1 |
mlamichh |
4422 |
|
2 |
gezelter |
4399 |
% ****** Start of file aipsamp.tex ****** |
3 |
|
|
% |
4 |
|
|
% This file is part of the AIP files in the AIP distribution for REVTeX 4. |
5 |
|
|
% Version 4.1 of REVTeX, October 2009 |
6 |
|
|
% |
7 |
|
|
% Copyright (c) 2009 American Institute of Physics. |
8 |
|
|
% |
9 |
|
|
% See the AIP README file for restrictions and more information. |
10 |
|
|
% |
11 |
|
|
% TeX'ing this file requires that you have AMS-LaTeX 2.0 installed |
12 |
|
|
% as well as the rest of the prerequisites for REVTeX 4.1 |
13 |
|
|
% |
14 |
|
|
% It also requires running BibTeX. The commands are as follows: |
15 |
|
|
% |
16 |
|
|
% 1) latex aipsamp |
17 |
|
|
% 2) bibtex aipsamp |
18 |
|
|
% 3) latex aipsamp |
19 |
|
|
% 4) latex aipsamp |
20 |
|
|
% |
21 |
|
|
% Use this file as a source of example code for your aip document. |
22 |
|
|
% Use the file aiptemplate.tex as a template for your document. |
23 |
|
|
\documentclass[% |
24 |
|
|
aip,jcp, |
25 |
|
|
amsmath,amssymb, |
26 |
|
|
preprint,% |
27 |
|
|
% reprint,% |
28 |
|
|
%author-year,% |
29 |
|
|
%author-numerical,% |
30 |
|
|
jcp]{revtex4-1} |
31 |
|
|
|
32 |
|
|
\usepackage{graphicx}% Include figure files |
33 |
|
|
\usepackage{dcolumn}% Align table columns on decimal point |
34 |
|
|
%\usepackage{bm}% bold math |
35 |
|
|
\usepackage{times} |
36 |
|
|
\usepackage[version=3]{mhchem} % this is a great package for formatting chemical reactions |
37 |
|
|
\usepackage{url} |
38 |
|
|
\usepackage{rotating} |
39 |
gezelter |
4404 |
\usepackage{braket} |
40 |
gezelter |
4418 |
\usepackage{array} |
41 |
|
|
\newcolumntype{L}[1]{>{\raggedright\let\newline\\\arraybackslash\hspace{0pt}}m{#1}} |
42 |
|
|
\newcolumntype{C}[1]{>{\centering\let\newline\\\arraybackslash\hspace{0pt}}m{#1}} |
43 |
|
|
\newcolumntype{R}[1]{>{\raggedleft\let\newline\\\arraybackslash\hspace{0pt}}m{#1}} |
44 |
gezelter |
4399 |
|
45 |
gezelter |
4434 |
\renewcommand{\theequation}{S\arabic{equation}} |
46 |
|
|
\renewcommand{\thefigure}{S\arabic{figure}} |
47 |
|
|
\renewcommand{\thetable}{S\arabic{table}} |
48 |
|
|
\renewcommand{\bibnumfmt}[1]{[S#1]~} |
49 |
|
|
\renewcommand{\citenumfont}[1]{S#1} |
50 |
gezelter |
4404 |
|
51 |
gezelter |
4399 |
%\usepackage[mathlines]{lineno}% Enable numbering of text and display math |
52 |
|
|
%\linenumbers\relax % Commence numbering lines |
53 |
|
|
|
54 |
|
|
\begin{document} |
55 |
|
|
|
56 |
gezelter |
4417 |
\title{Supplemental Material for: Real space electrostatics for |
57 |
|
|
multipoles. III. Dielectric Properties} |
58 |
gezelter |
4399 |
|
59 |
|
|
\author{Madan Lamichhane} |
60 |
|
|
\affiliation{Department of Physics, University |
61 |
|
|
of Notre Dame, Notre Dame, IN 46556} |
62 |
|
|
\author{Thomas Parsons} |
63 |
|
|
\affiliation{Department of Chemistry and Biochemistry, University |
64 |
|
|
of Notre Dame, Notre Dame, IN 46556} |
65 |
|
|
\author{Kathie E. Newman} |
66 |
|
|
\affiliation{Department of Physics, University |
67 |
|
|
