 4363
205 mlamichh 4353 \section{Potential of mean force}
206     In this method, we will measure the interaction between a positive and negative charge at varying distances after introducing a dipolar (or quadrupolar) material between them. The potential of mean force (PMF) between two ions in a liquid is obtained by constraining their distance and measuring the mean constraint force required to hold them at a fixed distance $r.$ The PMF is obtained from a sequence of simulations as,
207     \begin{equation}
208     w(r) = \int_{\inf}^{r}\braket{\frac{\partial f}{\partial r'}}dr',
209     \end{equation}
210     where $\braket{\partial f/\partial r'}$ is the mean constraint force.
211     Since the ions have a protecting Lennard-Jones (LJ) potential,
212     \begin{equation}
213     w(r) = w_{LJ}(r) + \frac{q_iq_j}{4\pi \epsilon_o \epsilon(r)}U_{method}(r).
214 mlamichh 4363 \label{eq:pmf}
215 mlamichh 4353 \end{equation}
216     Here $w_{LJ}$ is the PMF calculated without electrostatic interactions and $U_{method}(r)$ is the radial function for the charge-charge interaction, which is different for various real space truncation methods.
217    
218     The quadrupole molecule can only couple with the gradient of the electric field and the region between two opposite point charges has both an electric field and a gradient of the electric field present. Therefore, this methodology should be usable to determine the dielectric constant for both the dipolar and quadrupolar fluid.
219     \label{sec:PMF}
220    
221     \section{Correction factor}
222 mlamichh 4363 \label{sec:corrFactor}
223 mlamichh 4353 Since equations (\ref{pertDipole}, \ref{pertQuad}, \ref{flucDipole}, and \ref{flucQuad}) provide relation between polarization (dipolar or quadrupolar) and applied field (uniform field or field gradient), $\chi_d$ (or $ \chi_q$) is actually a macroscopic polarizability (or quadrupolarizability), which is different than the dipolar (or quadrupolar) susceptibility of the fluid. Actual constitutive relation should have a relation between polarization and Maxwell field (or field gradient) at different point in the sample. We can obtain susceptibility of the fluid from its macroscopic polarizability using correction factor evaluated below.
224     \subsection{Dipolar system}
225     In the presence of an external field $ \textbf{E}$ polarization $\textbf{E}$ will be induced in a dipolar system. The total electrostatic field (or Maxwell electric field) at point $\bf{r}$ in a system is,\cite{Neumann83}
226     \begin{equation}
227     \textbf{E}(\textbf{r}) = \textbf{E}^o(\textbf{r}) + \frac{1}{4\pi\epsilon_o} \int d^3r' \textbf{T}(\textbf{r}-\textbf{r}')\cdot {\textbf{P}(\textbf{r}')}.
228     \end{equation}
229    
230     We can consider the cases of Stockmayer (dipolar) soft spheres that are represented either by two closely-spaced point charges or by a single point dipole (see Fig. \ref{fig:stockmayer}).
231     \begin{figure}
232     \includegraphics[width=3in]{DielectricFigure}
233     \caption{With the real-space electrostatic methods, the effective
234     dipole tensor, $\mathbf{T}$, governing interactions between
235     molecular dipoles is not the same for charge-charge interactions as
236     for point dipoles.}
237     \label{fig:stockmayer}
238     \end{figure}
239     In the case where point charges are interacting via an electrostatic
240     kernel, $v(r)$, the effective {\it molecular} dipole tensor,
241     $\mathbf{T}$ is obtained from two successive applications of the
242     gradient operator to the electrostatic kernel,
243     \begin{equation}
244     \mathbf{T}_{\alpha \beta}(r) = \nabla_\alpha \nabla_\beta \left(v(r)\right) = \delta_{\alpha \beta}
245     \left(\frac{1}{r} v^\prime(r) \right) + \frac{r_{\alpha}
246     r_{\beta}}{r^2} \left( v^{\prime \prime}(r) - \frac{1}{r}
247     v^{\prime}(r) \right)
248     \label{dipole-chargeTensor}
249     \end{equation}
250     where $v(r)$ may be either the bare kernel ($1/r$) or one of the
251     modified (Wolf or DSF) kernels. This tensor describes the effective
252     interaction between molecular dipoles ($\mathbf{D}$) in Gaussian
253     units as $-\mathbf{D} \cdot \mathbf{T} \cdot \mathbf{D}$.
254    
255     When utilizing the new real-space methods for point dipoles, the
256     tensor is explicitly constructed,
257     \begin{equation}
258     \mathbf{T}_{\alpha \beta}(r) = \delta_{\alpha \beta} v_{21}(r) +
259     \frac{r_{\alpha} r_{\beta}}{r^2} v_{22}(r)
260     \label{dipole-diopleTensor}
261     \end{equation}
262     where the functions $v_{21}(r)$ and $v_{22}(r)$ depend on the level of
263     the approximation. Although the Taylor-shifted (TSF) and
264     gradient-shifted (GSF) models produce to the same $v(r)$ function for
265     point charges, they have distinct forms for the dipole-dipole
266     interactions.
267    
268     Using constitutive relation, the polarization density $\textbf{P}(\textbf{r})$ is given by,
269     \begin{equation}
270     \textbf{P}(\textbf{r}) = \epsilon_o\; \chi^*_D \left(\textbf{E}^o(\textbf{r}) + \frac{1}{4\pi\epsilon_o} \int d^3r' \textbf{T}(\textbf{r}-\textbf{r}')\cdot {\textbf{P}(\textbf{r}')}\right).
271     \label{constDipole}
272     \end{equation}
273     Here $\chi^*_D$ is a dipolar susceptibility can be expressed in terms of dielectric constant as $ \chi^*_D = \epsilon - 1$ which different than macroscopic dipolar polarizability $\alpha_D$ in the sections \ref{sec:perturbation} and \ref{sec:fluctuation}. We can split integral into two parts: singular part i.e $|\textbf{r}-\textbf{r}'|\rightarrow 0 $ and non-singular part i.e $|\textbf{r}-\textbf{r}'| > 0 $ . The singular part of the integral can be written as,\cite{Neumann83, Jackson98}
274     \begin{equation}
275     \frac{1}{4\pi\epsilon_o} \int_{|\textbf{r}-\textbf{r}'| \rightarrow 0} d^3r'\; \textbf{T}(\textbf{r}-\textbf{r}')\cdot {\textbf{P}(\textbf{r}')} = - \frac{\textbf{P}(\textbf{r})}{3\epsilon_o}
276     \label{singular}
277     \end{equation}
278     Substituting equation (\ref{singular}) in the equation (\ref{constDipole}) we get,
279     \begin{equation}
280     \textbf{P}(\textbf{r}) = 3 \epsilon_o\; \frac{\chi^*_D}{\chi^*_D + 3} \left(\textbf{E}^o(\textbf{r}) + \frac{1}{4\pi\epsilon_o} \int_{|\textbf{r}-\textbf{r}'| > 0} d^3r'\; \textbf{T}(\textbf{r}-\textbf{r}')\cdot {\textbf{P}(\textbf{r}')}\right).
281     \end{equation}
282     For both polarization and electric field homogeneous, this can be easily solved using Fourier transformation,
283     \begin{equation}
284     \textbf{P}(\kappa) = 3 \epsilon_o\; \frac{\chi^*_D}{\chi^*_D + 3} \left(1- \frac{3}{4\pi}\;\frac{\chi^*_D}{\chi^*_D + 3}\; \textbf{T}({\kappa})\right)^{-1}\textbf{E}^o({\kappa}).
285     \end{equation}
286     For homogeneous applied field Fourier component is non-zero only if $\kappa = 0$. Therefore,
287     \begin{equation}
288     \textbf{P}(0) = 3 \epsilon_o\; \frac{\chi^*_D}{\chi^*_D + 3} \left(1- \frac{\chi^*_D}{\chi^*_D + 3}\; A_{dipole})\right)^{-1}\textbf{E}^o({0}).
289     \label{fourierDipole}
290     \end{equation}
291     where $A_{dipole}=\frac{3}{4\pi}T(0) = \frac{3}{4\pi} \int_V d^3r\;T(r)$. Now equation (\ref{fourierDipole}) can be compared with equation (\ref{flucDipole}). Therefore,
292     \begin{equation}
293     \frac{\braket{\bf{M}^2}-{\braket{\bf{M}}}^2}{3 \epsilon_o V k_B T} = \frac{3\;\chi^*_D}{\chi^*_D + 3} \left(1- \frac{\chi^*_D}{\chi^*_D + 3}\; A_{dipole})\right)^{-1}
294     \end{equation}
295 mlamichh 4363 Substituting $\chi^*_D = \epsilon-1$ and $ \frac{\braket{\bf{M}^2}-{\braket{\bf{M}}}^2}{3 \epsilon_o V k_B T} = \epsilon_{CB}-1 = \alpha_D$ in above equation we get,
296 mlamichh 4353 \begin{equation}
297 mlamichh 4363 \epsilon = \frac{3+(A_{dipole} + 2)(\epsilon_{CB}-1)}{3+(A_{dipole} -1)(\epsilon_{CB}-1)} = \frac{3+(A_{dipole} + 2)\alpha_D}{3+(A_{dipole} -1)\alpha_D}
298 mlamichh 4353 \label{correctionFormula}
299     \end{equation}
300     where $\epsilon_{CB}$ is dielectric constant obtained from conducting boundary condition. Equation (\ref{correctionFormula}) calculates actual dielectric constant from the dielectric constant obtained from the conducting boundary condition (which can be obtained directly from the simulation) using correction factor. The correction factor is different for different real-space cutoff methods. The expression for correction factor assuming a single point dipole or two closely spaced point charges for SP, GSF, and TSF method is listed in Table \ref{tab:A}.
301     \begin{table}
302     \caption{Expressions for the dipolar correction factor ($A$) for the real-space electrostatic methods in terms of the damping parameter
303     ($\alpha$) and the cutoff radius ($r_c$). The Ewald-Kornfeld result
304     derived in Refs. \onlinecite{Adams:1980rt,Adams:1981fr,Neumann83} is shown for comparison using the Ewald
305     convergence parameter ($\kappa$) and the real-space cutoff value ($r_c$). }
306     \label{tab:A}
307     {%
308     \begin{tabular}{l|c|c|c|}
309    
310     Method & $A_\mathrm{charges}$ & $A_\mathrm{dipoles}$ \\
311     \hline
312     Spherical Cutoff (SC) & $\mathrm{erf}(r_c \alpha) - \frac{2 \alpha r_c}{\sqrt{\pi}} e^{-\alpha^2 r_c^2}$ & $\mathrm{erf}(r_c \alpha) - \frac{2 \alpha r_c}{\sqrt{\pi}} e^{-\alpha^2 r_c^2}$ \\
313     Shifted Potental (SP) & $ \mathrm{erf}(r_c \alpha) - \frac{2 \alpha r_c}{\sqrt{\pi}} e^{-\alpha^2 r_c^2}$ & $\mathrm{erf}(r_c \alpha) -\frac{2 \alpha r_c}{\sqrt{\pi}}\left(1+\frac{2\alpha^2 {r_c}^2}{3} \right)e^{-\alpha^2{r_c}^2} $\\
314     Gradient-shifted (GSF) & 1 & $\mathrm{erf}(\alpha r_c)-\frac{2 \alpha r_c}{\sqrt{\pi}} \left(1 + \frac{2 \alpha^2 r_c^2}{3} + \frac{\alpha^4 r_c^4}{3}\right)e^{-\alpha^2 r_c^2} $ \\
315     Taylor-shifted (TSF) & 1 & 1 \\
316     Ewald-Kornfeld (EK) & $\mathrm{erf}(r_c \kappa) - \frac{2 \kappa r_c}{\sqrt{\pi}} e^{-\kappa^2 r_c^2}$ & $\mathrm{erf}(r_c \kappa) - \frac{2 \kappa r_c}{\sqrt{\pi}} e^{-\kappa^2 r_c^2}$ \\\hline
317     \end{tabular}%
318     }
319     \end{table}
320     \subsection{Quadrupolar system}
321     In the presence of the field gradient $\partial_\alpha {E}_\beta $, a
322     non-vanishing quadrupolar polarization (quadrupole moment per unit
323     volume) $\bar{Q}_{\alpha\beta}$ will be induced in the entire volume
324     of a sample. The total field at any point $\vec{r}$ in the sample is
325     given by,
326     \begin{equation}
327     \partial_\alpha E_\beta(\textbf{r}) = \partial_\alpha {E^o}_\beta(\textbf{r}) + \frac{1}{4\pi \epsilon_o}\int T_{\alpha\beta\gamma\delta}(|{\textbf{r}-\textbf{r}'}|)\;{Q}_{\gamma\delta}(\textbf{r}')\; d^3r'
328     \label{gradMaxwell}
329     \end{equation}
330     where $\partial_\alpha {E^o}_\beta$ is the applied field gradient and $ T_{\alpha\beta\gamma\delta}$ is the quadrupole-quadrupole interaction tensor. We can represent quadrupole as a group of four closely spaced charges, two closely spaced point dipoles or single point quadrupole (see Fig. \ref{fig:quadrupolarFluid}). The quadrupole-quadrupole interaction tensor from the charge representation can obtained from the application of the four successive gradient operator to the electrostatic kernel $v(r)$.