of Notre Dame, Notre Dame, IN 46556} |
68 |
|
|
\author{J. Daniel Gezelter} |
69 |
|
|
\email{gezelter@nd.edu.} |
70 |
|
|
\affiliation{Department of Chemistry and Biochemistry, University |
71 |
|
|
of Notre Dame, Notre Dame, IN 46556} |
72 |
|
|
|
73 |
|
|
\date{\today}% It is always \today, today, |
74 |
|
|
% but any date may be explicitly specified |
75 |
|
|
|
76 |
gezelter |
4418 |
\begin{abstract} |
77 |
|
|
This document includes useful relationships for computing the |
78 |
|
|
interactions between fields and field gradients and point multipolar |
79 |
gezelter |
4419 |
representations of molecular electrostatics. We also provide |
80 |
gezelter |
4418 |
explanatory derivations of a number of relationships used in the |
81 |
|
|
main text. This includes the Boltzmann averages of quadrupole |
82 |
gezelter |
4419 |
orientations, and the interaction of a quadrupole density with the |
83 |
gezelter |
4418 |
self-generated field gradient. This last relationship is assumed to |
84 |
gezelter |
4432 |
be zero in the main text but is explicitly shown to be zero here. A |
85 |
|
|
discussion of method-dependent corrections to the distance-dependent |
86 |
|
|
Kirkwood factors is also included. |
87 |
gezelter |
4418 |
\end{abstract} |
88 |
|
|
|
89 |
gezelter |
4399 |
\maketitle |
90 |
|
|
|
91 |
gezelter |
4418 |
\section{Generating Uniform Field Gradients} |
92 |
gezelter |
4419 |
One important task in carrying out the simulations mentioned in the |
93 |
|
|
main text was to generate uniform electric field gradients. To do |
94 |
|
|
this, we relied heavily on both the notation and results from Torres |
95 |
|
|
del Castillo and Mend\'{e}z Garido.\cite{Torres-del-Castillo:2006uo} |
96 |
|
|
In this work, tensors were expressed in Cartesian components, using at |
97 |
|
|
times a dyadic notation. This proves quite useful for computer |
98 |
|
|
simulations that make use of toroidal boundary conditions. |
99 |
gezelter |
4399 |
|
100 |
gezelter |
4417 |
An alternative formalism uses the theory of angular momentum and |
101 |
|
|
spherical harmonics and is common in standard physics texts such as |
102 |
gezelter |
4418 |
Jackson,\cite{Jackson98} Morse and Feshbach,\cite{Morse:1946zr} and |
103 |
|
|
Stone.\cite{Stone:1997ly} Because this approach has its own |
104 |
|
|
advantages, relationships are provided below comparing that |
105 |
|
|
terminology to the Cartesian tensor notation. |
106 |
gezelter |
4404 |
|
107 |
gezelter |
4417 |
The gradient of the electric field, |
108 |
|
|
\begin{equation*} |
109 |
|
|
\mathsf{G}(\mathbf{r}) = -\nabla \nabla \Phi(\mathbf{r}), |
110 |
|
|
\end{equation*} |
111 |
|
|
where $\Phi(\mathbf{r})$ is the electrostatic potential. In a |
112 |
|
|
charge-free region of space, $\nabla \cdot \mathbf{E}=0$, and |
113 |
|
|
$\mathsf{G}$ is a symmetric traceless tensor. From symmetry |
114 |
|
|
arguments, we know that this tensor can be written in terms of just |
115 |
|
|
five independent components. |
116 |
|
|
|
117 |
|
|
Following Torres del Castillo and Mend\'{e}z Garido's notation, the |
118 |
|
|
gradient of the electric field may also be written in terms of two |
119 |
|
|
vectors $\mathbf{a}$ and $\mathbf{b}$, |
120 |
|
|
\begin{equation*} |
121 |
|
|
G_{ij}=\frac{1}{2} (a_i b_j + a_j b_i) - \frac{1}{3}(\mathbf a \cdot \mathbf b) \delta_{ij} . |
122 |
|
|
\end{equation*} |
123 |
|
|
If the vectors $\mathbf{a}$ and $\mathbf{b}$ are unit vectors, the |
124 |
|
|
electrostatic potential that generates a uniform gradient may be |
125 |
|
|
written: |
126 |
|
|
\begin{align} |
127 |
gezelter |
4418 |
\Phi(x, y, z) =\; -\frac{g_o}{2} & \left(\left(a_1b_1 - |
128 |
|
|
\frac{cos\psi}{3}\right)\;x^2+\left(a_2b_2 |
129 |
|
|
- \frac{cos\psi}{3}\right)\;y^2 + |
130 |
|
|
\left(a_3b_3 - |
131 |
|
|
\frac{cos\psi}{3}\right)\;z^2 \right. \nonumber \\ |
132 |
|
|
& + (a_1b_2 + a_2b_1)\; xy + (a_1b_3 + a_3b_1)\; xz + (a_2b_3 + a_3b_2)\; yz \bigg) . |
133 |
gezelter |
4417 |
\label{eq:appliedPotential} |
134 |
|
|
\end{align} |
135 |
|
|
Note $\mathbf{a}\cdot\mathbf{a} = \mathbf{b} \cdot \mathbf{b} = 1$, |
136 |
|
|
$\mathbf{a} \cdot \mathbf{b}=\cos \psi$, and $g_0$ is the overall |
137 |
gezelter |
4418 |
strength of the potential. |
138 |
gezelter |
4417 |
|
139 |
gezelter |
4418 |
Taking the gradient of Eq. (\ref{eq:appliedPotential}), we find the |
140 |
|
|
field due to this potential, |
141 |
|
|
\begin{equation} |
142 |
|
|
\mathbf{E} = -\nabla \Phi |
143 |
|
|
=\frac{g_o}{2} \left(\begin{array}{ccc} |
144 |
|
|
2(a_1 b_1 - \frac{cos\psi}{3})\; x & +\; (a_1 b_2 + a_2 b_1)\; y & +\; (a_1 b_3 + a_3 b_1)\; z \\ |
145 |
|
|
(a_2 b_1 + a_1 b_2)\; x & +\; 2(a_2 b_2 - \frac{cos\psi}{3})\; y & +\; (a_2 b_3 + a_3 b_3)\; z \\ |
146 |
|
|
(a_3 b_1 + a_3 b_2)\; x & +\; (a_3 b_2 + a_2 b_3)\; y & +\; 2(a_3 b_3 - \frac{cos\psi}{3})\; z |
147 |
|
|
\end{array} \right), |
148 |
|
|
\label{eq:CE} |
149 |
|
|
\end{equation} |
150 |
|
|
while the gradient of the electric field in this form, |
151 |
|
|
\begin{equation} |
152 |
|
|
\mathsf{G} = \nabla\mathbf{E} |
153 |
|
|
= \frac{g_o}{2}\left(\begin{array}{ccc} |
154 |
|
|
2(a_1\; b_1 - \frac{cos\psi}{3}) & (a_1\; b_2 \;+ a_2\; b_1) & (a_1\; b_3 \;+ a_3\; b_1) \\ |
155 |
|
|
(a_2\; b_1 \;+ a_1\; b_2) & 2(a_2\; b_2 \;- \frac{cos\psi}{3}) & (a_2\; b_3 \;+ a_3\; b_3) \\ |
156 |
|
|
(a_3\; b_1 \;+ a_3\; b_2) & (a_3\; b_2 \;+ a_2\; b_3) & 2(a_3\; b_3 \;- \frac{cos\psi}{3}) |
157 |
|
|
\end{array} \right), |
158 |
|
|
\label{eq:GC} |
159 |
|
|
\end{equation} |
160 |
|
|
is uniform over the entire space. Therefore, to describe a uniform |
161 |
|
|
gradient in this notation, two unit vectors ($\mathbf{a}$ and |
162 |
|
|
$\mathbf{b}$) as well as a potential strength, $g_0$, must be |
163 |
|
|
specified. As expected, this requires five independent parameters. |
164 |
|
|
|
165 |
|
|
The common alternative to the Cartesian notation expresses the |
166 |
|
|
electrostatic potential using the notation of Morse and |
167 |
|
|
Feshbach,\cite{Morse:1946zr} |
168 |