331    
332     \begin{equation}
333     \begin{split}
334     T_{\alpha\beta\gamma\delta}(r) &=\nabla_\alpha \nabla_\beta \nabla_\gamma \nabla_\delta\;v(r)
335     \\ &= \left(\delta_{\alpha\beta}\delta_{\gamma\delta} + \delta_{\alpha\gamma}\delta_{\beta\delta}+ \delta_{\alpha\delta}\delta_{\beta\gamma}\right)\left(-\frac{v'(r)}{r^3} + \frac{v''(r)}{r^2}\right)
336     \\ &+ \left(\delta_{\alpha\beta} r_\gamma r_\delta + 5 \; permutations \right) \left(\frac{3v'(r)}{r^5}-\frac{3v''(r)}{r^4} + \frac{v'''(r)}{r^3}\right)
337     \\ &+ r_\alpha r_\beta r_\gamma r_\delta\; \left(-\frac{15v'(r)}{r^7}+\frac{15v''(r)}{r^6}-\frac{6v'''(r)}{r^5} + \frac{v''''(r)}{r^4}\right),
338     \end{split}
339     \label{quadCharge}
340     \end{equation}
341     where $v(r)$ can either be electrostatic kernel for spherical truncation or one of the modified (Wolf or DSF) method. Similarly in point dipole representation the qaudrupole-quadrupole interaction tensor can be obtained from the applications of the two successive gradient in the dipole-dipole interaction tensor,
342    
343     \begin{equation}
344     \begin{split}
345     T_{\alpha\beta\gamma\delta}(r) &=\nabla_\alpha \nabla_\beta \;v_{\gamma\delta}(r)
346     \\ &= \delta_{\alpha\beta}\delta_{\gamma\delta} \frac{v'_{21}(r)}{r} + \left(\delta_{\alpha\gamma}\delta_{\beta\delta}+ \delta_{\alpha\delta}\delta_{\beta\gamma}\right)\frac{v_{22}(r)}{r^2}
347     \\ &+ \delta_{\gamma\delta} r_\alpha r_\beta \left(\frac{v''_{21}(r)}{r^2}-\frac{v'_{21}(r)}{r^3} \right)
348     \\ &+\left(\delta_{\alpha\beta} r_\gamma r_\delta + \delta_{\alpha\gamma} r_\beta r_\delta +\delta_{\alpha\delta} r_\gamma r_\beta + \delta_{\beta\gamma} r_\alpha r_\delta +\delta_{\beta\delta} r_\alpha r_\gamma \right) \left(\frac{v'_{22}(r)}{r^3}-\frac{2v_{22}(r)}{r^4}\right)
349     \\ &+ r_\alpha r_\beta r_\gamma r_\delta\; \left(\frac{v''_{22}(r)}{r^4}-\frac{5v'_{22}(r)}{r^5}+\frac{8v_{22}(r)}{r^6}\right),
350     \end{split}
351     \label{quadDip}
352     \end{equation}
353     where $v_{\gamma\delta}(r)$ is the electrostatic dipole-dipole interaction tensor, which is different for different electrostatic cut off methods. Similarly $v_{21}(r) \;and\; v_{22}(r)$ are the radial function for different real space cutoff methods defined in Paper I of the series.\cite{PaperI} Using point quadrupole representation the quadrupole-quadrupole interaction can be constructed as,
354     \begin{equation}
355     \begin{split}
356     T_{\alpha\beta\gamma\delta}(r) &= \left(\delta_{\alpha\beta}\delta_{\gamma\delta} + \delta_{\alpha\gamma}\delta_{\beta\delta}+ \delta_{\alpha\delta}\delta_{\beta\gamma}\right)v_{41}(r) + \delta_{\gamma\delta} r_\alpha r_\beta \frac{v_{42}(r)}{r^2} \\ &+ r_\alpha r_\beta r_\gamma r_\delta\; \left(\frac{v_{43}(r)}{r^4}\right),
357     \end{split}
358     \label{quadRadial}
359     \end{equation}
360     where $v_{41}(r),\; v_{42}(r), \; \text{and} \; v_{43}(r)$ are defined in Paper I of the series. \cite{PaperI} They have different functional forms for different electrostatic cutoff methods.
361     \begin{figure}
362     \includegraphics[width=3in]{QuadrupoleFigure}
363     \caption{With the real-space electrostatic methods, the effective
364     quadrupolar tensor, $\mathbf{T}_{\alpha\beta\gamma\delta}(r)$, governing interactions between molecular quadrupoles can be represented by interaction of charges, point dipoles or single point quadrupoles.}
365     \label{fig:quadrupolarFluid}
366     \end{figure}
367     The integral in equation (\ref{gradMaxwell}) can be divided into two parts, $|\textbf{r}-\textbf{r}'|\rightarrow 0 $ and $|\textbf{r}-\textbf{r}'|> 0$. Since the total
368     field gradient due to quadrupolar fluid vanishes at the singularity (see Appendix \ref{singularQuad}), equation (\ref{gradMaxwell}) can be written as,
369     \begin{equation}
370     \partial_\alpha E_\beta(\textbf{r}) = \partial_\alpha {E^o}_\beta(\textbf{r}) +
371     \frac{1}{4\pi \epsilon_o}\int\limits_{|\textbf{r}-\textbf{r}'|> 0 }
372     T_{\alpha\beta\gamma\delta}(|\textbf{r}-\textbf{r}'|)\;{Q}_{\gamma\delta}(\textbf{r}')\;
373     d^3r'.
374     \end{equation}
375     If $\textbf{r} = \textbf{r}'$ is excluded from the integration, the gradient of the electric can be expressed in terms of traceless quadrupole moment as below, \cite{LoganI81}
376     \begin{equation}
377     \partial_\alpha E_\beta(\textbf{r}) = \partial_\alpha {E^o}_\beta(\textbf{r}) + \frac{1}{12\pi \epsilon_o}\int\limits_{|\textbf{r}-\textbf{r}'|> 0 } T_{\alpha\beta\gamma\delta}(|\textbf{r}-\textbf{r}'|)\;{\Theta}_{\gamma\delta}(\textbf{r}')\; d^3r',
378     \end{equation}
379     where $\Theta_{\alpha\beta} = 3Q_{\alpha\beta} - \delta_{\alpha\beta}Tr(Q)$
380     is the traceless quadrupole moment. The total quadrupolar polarization is written as,
381     \begin{equation}
382     {Q}_{\alpha\beta}(\textbf{r}) = \frac{1}{3}\delta_{\alpha\beta}\;Tr({Q})+\epsilon_o {\chi}^*_Q\;\partial_\alpha E_\beta(\textbf{r}),
383     \label{constQaud}
384     \end{equation}
385     In the equation (\ref{constQaud}), $\partial_{\alpha}E_{\beta}$ is Maxwell field gradient and ${\chi}^*_Q$ is the actual quadrupolar susceptibility of the fluid which is different than the proportionality constant $\chi_q $ in the equation (\ref{propConstQuad}). In terms of traceless quadrupole moment, equation (\ref{constQaud}) can be written as,
386     \begin{equation}
387     \frac{1}{3}{\Theta}_{\alpha\beta}(\textbf{r}) = \epsilon_o {\chi}^*_Q \; \partial_\alpha E_\beta (\textbf{r})= \epsilon_o {\chi}^*_Q \left(\partial_\alpha {E^o}_\beta(\textbf{r}) + \frac{1}{12\pi \epsilon_o}\int\limits_{|\textbf{r}-\textbf{r}'|> 0 } T_{\alpha\beta\gamma\delta}(|\textbf{r}-\textbf{r}'|)\;{\Theta}_{\gamma\delta}(\textbf{r}')\; d^3r'\right)
388     \end{equation}
389     For toroidal boundary conditions, both $\partial_\alpha E_\beta$ and
390 mlamichh 4363 ${\Theta}_{\alpha\beta}$ are uniform over the entire space. After
391 mlamichh 4353 performing a Fourier transform (see the Appendix in the Neumann's Paper \cite{Neumann83}) we get,
392     \begin{equation}
393     \frac{1}{3}{{\Theta}}_{\alpha\beta}({\kappa})=
394     \epsilon_o {\chi}^*_Q \;\left[{\partial_\alpha
395     {E^o}_\beta}({\kappa})+ \frac{1}{12\pi
396     \epsilon_o}\;{T}_{\alpha\beta\gamma\delta}({\kappa})\;
397     {{\Theta}}_{\gamma\delta}({\kappa})\right]
398     \end{equation}
399     Since the quadrupolar polarization is in the direction of the applied
400     field, we can write
401     ${{\Theta}}_{\gamma\delta}({\kappa}) =
402     {{\Theta}}_{\alpha\beta}({\kappa})$
403     and
404     ${T}_{\alpha\beta\gamma\delta}({\kappa}) =
405 mlamichh 4363 {T}_{\alpha\beta\alpha\beta}({\kappa})$. Therefore we can consider each component of the interaction tensor as scalar and perform calculation.