gezelter |
4417 |
\begin{equation} \label{eq:quad_phi} |
169 |
gezelter |
4418 |
\Phi(x,y,z) = -\left[ a_{20} \frac{2 z^2 -x^2 - y^2}{2} |
170 |
gezelter |
4417 |
+ 3 a_{21}^e \,xz + 3 a_{21}^o \,yz |
171 |
gezelter |
4418 |
+ 6a_{22}^e \,xy + 3 a_{22}^o (x^2 - y^2) \right]. |
172 |
gezelter |
4417 |
\end{equation} |
173 |
|
|
Here we use the standard $(l,m)$ form for the $a_{lm}$ coefficients, |
174 |
|
|
with superscript $e$ and $o$ denoting even and odd, respectively. |
175 |
|
|
This form makes the functional analogy to ``d'' atomic states |
176 |
gezelter |
4418 |
apparent. |
177 |
|
|
|
178 |
|
|
Applying the gradient operator to Eq. (\ref{eq:quad_phi}) the electric |
179 |
|
|
field due to this potential, |
180 |
|
|
\begin{equation} |
181 |
|
|
\mathbf{E} = -\nabla \Phi |
182 |
|
|
= \left(\begin{array}{ccc} |
183 |
|
|
\left( 6a_{22}^o -a_{20} \right)\; x &+\; 6a_{22}^e\; y &+\; 3a_{21}^e\; z \\ |
184 |
|
|
6a_{22}^e\; x & -\; (a_{20} + 6a_{22}^o)\; y & +\; 3a_{21}^o\; z \\ |
185 |
|
|
3a_{21}^e\; x & +\; 3a_{21}^o\; y & +\; 2a_{20}\; z |
186 |
|
|
\end{array} \right), |
187 |
|
|
\label{eq:MFE} |
188 |
|
|
\end{equation} |
189 |
|
|
while the gradient of the electric field in this form is: |
190 |
gezelter |
4417 |
\begin{equation} \label{eq:grad_e2} |
191 |
|
|
\mathsf{G} = |
192 |
|
|
\begin{pmatrix} |
193 |
|
|
6 a_{22}^o - a_{20} & 6a_{22}^e & 3a_{21}^e\\ |
194 |
|
|
6a_{22}^e & -(a_{20}+6a_{22}^o) & 3a_{21}^o \\ |
195 |
|
|
3a_{21}^e & 3a_{21}^o & 2a_{20} \\ |
196 |
|
|
\end{pmatrix} \\ |
197 |
|
|
\end{equation} |
198 |
gezelter |
4418 |
which is also uniform over the entire space. This form for the |
199 |
|
|
gradient can be factored as |
200 |
gezelter |
4417 |
\begin{gather} |
201 |
|
|
\begin{aligned} |
202 |
|
|
\mathsf{G} = a_{20} |
203 |
|
|
\begin{pmatrix} |
204 |
|
|
-1 & 0 & 0\\ |
205 |
|
|
0 & -1 & 0\\ |
206 |
|
|
0 & 0 & 2\\ |
207 |
|
|
\end{pmatrix} |
208 |
|
|
+3a_{21}^e |
209 |
|
|
\begin{pmatrix} |
210 |
|
|
0 & 0 & 1\\ |
211 |
|
|
0 & 0 & 0\\ |
212 |
|
|
1 & 0 & 0\\ |
213 |
|
|
\end{pmatrix} |
214 |
|
|
+3a_{21}^o |
215 |
|
|
\begin{pmatrix} |
216 |
|
|
0 & 0 & 0\\ |
217 |
|
|
0 & 0 & 1\\ |
218 |
|
|
0 & 1 & 0\\ |
219 |
|
|
\end{pmatrix} |
220 |
|
|
+6a_{22}^e |
221 |
|
|
\begin{pmatrix} |
222 |
|
|
0 & 1 & 0\\ |
223 |
|
|
1 & 0 & 0\\ |
224 |
|
|
0 & 0 & 0\\ |
225 |
|
|
\end{pmatrix} |
226 |
|
|
+6a_{22}^o |
227 |
|
|
\begin{pmatrix} |
228 |
|
|
1 & 0 & 0\\ |
229 |
|
|
0 & -1 & 0\\ |
230 |
|
|
0 & 0 & 0\\ |
231 |
gezelter |
4421 |
\end{pmatrix}. |
232 |
gezelter |
4417 |
\end{aligned} |
233 |
|
|
\label{eq:intro_tensors} |
234 |
|
|
\end{gather} |
235 |
|
|
The five matrices in the expression above represent five different |
236 |
gezelter |
4418 |
symmetric traceless tensors of rank 2. |
237 |
gezelter |
4417 |
|
238 |
gezelter |
4418 |
It is useful to find the Cartesian vectors $\mathbf a$ and $\mathbf b$ |
239 |
|
|
that generate the five types of tensors shown in |
240 |
|
|
Eq. (\ref{eq:intro_tensors}). If the two vectors are co-linear, e.g., |
241 |
|
|
$\psi=0$, $\mathbf{a}=(0,0,1)$ and $\mathbf{b}=(0,0,1)$, then |
242 |
gezelter |
4417 |
\begin{equation*} |
243 |
|
|
\mathsf{G} = \frac{g_0}{3} |
244 |
|
|
\begin{pmatrix} |
245 |
|
|
-1 & 0 & 0 \\ |
246 |
|
|
0 & -1 & 0 \\ |
247 |
|
|
0 & 0 & 2 \\ |
248 |
|
|
\end{pmatrix} , |
249 |
|
|
\end{equation*} |
250 |
|
|
which is the $a_{20}$ symmetry. |
251 |
|
|
To generate the $a_{22}^o$ symmetry, we take: |
252 |
|
|
$\mathbf{a}= (\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}},0)$ and |
253 |
|
|
$\mathbf{b}=(\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}},0)$ |
254 |
|
|
and find: |
255 |
|
|
\begin{equation*} |
256 |
|
|
\mathsf{G}=\frac{g_0}{2} |
257 |
|
|
\begin{pmatrix} |
258 |
|
|
1 & 0 & 0 \\ |
259 |
|
|
0 & -1 & 0 \\ |
260 |
|
|
0 & 0 & 0 \\ |
261 |
|
|
\end{pmatrix} . |
262 |
|
|
\end{equation*} |
263 |
|
|
To generate the $a_{22}^e$ symmetry, we take: |
264 |
|
|
$\mathbf{a}= (1, 0, 0)$ and $\mathbf{b} = (0,1,0)$ and find: |
265 |
|
|
\begin{equation*} |
266 |
|
|
\mathsf{G}=\frac{g_0}{2} |
267 |
|
|
\begin{pmatrix} |
268 |
|
|
0 & 1 & 0 \\ |
269 |
|
|
1 & 0 & 0 \\ |
270 |
|
|
0 & 0 & 0 \\ |
271 |
|
|
\end{pmatrix} . |
272 |
|
|
\end{equation*} |
273 |
|
|
The pattern is straightforward to continue for the other symmetries. |
274 |
|
|
|
275 |
|
|
We find the notation of Ref. \onlinecite{Torres-del-Castillo:2006uo} |
276 |
gezelter |
4418 |
helpful when creating specific types of constant gradient electric |
277 |
|
|
fields in simulations. For this reason, |
278 |
gezelter |
4421 |
Eqs. (\ref{eq:appliedPotential}), (\ref{eq:CE}), and (\ref{eq:GC}) are |
279 |
gezelter |
4418 |
implemented in our code. In the simulations using constant applied |
280 |
|
|
gradients that are mentioned in the main text, we utilized a field |
281 |
|
|
with the $a_{22}^e$ symmetry using vectors, $\mathbf{a}= (1, 0, 0)$ |
282 |
|
|
and $\mathbf{b} = (0,1,0)$. |
283 |
gezelter |
4417 |
|
284 |
|
|
\section{Point-multipolar interactions with a spatially-varying electric field} |
285 |
|
|
|
286 |
|
|
This section develops formulas for the force and torque exerted by an |
287 |
|
|
external electric field, $\mathbf{E}(\mathbf{r})$, on object |
288 |
gezelter |
4421 |
$a$.\cite{Raab:2004ve} Object $a$ has an embedded collection of |
289 |
|
|
charges and in simulations will represent a molecule, ion, or a |
290 |
|
|
coarse-grained substructure. We describe the charge distributions |
291 |
|
|
using primitive multipoles defined in Ref. \onlinecite{PaperI} by |
292 |
gezelter |
4417 |
\begin{align} |
293 |
|
|
C_a =&\sum_{k \, \text{in }a} q_k , \label{eq:charge} \\ |
294 |
|
|
D_{a\alpha} =&\sum_{k \, \text{in }a} q_k r_{k\alpha}, \label{eq:dipole}\\ |
295 |
|
|
Q_{a\alpha\beta} =& \frac{1}{2} \sum_{k \, \text{in } a} q_k |
296 |
|
|
r_{k\alpha} r_{k\beta}, |
297 |
|
|
\label{eq:quadrupole} |
298 |
|
|
\end{align} |
299 |
|
|
where $\mathbf{r}_k$ is the local coordinate system for the object |
300 |
|
|