406 mlamichh 4353 \begin{equation}
407     \begin{split}
408     \frac{1}{3}{{\Theta}}_{\alpha\beta}({\kappa}) &= \epsilon_o {\chi}^*_Q \left[{\partial_\alpha E^o_\beta}({\kappa})+ \frac{1}{12\pi \epsilon_o}{T}_{\alpha\beta\alpha\beta}({\kappa})\;{{\Theta}}_{\alpha\beta}({\kappa})\right] \\
409     &= \epsilon_o {\chi}^*_Q\;\left(1-\frac{1}{4\pi} {\chi}^*_Q\;
410     {T}_{\alpha\beta\alpha\beta}({\kappa})\right)^{-1}
411     {\partial_\alpha E^o_\beta}({\kappa})
412     \end{split}
413     \label{fourierQuad}
414     \end{equation}
415 mlamichh 4363 If the field gradient is homogeneous over the
416 mlamichh 4353 entire volume, ${\partial_ \alpha E_\beta}({\kappa}) = 0 $ except at
417     $ {\kappa} = 0$, hence it is sufficient to know
418     ${T}_{\alpha\beta\alpha\beta}({\kappa})$ at $ {\kappa} =
419     0$. Therefore equation (\ref{fourierQuad}) can be written as,
420     \begin{equation}
421     \begin{split}
422     \frac{1}{3}{{\Theta}}_{\alpha\beta}({0}) &= \epsilon_o {\chi}^*_Q\; \left(1-\frac{1}{4\pi} {\chi}^*_Q\;{T}_{\alpha\beta\alpha\beta}({0})\right)^{-1} \partial_\alpha E^o_\beta({0})
423     \end{split}
424     \label{fourierQuad2}
425     \end{equation}
426     where $ {T}_{\alpha\beta\alpha\beta}({0})$ can be evaluated as,
427     \begin{equation}
428     {T}_{\alpha\beta\alpha\beta}({0}) = \int {T}_{\alpha\beta\alpha\beta}\;(\textbf{r})d^3r
429     \label{realTensorQaud}
430     \end{equation}
431    
432     In terms of traced quadrupole moment equation (\ref{fourierQuad2}) can be written as,
433     \begin{equation}
434     {{Q}}_{\alpha\beta} = \frac{1}{3}\delta_{\alpha\beta}\;Tr({Q}) + \epsilon_o\; {\chi}^*_Q\left(1-\frac{1}{4\pi} {\chi}^*_Q\;{T}_{\alpha\beta\alpha\beta}({0})\right)^{-1}\; \partial_\alpha E^o_\beta
435     \label{tracedConstQuad}
436     \end{equation}
437     Comparing (\ref{tracedConstQuad}) and (\ref{flucQuad}) we get,
438     \begin{equation}
439     \begin{split}
440     &\frac{\braket{{Q^2}} - \braket{Q}^2}{15 \epsilon_o Vk_BT}\; =\; {\chi}^*_Q\;\left(1-\frac{1}{4\pi} {\chi}^*_Q\;{T}_{\alpha\beta\alpha\beta}({0})\right)^{-1}, \\
441     &{\chi}^*_Q \;=\; \frac{\braket{{Q^2}} - \braket{Q}^2}{15 \epsilon_o Vk_BT}\left(1 + \frac{1}{4\pi} \frac{\braket{{Q^2}} - \braket{Q}^2}{15 \epsilon_o Vk_BT}\;{T}_{\alpha\beta\alpha\beta}({0})\right)^{-1}
442     \end{split}
443     \end{equation}
444     Finally the quadrupolar susceptibility cab be written in terms of quadrupolar correction factor ($A_{quad}$) as below,
445     \begin{equation}
446 mlamichh 4363 {\chi}^*_Q \;=\; \frac{\braket{{Q^2}} - \braket{Q}^2}{15 \epsilon_o Vk_BT}\left(1 + \frac{\braket{{Q^2}} - \braket{Q}^2}{15 \epsilon_o Vk_BT}\; A_{quad}\right)^{-1} = \alpha_Q\left(1 + \alpha_Q\; A_{quad}\right)^{-1}
447     \label{eq:quadrupolarSusceptiblity}
448 mlamichh 4353 \end{equation}
449     where $A_{quad} = \frac{1}{4\pi}\int {T}_{\alpha\beta\alpha\beta}\;(\textbf{r})d^3r $ has dimension of the $length^{-2}$ is different for different cutoff methods which is listed in Table \ref{tab:B}. The dielectric constant associated with the quadrupolar susceptibility is defined as,\cite{Ernst92}
450    
451     \begin{equation}
452 mlamichh 4363 \epsilon = 1 + \chi^*_Q\; G = 1 + G \; \alpha_Q\left(1 + \alpha_Q\; A_{quad}\right)^{-1}
453     \label{eq:dielectricFromQuadrupoles}
454 mlamichh 4353 \end{equation}
455     where $G = \frac{\displaystyle\int_V |\partial_\alpha E^o_\beta|^2 d^3r}{\displaystyle\int_V{|E^o|}^2 d^3r}$ is a geometrical factor depends on the nature of the external field perturbation. This is true when the quadrupolar fluid is homogeneous over the sample. Since quadrupolar molecule couple with the gradient of the field, the distribution of the quadrupoles is inhomogeneous for varying field gradient. Hence the distribution function should also be taken into account to calculate actual geometrical factor in the presence of non-uniform gradient field. Therefore,
456     \begin{equation}
457     G = \frac{\displaystyle\int_V\; g(r, \theta, \phi)\; |\partial_\alpha E^o_\beta|^2 d^3r}{\displaystyle\int_V{|E^o|}^2 d^3r}
458 mlamichh 4363 \label{eq:geometricalFactor}
459 mlamichh 4353 \end{equation}
460     where $g(r,\theta, \phi)$ is a distribution function of the quadrupoles in with respect to origin at the center of line joining two probe charges.