(usually the center of mass of object $a$). Components of vectors and |
301 |
gezelter |
4418 |
tensors are given using the Einstein repeated summation notation. Note |
302 |
|
|
that the definition of the primitive quadrupole here differs from the |
303 |
|
|
standard traceless form, and contains an additional Taylor-series |
304 |
|
|
based factor of $1/2$. In Ref. \onlinecite{PaperI}, we derived the |
305 |
|
|
forces and torques each object exerts on the other objects in the |
306 |
|
|
system. |
307 |
gezelter |
4417 |
|
308 |
|
|
Here we must also consider an external electric field that varies in |
309 |
|
|
space: $\mathbf E(\mathbf r)$. Each of the local charges $q_k$ in |
310 |
|
|
object $a$ will then experience a slightly different field. This |
311 |
|
|
electric field can be expanded in a Taylor series around the local |
312 |
|
|
origin of each object. For a particular charge $q_k$, the electric |
313 |
|
|
field at that site's position is given by: |
314 |
|
|
\begin{equation} |
315 |
|
|
\mathbf{E}(\mathbf{r}_k) = E_\gamma|_{\mathbf{r}_k = 0} + \nabla_\delta E_\gamma |_{\mathbf{r}_k = 0} r_{k \delta} |
316 |
|
|
+ \frac {1}{2} \nabla_\delta \nabla_\varepsilon E_\gamma|_{\mathbf{r}_k = 0} r_{k \delta} |
317 |
|
|
r_{k \varepsilon} + ... |
318 |
|
|
\end{equation} |
319 |
gezelter |
4418 |
Note that if one shrinks object $a$ to a single point, the |
320 |
|
|
${E}_\gamma$ terms are all evaluated at the center of the object (now |
321 |
|
|
a point). Thus later the ${E}_\gamma$ terms can be written using the |
322 |
|
|
same (molecular) origin for all point charges in the object. The force |
323 |
gezelter |
4421 |
exerted on object $a$ by the electric field is given by, |
324 |
gezelter |
4417 |
\begin{align} |
325 |
gezelter |
4421 |
F^a_\gamma = \sum_{k \textrm{~in~} a} q_k E_\gamma(\mathbf{r}_k) &= \sum_{k \textrm{~in~} a} q_k \lbrace E_\gamma + \nabla_\delta E_\gamma r_{k \delta} |
326 |
gezelter |
4417 |
+ \frac {1}{2} \nabla_\delta \nabla_\varepsilon E_\gamma r_{k \delta} |
327 |
|
|
r_{k \varepsilon} + ... \rbrace \\ |
328 |
|
|
&= C_a E_\gamma + D_{a \delta} \nabla_\delta E_\gamma |
329 |
|
|
+ Q_{a \delta \varepsilon} \nabla_\delta \nabla_\varepsilon E_\gamma + |
330 |
|
|
... |
331 |
|
|
\end{align} |
332 |
gezelter |
4418 |
Thus in terms of the global origin $\mathbf{r}$, ${F}_\gamma(\mathbf{r}) = C {E}_\gamma(\mathbf{r})$ etc. |
333 |
gezelter |
4417 |
|
334 |
|
|
Similarly, the torque exerted by the field on $a$ can be expressed as |
335 |
|
|
\begin{align} |
336 |
|
|
\tau^a_\alpha &= \sum_{k \textrm{~in~} a} (\mathbf r_k \times q_k \mathbf E)_\alpha \\ |
337 |
|
|
& = \sum_{k \textrm{~in~} a} \epsilon_{\alpha \beta \gamma} q_k |
338 |
|
|
r_{k\beta} E_\gamma(\mathbf r_k) \\ |
339 |
|
|
& = \epsilon_{\alpha \beta \gamma} D_\beta E_\gamma |
340 |
|
|
+ 2 \epsilon_{\alpha \beta \gamma} Q_{\beta \delta} \nabla_\delta |
341 |
|
|
E_\gamma + ... |
342 |
|
|
\end{align} |
343 |
|
|
We note that the Levi-Civita symbol can be eliminated by utilizing the matrix cross product as defined in Ref. \onlinecite{Smith98}: |
344 |
|
|
\begin{equation} |
345 |
|
|
\left[\mathsf{A} \times \mathsf{B}\right]_\alpha = \sum_\beta |
346 |
|
|
\left[\mathsf{A}_{\alpha+1,\beta} \mathsf{B}_{\alpha+2,\beta} |
347 |
|
|
-\mathsf{A}_{\alpha+2,\beta} \mathsf{B}_{\alpha+1,\beta} |
348 |
|
|
\right] |
349 |
|
|
\label{eq:matrixCross} |
350 |
|
|
\end{equation} |
351 |
|
|
where $\alpha+1$ and $\alpha+2$ are regarded as cyclic permuations of |
352 |
|
|
the matrix indices. Finally, the interaction energy $U^a$ of object $a$ with the external field is given by, |
353 |
|
|
\begin{equation} |
354 |
|
|
U^a = \sum_{k~in~a} q_k \phi_k (\mathrm{r}_k) |
355 |
|
|
\end{equation} |
356 |
|
|
Performing another Taylor series expansion about the local body origin, |
357 |
|
|
\begin{equation} |
358 |
|
|
\phi({\mathbf{r}_k}) = \phi|_{\mathbf{r}_k = 0 } + r_{k \alpha} \nabla_\alpha \phi_\alpha|_{\mathbf{r}_k = 0 } + \frac{1}{2} r_{k\alpha}r_{k\beta}\nabla_\alpha \nabla_\beta \phi|_{\mathbf{r}_k = 0} + ... |
359 |
|
|
\end{equation} |
360 |
gezelter |
4421 |
Writing this in terms of the global origin $\mathbf{r}$, we find |
361 |
gezelter |
4417 |
\begin{equation} |
362 |
|
|
U(\mathbf{r}) = \mathrm{C} \phi(\mathbf{r}) - \mathrm{D}_\alpha \mathrm{E}_\alpha - \mathrm{Q}_{\alpha\beta}\nabla_\alpha \mathrm{E}_\beta + ... |
363 |
|
|
\end{equation} |
364 |
gezelter |
4418 |
These results have been summarized in Table \ref{tab:UFT}. |
365 |
gezelter |
4417 |
|
366 |
|
|
\begin{table} |
367 |
|
|
\caption{Potential energy $(U)$, force $(\mathbf{F})$, and torque |
368 |
gezelter |
4418 |
$(\mathbf{\tau})$ expressions for a multipolar site at $\mathbf{r}$ in an |
369 |
|
|
electric field, $\mathbf{E}(\mathbf{r})$ using the definitions of the multipoles in Eqs. (\ref{eq:charge}), (\ref{eq:dipole}) and (\ref{eq:quadrupole}). |
370 |
|
|
\label{tab:UFT}} |
371 |
|
|
\begin{tabular}{r|C{3cm}C{3cm}C{3cm}} |
372 |
gezelter |
4417 |
& Charge & Dipole & Quadrupole \\ \hline |
373 |
|
|
$U(\mathbf{r})$ & $C \phi(\mathbf{r})$ & $-\mathbf{D} \cdot \mathbf{E}(\mathbf{r})$ & $- \mathsf{Q}:\nabla \mathbf{E}(\mathbf{r})$ \\ |
374 |
|
|
$\mathbf{F}(\mathbf{r})$ & $C \mathbf{E}(\mathbf{r})$ & $\mathbf{D} \cdot \nabla \mathbf{E}(\mathbf{r})$ & $\mathsf{Q} : \nabla\nabla\mathbf{E}(\mathbf{r})$ \\ |
375 |
|
|
$\mathbf{\tau}(\mathbf{r})$ & & $\mathbf{D} \times \mathbf{E}(\mathbf{r})$ & $2 \mathsf{Q} \times \nabla \mathbf{E}(\mathbf{r})$ |
376 |
|
|
\end{tabular} |
377 |
|
|
\end{table} |
378 |
|
|
|
379 |
gezelter |
4399 |
\section{Boltzmann averages for orientational polarization} |
380 |
gezelter |
4419 |
If we consider a collection of molecules in the presence of external |
381 |
|
|
field, the perturbation experienced by any one molecule will include |
382 |
|
|
contributions to the field or field gradient produced by the all other |
383 |
|
|
molecules in the system. In subsections |
384 |
gezelter |
4399 |
\ref{subsec:boltzAverage-Dipole} and \ref{subsec:boltzAverage-Quad}, |