461     \begin{table}
462     \caption{Expressions for the quadrupolar correction factor ($A$) for the real-space electrostatic methods in terms of the damping parameter
463     ($\alpha$) and the cutoff radius ($r_c$). The dimension of the correction factor is $ length^{-2}$ in case of quadrupolar fluid.}
464     \label{tab:B}
465     \centering
466     \resizebox{\columnwidth}{!}{%
467    
468     \begin{tabular}{l|c|c|c|c|}
469    
470     Method & $A_\mathrm{charges}$ & $A_\mathrm{dipoles}$ &$A_\mathrm{quadrupoles}$ \\\hline
471     Spherical Cutoff (SC) & $ -\frac{8 \alpha^5 {r_c}^3}{3\sqrt{\pi}} e^{-\alpha^2 r_c^2}$ & $ -\frac{8 \alpha^5 {r_c}^3}{3\sqrt{\pi}} e^{-\alpha^2 r_c^2}$ & $ -\frac{8 {\alpha}^5 {r_c}^3}{3\sqrt{\pi}} e^{-\alpha^2 r_c^2}$ \\
472     Shifted Potental (SP) & $ -\frac{8 \alpha^5 {r_c}^3}{3\sqrt{\pi}} e^{-\alpha^2 r_c^2}$ & $- \frac{8 \alpha^5 {r_c}^3}{3\sqrt{\pi}} e^{-\alpha^2 r_c^2}$& $ -\frac{16 \alpha^7 {r_c}^5}{9\sqrt{\pi}} e^{-\alpha^2 r_c^2}$ \\
473     Gradient-shifted (GSF) & $- \frac{8 \alpha^5 {r_c}^3}{3\sqrt{\pi}} e^{-\alpha^2 r_c^2}$ & 0 & $-\frac{4{\alpha}^7{r_c}^5 }{9\sqrt{\pi}}e^{-\alpha^2 r_c^2}(-1+2\alpha ^2 r_c^2)$\\
474     Taylor-shifted (TSF) & $ -\frac{8 \alpha^5 {r_c}^3}{3\sqrt{\pi}} e^{-\alpha^2 r_c^2}$ & $\frac{4\;\mathrm{erfc(\alpha r_c)}}{{r_c}^2} + \frac{8 \alpha}{3\sqrt{\pi}r_c}e^{-\alpha^2 {r_c}^2}\left(3+ 2 \alpha^2 {r_c}^2 + \alpha^4 {r_c}^4\right) $ & $\frac{10\;\mathrm{erfc}(\alpha r_c )}{{r_c}^2} + \frac{4{\alpha}}{9\sqrt{\pi}{r_c}}e^{-\alpha^2 r_c^2}\left(45 + 30\alpha ^2 {r_c}^2 + 12\alpha^4 {r_c}^4 + 3\alpha^6 {r_c}^6 + 2 \alpha^8 {r_c}^8\right)$ \\\hline
475     \end{tabular}%
476     }
477     \end{table}
478     \section{Methodology}
479 mlamichh 4389 We have used three different simulation methods: i) external field perturbation, ii) fluctuation formula, and iii) potential of mean force (PMF), to calculate dielectric properties for dipolar and quadrupolar fluid. In case of dipolar system we calculated macroscopic polarzability using first two methods separately and derived the dielectric constant utilizing equation (\ref{correctionFormula}). Similarly we used equation (\ref{eq:pmf}) to calculate dielectric constant from dipolar fluid using PMF method. For quadrupolar fluid, we have calculated quadrupolarizablity using fluctuation formula and external field perturbation and derived quadrupolar susceptibility using equation (\ref{eq:quadrupolarSusceptiblity}). Since dielectric constant due to quadrupolar fluid depends on the nature of gradient of the field applied in the system, we have used geometrical factor (in equation \ref{eq:geometricalFactor}) and quadrupolar susceptibility to evaluate dielectric constant for two ions dissolved quadrupolar fluid (see equation \ref{eq:dielectricFromQuadrupoles}) . The the dielectric constant evaluated using equation (\ref{eq:dielectricFromQuadrupoles}) has been compared with the result evaluated from PMF method (i.e. equation \ref{eq:pmf}). We have also used three different test systems for both dipolar and quadrupolar fluids. The parameters used in the test systems are given in table \ref{Tab:C}.
480 mlamichh 4353
481 mlamichh 4389 \begin{table}
482     \caption{\label{Tab:C}}
483     \begin{tabularx}{\textwidth}{r|cc|YYccc|Yccc} \hline
484     & \multicolumn{2}{c|}{LJ parameters} &
485     \multicolumn{5}{c|}{Electrostatic moments} & & & & \\
486     Test system & $\sigma$& $\epsilon$ & $C$ & $D$ &
487     $Q_{xx}$ & $Q_{yy}$ & $Q_{zz}$ & mass & $I_{xx}$ & $I_{yy}$ &
488     $I_{zz}$ \\ \cline{6-8}\cline{10-12}
489     & (\AA) & (kcal/mol) & (e) & (debye) & \multicolumn{3}{c|}{(debye \AA)} & (amu) & \multicolumn{3}{c}{(amu
490     \AA\textsuperscript{2})} \\ \hline
491     Stockmayer fluid & 3.41 & 0.2381 & - & 1.4026 &-&-&-& 39.948 & 11.613 & 11.613 & 0.0 \\
492     Quadrupolar fluid & 2.985 & 0.265 & - & - & 0.0 & 0.0 &-2.139 & 18.0153 & 43.0565 & 43.0565 & 0.0 \\
493     \ce{q+} & 1.0 & 0.1 & +1 & - & - & - & - & 22.98 & - & - & - \\
494     \ce{q-} & 1.0 & 0.1 & -1 & - & - & - & - & 22.98 & - & - & - \\ \hline
495     \end{tabularx}
496     \end{table}
497 mlamichh 4363
498 mlamichh 4389 First test system consists of point dipolar or quadrupolar molecules in the presence of constant field or gradient field. Since there is no isolated charge within the system, the divergence of the field should be zero $ i.e. \vec{\nabla} .\vec{E} = 0$. This condition is satisfied by selecting applied potential as described in Appendix \ref{Ap:fieldOrGradient}. When constant electric field or field gradient applied to the system, the molecules align along the direction of the applied field. We evaluate ensemble average of the box dipole or quadrupole moment as a response field or field gradient. The macroscopic polarizability of the system is derived using ratio between system multipolar moment and applied field or field gradient. This method works properly only at the linear response region of field or field gradient.
499 mlamichh 4353
500 mlamichh 4389 Second test system consists of box of point dipolar or quadrupolar molecules is simulated for 1 ns in NVE ensemble after equilibration in the absence of any external perturbation. The fluctuation of the ensemble average of the box multipolar moment i.e. $\braket{A^2} - \braket{A}^2 $ is measured at the fixed temperature and density for a given multipolar fluid. Finally the macroscopic polraizability of the system at a particular density is derived using equation (\ref{flucQuad}).
501    
502     Final system consists of dipolar or quadrupolar fluids with two oppositely charged ions immersed in it. These ions are constraint to be at fixed distance throughout the simulation. We run separate simulations for different constraint distances. Finally we calculated dielectric constant using ratio between the force between the two ions in the absence of medium and the average constraint force during the simulation. Since the constraint force is pretty noisy we run each simulation for long run to reduce simulation error.
503    
504     \subsection{Implementation}
505     We have used real-space electrostatic methods implemented in OpenMD \cite{openmd2.3} software to evaluate electrostatic interactions between the molecules. In our simulations we used all three different real-space electrostatic methods: SP, GSF, and TSF developed in the previous paper \cite{PaperI} in the series. The radius of the cutoff sphere is taken to be $12 \r{A}$. Each real space method can be tuned using different values of damping parameter. We have selected ten different values of damping parameter (unit-${\r{A}}^{-1}$); 0.0, 0.05, 0.1, 0.15, 0.175, 0.2, 0.225, 0.25, 0.3, and 0.35 in our simulations. The short range interaction in the simulations is incorporated with 6-12 Lennard Jones interaction method.
506    
507     To derive the box multipolar (dipolar or quadrupolar) moment, we added the component each individual molecule in the space frame and taken ensemble average of the snapshots of the whole simulation. The first component of the fluctuation of the dipolar moment is derived by using relation $\braket{M^2} = \braket{{M_x}^2 + {M_y}^2 + {M_z}^2}$, where $M_x$, $M_y$, and $M_z $ are x, y and z components of the box quadrupole moment. Similarly the first term in the quadrupolar system is derived using relation $ \braket{Q^2} = \braket{3 Q:Q - TrQ^2} $, where $ Q $ is the box quadrupole moment, double dot represent the outer product of the quadrupolar matrices, and $TrQ$ is the trace of the box quadrupolar moment. The second component of the fluctuation formula has been derived using square of the ensemble average of the box dipole moment.The applied constant field or field gradient in the test systems has been taken in the form described in the Appendix \ref{Ap:fieldOrGradient}.
508     \subsection{Model systems}
509     To evaluate dielectric properties for dipolar systems using perturbation and fluctuation formula methods, we have taken system of 2048 Stockmayer molecules with reduced density $ \rho^* = 0.822$, temperature $T^* = 1.15 $, moment of inertia $I^* = 0.025 $, and dipole moment $ \mu^* = \sqrt{3.0} $. Test systems are equilibrated for 500 ps and run for $1\; ns$ and components of box dipole moment are obtained at every femtosecond. The systems are run in the presence of constant external field from $ 0 - 10\; \times\; 10^{-4}\;V/{\r{A}}$ in the step of $ 10 ^{-4}\; V/\r{A}$ for each simulation. For pmf method, Two dipolar molecules in the above system are converted into $q+$ and $q-$ ions and constrained to remain in fixed distance in simulation. The constrained distance is varied from $5\;\r{A} - 12\; \r{A} $ for different simulations. In pmf method all simulations are equilibrated for 500 ps in NVT ensemble and run for 5 ns in NVE ensemble to print constraint force at an interval of 20 fs.
510    
511     Quadrupolar systems consists 4000 linear point quadrupolar molecules with density $ 2.338\; g/cm^3$ at temperature $ 500\; ^oK $. For both perturbation and fluctuation methods, test systems are equalibrated for 200 ps in NVT ensemble and run for 500 ps in NVE ensemble. To find the ensemble average of the box quadrupole moment and fluctuation of the quadrupole moment the components of box quadrupole moments are printed every 100 fs. Each simulations are repeated at different values of applied constant gradients from $ 0 - 9 \times 10^{-2}\; V/\r{A}^2 $. To find dielectric constant using pmf method, two ions in the systems are converted into $q+$ and $q-$ ions and constrained to remain at fixed distance in the simulation. These constraint distances are varied from $5\;\r{A} - 12\; \r{A} $ at the step of $0.1\; \r{A} $ for different simulations. For calculating dielectric constant, the test systems are run for 500 ps to equlibrate and run for 5 ns to print constraint force at a time interval of 20 fs.
512    
513     \section{Results}
514    
515 mlamichh 4353 \section{Conclusion}
516    
517     \newpage
518    
519     \appendix
520     \section{Point-multipolar interactions with a spatially-varying electric field}
521    
522     We can treat objects $a$, $b$, and $c$ containing embedded collections
523     of charges. When we define the primitive moments, we sum over that
524     collections of charges using a local coordinate system within each
525     object. The point charge, dipole, and quadrupole for object $a$ are
526     given by $C_a$, $\mathbf{D}_a$, and $\mathsf{Q}_a$, respectively.
527     These are the primitive multipoles which can be expressed as a
528     distribution of charges,
529     \begin{align}
530     C_a =&\sum_{k \, \text{in }a} q_k , \label{eq:charge} \\
531     D_{a\alpha} =&\sum_{k \, \text{in }a} q_k r_{k\alpha}, \label{eq:dipole}\\
532     Q_{a\alpha\beta} =& \frac{1}{2} \sum_{k \, \text{in } a} q_k
533     r_{k\alpha} r_{k\beta} . \label{eq:quadrupole}
534     \end{align}
535     Note that the definition of the primitive quadrupole here differs from
536     the standard traceless form, and contains an additional Taylor-series
537     based factor of $1/2$. In Paper 1, we derived the forces and torques
538     each object exerts on the others.
539    
540     Here we must also consider an external electric field that varies in
541     space: $\mathbf E(\mathbf r)$. Each of the local charges $q_k$ in
542     object $a$ will then experience a slightly different field. This
543     electric field can be expanded in a Taylor series around the local
544     origin of each object. A different Taylor series expansion is carried
545     out for each object.
546    
547     For a particular charge $q_k$, the electric field at that site's
548     position is given by:
549     \begin{equation}
550     E_\gamma + \nabla_\delta E_\gamma r_{k \delta}
551     + \frac {1}{2} \nabla_\delta \nabla_\varepsilon E_\gamma r_{k \delta}
552     r_{k \varepsilon} + ...
553     \end{equation}
554     Note that the electric field is always evaluated at the origin of the
555     objects, and treating each object using point multipoles simplifies
556     this greatly.
557    
558     To find the force exerted on object $a$ by the electric field, one
559     takes the electric field expression, and multiplies it by $q_k$, and
560     then sum over all charges in $a$:
561    
562     \begin{align}
563     F_\gamma &= \sum_{k \textrm{~in~} a} q_k \lbrace E_\gamma + \nabla_\delta E_\gamma r_{k \delta}
564     + \frac {1}{2} \nabla_\delta \nabla_\varepsilon E_\gamma r_{k \delta}
565     r_{k \varepsilon} + ... \rbrace \\
566     &= C_a E_\gamma + D_{a \delta} \nabla_\delta E_\gamma
567     + Q_{a \delta \varepsilon} \nabla_\delta \nabla_\varepsilon E_\gamma +
568     ...
569     \end{align}
570    
571     Similarly, the torque exerted by the field on $a$ can be expressed as
572     \begin{align}
573     \tau_\alpha &= \sum_{k \textrm{~in~} a} (\mathbf r_k \times q_k \mathbf E)_\alpha \\
574     & = \sum_{k \textrm{~in~} a} \epsilon_{\alpha \beta \gamma} q_k
575     r_{k\beta} E_\gamma(\mathbf r_k) \\
576     & = \epsilon_{\alpha \beta \gamma} D_\beta E_\gamma
577     + 2 \epsilon_{\alpha \beta \gamma} Q_{\beta \delta} \nabla_\delta
578     E_\gamma + ...
579     \end{align}
580    
581     The last term is essentially identical with form derived by Torres del
582     Castillo and M\'{e}ndez Garrido,\cite{Torres-del-Castillo:2006uo} although their derivation
583     utilized a traceless form of the quadrupole that is different than the
584     primitive definition in use here. We note that the Levi-Civita symbol
585     can be eliminated by utilizing the matrix cross product in an
586     identical form as in Ref. \onlinecite{Smith98}:
587     \begin{equation}
588     \left[\mathsf{A} \times \mathsf{B}\right]_\alpha = \sum_\beta
589     \left[\mathsf{A}_{\alpha+1,\beta} \mathsf{B}_{\alpha+2,\beta}
590     -\mathsf{A}_{\alpha+2,\beta} \mathsf{B}_{\alpha+1,\beta}
591     \right]
592     \label{eq:matrixCross}
593     \end{equation}
594     where $\alpha+1$ and $\alpha+2$ are regarded as cyclic permuations of
595     the matrix indices. In table \ref{tab:UFT} we give compact
596     expressions for how the multipole sites interact with an external
597     field that has exhibits spatial variations.
598    
599     \begin{table}
600     \caption{Potential energy $(U)$, force $(\mathbf{F})$, and torque
601     $(\mathbf{\tau})$ expressions for a multipolar site embedded in an
602     electric field with spatial variations, $\mathbf{E}(\mathbf{r})$.
603     \label{tab:UFT}}
604     \begin{tabular}{r|ccc}
605     & Charge & Dipole & Quadrupole \\ \hline
606     $U$ & $C \phi(\mathbf{r})$ & $-\mathbf{D} \cdot \mathbf{E}(\mathbf{r})$ & $- \mathsf{Q}:\nabla \mathbf{E}(\mathbf{r})$ \\
607     $\mathbf{F}$ & $C \mathbf{E}(\mathbf{r})$ & $+\mathbf{D} \cdot \nabla \mathbf{E}(\mathbf{r})$ & $+\mathsf{Q} : \nabla\nabla\mathbf{E}(\mathbf{r})$ \\
608     $\mathbf{\tau}$ & & $\mathbf{D} \times \mathbf{E}(\mathbf{r})$ & $+2 \mathsf{Q} \times \nabla \mathbf{E}(\mathbf{r})$
609     \end{tabular}
610     \end{table}
611     \section{Gradient of the field due to quadrupolar polarization}
612     \label{singularQuad}
613     In this section, we will discuss the gradient of the field produced by
614     quadrupolar polarization. For this purpose, we consider a distribution
615     of charge ${\rho}(r)$ which gives rise to an electric field
616     $\vec{E}(r)$ and gradient of the field $\vec{\nabla} \vec{E}(r)$
617     throughout space. The total gradient of the electric field over volume
618     due to the all charges within the sphere of radius $R$ is given by
619     (cf. Jackson equation 4.14):
620     \begin{equation}
621     \int_{r<R} \vec{\nabla}\vec{E}\;d^3r = -\int_{r=R} R^2 \vec{E}\;\hat{n}\; d\Omega
622     \label{eq:8}
623     \end{equation}
624     where $d\Omega$ is the solid angle and $\hat{n}$ is the normal vector
625     of the surface of the sphere which is equal to
626     $sin[\theta]cos[\phi]\hat{x} + sin[\theta]sin[\phi]\hat{y} +
627     cos[\theta]\hat{z}$
628     in spherical coordinates. For the charge density ${\rho}(r')$, the
629     total gradient of the electric field can be written as (cf. Jackson
630     equation 4.16),
631     \begin{equation}
632     \int_{r<R} \vec{\nabla}\vec{E}\; d^3r=-\int_{r=R} R^2\; \vec{\nabla}\Phi\; \hat{n}\; d\Omega =-\frac{1}{4\pi\;\epsilon_o}\int_{r=R} R^2\; \vec{\nabla}\;\left(\int \frac{\rho(r')}{|\vec{r}-\vec{r'}|}\;d^3r'\right) \hat{n}\; d\Omega
633     \label{eq:9}
634     \end{equation}
635     The radial function in the equation (\ref{eq:9}) can be expressed in
636     terms of spherical harmonics as (cf. Jackson equation 3.70),
637     \begin{equation}
638     \frac{1}{|\vec{r} - \vec{r'}|} = 4\pi \sum_{l=0}^{\infty}\sum_{m=-l}^{m=l}\frac{1}{2l+1}\;\frac{{r^l_<}}{{r^{l+1}_>}}\;{Y^*}_{lm}(\theta', \phi')\;Y_{lm}(\theta, \phi)
639     \label{eq:10}
640     \end{equation}
641     If the sphere completely encloses the charge density then $ r_< = r'$ and $r_> = R$. Substituting equation (\ref{eq:10}) into (\ref{eq:9}) we get,
642     \begin{equation}
643     \begin{split}
644     \int_{r<R} \vec{\nabla}\vec{E}\;d^3r &=-\frac{R^2}{\epsilon_o}\int_{r=R} \; \vec{\nabla}\;\left(\int \rho(r')\sum_{l=0}^{\infty}\sum_{m=-l}^{m=l}\frac{1}{2l+1}\;\frac{{r'^l}}{{R^{l+1}}}\;{Y^*}_{lm}(\theta', \phi')\;Y_{lm}(\theta, \phi)\;d^3r'\right) \hat{n}\; d\Omega \\
645     &= -\frac{R^2}{\epsilon_o}\sum_{l=0}^{\infty}\sum_{m=-l}^{m=l}\frac{1}{2l+1}\;\int \rho(r')\;{r'^l}\;{Y^*}_{lm}(\theta', \phi')\left(\int_{r=R}\vec{\nabla}\left({R^{-(l+1)}}\;Y_{lm}(\theta, \phi)\right)\hat{n}\; d\Omega \right)d^3r
646     '
647     \end{split}
648     \label{eq:11}
649     \end{equation}
650     The gradient of the product of radial function and spherical harmonics
651     is given by (cf. Arfken, p.811 eq. 16.94):
652     \begin{equation}
653     \begin{split}
654     \vec{\nabla}\left[ f(r)\;Y_{lm}(\theta, \phi)\right] = &-\left(\frac{l+1}{2l+1}\right)^{1/2}\; \left[\frac{\partial}{\partial r}-\frac{l}{r} \right]f(r)\; Y_{l, l+1, m}(\theta, \phi)\\ &+ \left(\frac{l}{2l+1}\right)^{1/2}\left[\frac
655     {\partial}{\partial r}+\frac{l}{r} \right]f(r)\; Y_{l, l-1, m}(\theta, \phi).
656     \end{split}
657     \label{eq:12}
658     \end{equation}
659     Using equation (\ref{eq:12}) we get,
660     \begin{equation}
661     \vec{\nabla}\left({R^{-(l+1)}}\;Y_{lm}(\theta, \phi)\right) = [(l+1)(2l+1)]^{1/2}\; Y_{l,l+1,m}(\theta, \phi) \; \frac{1}{R^{l+2}},
662     \label{eq:13}
663     \end{equation}
664     where $ Y_{l,l+1,m}(\theta, \phi)$ is the vector spherical harmonics
665     which can be expressed in terms of spherical harmonics as shown in
666     below (cf. Arfkan p.811),
667     \begin{equation}
668     Y_{l,l+1,m}(\theta, \phi) = \sum_{m_1, m_2} C(l+1,1,l|m_1,m_2,m)\; {Y_{l+1}}^{m_1}(\theta,\phi)\; \hat{e}_{m_2},
669     \label{eq:14}
670     \end{equation}
671     where $C(l+1,1,l|m_1,m_2,m)$ is a Clebsch-Gordan coefficient and
672     $\hat{e}_{m_2}$ is a spherical tensor of rank 1 which can be expressed
673     in terms of Cartesian coordinates,
674     \begin{equation}
675     {\hat{e}}_{+1} = - \frac{\hat{x}+i\hat{y}}{\sqrt{2}},\quad {\hat{e}}_{0} = \hat{z},\quad and \quad {\hat{e}}_{-1} = \frac{\hat{x}-i\hat{y}}{\sqrt{2}}
676     \label{eq:15}
677     \end{equation}
678     The normal vector $\hat{n} $ can be expressed in terms of spherical tensor of rank 1 as shown in below,
679     \begin{equation}
680     \hat{n} = \sqrt{\frac{4\pi}{3}}\left(-{Y_1}^{-1}{\hat{e}}_1 -{Y_1}^{1}{\hat{e}}_{-1} + {Y_1}^{0}{\hat{e}}_0 \right)
681     \label{eq:16}
682     \end{equation}
683     The surface integral of the product of $\hat{n}$ and
684     ${Y_{l+1}}^{m_1}(\theta, \phi)$ gives,
685     \begin{equation}
686     \begin{split}
687     \int \hat{n}\;{Y_{l+1}}^{m_1}\;d\Omega &= \int \sqrt{\frac{4\pi}{3}}\left(-{Y_1}^{-1}{\hat{e}}_1 -{Y_1}^{1}{\hat{e}}_{-1} + {Y_1}^{0}{\hat{e}}_0 \right)\;{Y_{l+1}}^{m_1}\; d\Omega \\
688     &= \int \sqrt{\frac{4\pi}{3}}\left({{Y_1}^{1}}^* {\hat{e}}_1 +{{Y_1}^{-1}}^* {\hat{e}}_{-1} + {{Y_1}^{0}}^* {\hat{e}}_0 \right)\;{Y_{l+1}}^{m_1}\; d\Omega \\
689     &= \sqrt{\frac{4\pi}{3}}\left({\delta}_{l+1, 1}\;{\delta}_{1, m_1}\;{\hat{e}}_1 + {\delta}_{l+1, 1}\;{\delta}_{-1, m_1}\;{\hat{e}}_{-1}+ {\delta}_{l+1, 1}\;{\delta}_{0, m_1} \;{\hat{e}}_0\right),
690     \end{split}
691     \label{eq:17}
692     \end{equation}
693     where ${Y_{l}}^{-m} = (-1)^m\;{{Y_{l}}^{m}}^* $ and
694     $ \int {{Y_{l}}^{m}}^*\;{Y_{l'}}^{m'}\;d\Omega =
695     \delta_{ll'}\delta_{mm'} $.
696     Non-vanishing values of equation \ref{eq:17} require $l = 0$,
697     therefore the value of $ m = 0 $. Since the values of $ m_1$ are -1,
698     1, and 0 then $m_2$ takes the values 1, -1, and 0, respectively
699     provided that $m = m_1 + m_2$. Equation \ref{eq:11} can therefore be
700     modified,
701     \begin{equation}
702     \begin{split}
703     \int_{r<R} \vec{\nabla}\vec{E}\;d^3r = &- \sqrt{\frac{4\pi}{{3}}}\;\frac{1}{\epsilon_o}\int \rho(r')\;{Y^*}_{00}(\theta', \phi')[ C(1, 1, 0|-1,1,0)\;{\hat{e}_{-1}}{\hat{e}_{1}}\\ &+ C(1, 1, 0|-1,1,0)\;{\hat{e}_{1}}{\hat{e}_{-1}}+C(
704     1, 1, 0|0,0,0)\;{\hat{e}_{0}}{\hat{e}_{0}} ]\; d^3r'.
705     \end{split}
706     \label{eq:18}
707     \end{equation}
708     After substituting ${Y^*}_{00} = \frac{1}{\sqrt{4\pi}} $ and using the
709     values of the Clebsch-Gorden coefficients: $ C(1, 1, 0|-1,1,0) =
710     \frac{1}{\sqrt{3}}, \; C(1, 1, 0|-1,1,0)= \frac{1}{\sqrt{3}}$ and $
711     C(1, 1, 0|0,0,0) = -\frac{1}{\sqrt{3}}$ in equation \ref{eq:18} we
712     obtain,
713     \begin{equation}
714     \begin{split}
715     \int_{r<R} \vec{\nabla}\vec{E}\;d^3r &= -\sqrt{\frac{4\pi}{{3}}}\;\frac{1}{\epsilon_o}\int \rho(r')\;d^3r'\left({\hat{e}_{-1}}{\hat{e}_{1}}+{\hat{e}_{1}}{\hat{e}_{-1}}-{\hat{e}_{0}}{\hat{e}_{0}}\right)\\
716     &= - \sqrt{\frac{4\pi}{{3}}}\;\frac{1}{\epsilon_o}\;C_{total}\;\left({\hat{e}_{-1}}{\hat{e}_{1}}+{\hat{e}_{1}}{\hat{e}_{-1}}-{\hat{e}_{0}}{\hat{e}_{0}}\right).
717     \end{split}
718     \label{eq:19}
719     \end{equation}
720     Equation (\ref{eq:19}) gives the total gradient of the field over a
721     sphere due to the distribution of the charges. For quadrupolar fluids
722     the total charge within a sphere is zero, therefore
723     $ \int_{r<R} \vec{\nabla}\vec{E}\;d^3r = 0 $. Hence the quadrupolar
724     polarization produces zero net gradient of the field inside the
725     sphere.
726    
727 mlamichh 4389 \section{Applied field or field gradient}
728     \label{Ap:fieldOrGradient}
729 mlamichh 4353
730 mlamichh 4389 To satisfy the condition $ \nabla . E = 0 $, within the box of molecules we have taken electrostatic potential in the following form
731     \begin{equation}
732     \begin{split}
733     \phi(x, y, z) =\; &-g_o \left(\frac{1}{2}(a_1\;b_1 - \frac{cos\psi}{3})\;x^2+\frac{1}{2}(a_2\;b_2 - \frac{cos\psi}{3})\;y^2 + \frac{1}{2}(a_3\;b_3 - \frac{cos\psi}{3})\;z^2 \right. \\
734     & \left. + \frac{(a_1\;b_2 + a_2\;b_1)}{2} x\;y + \frac{(a_1\;b_3 + a_3\;b_1)}{2} x\;z + \frac{(a_2\;b_3 + a_3\;b_2)}{2} y\;z \right),
735     \end{split}
736     \label{eq:appliedPotential}
737     \end{equation}
738     where $a = (a_1, a_2, a_3)$ and $b = (b_1, b_2, b_3)$ are basis vectors determine coefficients in x, y, and z direction. And $g_o$ and $\psi$ are overall strength of the potential and angle between basis vectors respectively. The electric field derived from the above potential is,
739     \[\bf{E}
740     =\frac{g_o}{2} \left(\begin{array}{ccc}
741     2(a_1\; b_1 - \frac{cos\psi}{3})\;x \;+ (a_1\; b_2 \;+ a_2\; b_1)\;y + (a_1\; b_3 \;+ a_3\; b_1)\;z \\
742     (a_2\; b_1 \;+ a_1\; b_2)\;x + 2(a_2\; b_2 \;- \frac{cos\psi}{3})\;y + (a_2\; b_3 \;+ a_3\; b_3)\;z \\
743     (a_3\; b_1 \;+ a_3\; b_2)\;x + (a_3\; b_2 \;+ a_2\; b_3)y + 2(a_3\; b_3 \;- \frac{cos\psi}{3})\;z
744     \end{array} \right).\]
745     The gradient of the applied field derived from the potential can be written in the following form,
746     \[\nabla\bf{E}
747     = \frac{g_o}{2}\left(\begin{array}{ccc}
748     2(a_1\; b_1 - \frac{cos\psi}{3}) & (a_1\; b_2 \;+ a_2\; b_1) & (a_1\; b_3 \;+ a_3\; b_1)\;z \\
749     (a_2\; b_1 \;+ a_1\; b_2) & 2(a_2\; b_2 \;- \frac{cos\psi}{3}) & (a_2\; b_3 \;+ a_3\; b_3)\;z \\
750     (a_3\; b_1 \;+ a_3\; b_2) & (a_3\; b_2 \;+ a_2\; b_3) & 2(a_3\; b_3 \;- \frac{cos\psi}{3})\;z
751     \end{array} \right).\]
752 mlamichh 4353 \newpage
753    
754     \bibliography{multipole}
755    
756     \end{document}