385 |
gezelter |
4419 |
we discuss the molecular polarization due solely to external field |
386 |
|
|
perturbations. This illustrates the origins of the polarizability |
387 |
|
|
equations (Eqs. 6, 20, and 21) in the main text. |
388 |
gezelter |
4399 |
|
389 |
|
|
\subsection{Dipoles} |
390 |
|
|
\label{subsec:boltzAverage-Dipole} |
391 |
|
|
Consider a system of molecules, each with permanent dipole moment |
392 |
gezelter |
4419 |
$p_o$. In the absense of an external field, thermal agitation orients |
393 |
|
|
the dipoles randomly, and the system moment, $\mathbf{P}$, is zero. |
394 |
|
|
External fields will line up the dipoles in the direction of applied |
395 |
|
|
field. Here we consider the net field from all other molecules to be |
396 |
|
|
zero. Therefore the total Hamiltonian acting on each molecule |
397 |
|
|
is,\cite{Jackson98} |
398 |
gezelter |
4399 |
\begin{equation} |
399 |
gezelter |
4419 |
H = H_o - \mathbf{p}_o \cdot \mathbf{E}, |
400 |
gezelter |
4399 |
\end{equation} |
401 |
|
|
where $H_o$ is a function of the internal coordinates of the molecule. |
402 |
gezelter |
4419 |
The Boltzmann average of the dipole moment in the direction of the |
403 |
|
|
field is given by, |
404 |
gezelter |
4399 |
\begin{equation} |
405 |
gezelter |
4419 |
\langle p_{mol} \rangle = \frac{\displaystyle\int p_o \cos\theta |
406 |
|
|
e^{~p_o E \cos\theta /k_B T}\; d\Omega}{\displaystyle\int e^{~p_o E \cos\theta/k_B |
407 |
|
|
T}\; d\Omega}, |
408 |
gezelter |
4399 |
\end{equation} |
409 |
gezelter |
4419 |
where the $z$-axis is taken in the direction of the applied field, |
410 |
|
|
$\bf{E}$ and |
411 |
|
|
$\int d\Omega = \int_0^\pi \sin\theta\; d\theta \int_0^{2\pi} d\phi |
412 |
|
|
\int_0^{2\pi} d\psi$ |
413 |
|
|
is an integration over Euler angles describing the orientation of the |
414 |
|
|
molecule. |
415 |
|
|
|
416 |
|
|
If the external fields are small, \textit{i.e.} |
417 |
|
|
$p_oE \cos\theta / k_B T << 1$, |
418 |
gezelter |
4399 |
\begin{equation} |
419 |
gezelter |
4419 |
\langle p_{mol} \rangle \approx \frac{{p_o}^2}{3 k_B T}E, |
420 |
gezelter |
4399 |
\end{equation} |
421 |
gezelter |
4419 |
where $ \alpha_p = \frac{{p_o}^2}{3 k_B T}$ is the molecular |
422 |
gezelter |
4399 |
polarizability. The orientational polarization depends inversely on |
423 |
gezelter |
4419 |
the temperature as the applied field must overcome thermal agitation |
424 |
|
|
to orient the dipoles. |
425 |
gezelter |
4399 |
|
426 |
|
|
\subsection{Quadrupoles} |
427 |
|
|
\label{subsec:boltzAverage-Quad} |
428 |
gezelter |
4419 |
If instead, our system consists of molecules with permanent |
429 |
|
|
\textit{quadrupole} tensor $q_{\alpha\beta}$. The average quadrupole |
430 |
|
|
at temperature $T$ in the presence of uniform applied field gradient |
431 |
|
|
is given by,\cite{AduGyamfi78, AduGyamfi81} |
432 |
gezelter |
4399 |
\begin{equation} |
433 |
gezelter |
4419 |
\langle q_{\alpha\beta} \rangle \;=\; \frac{\displaystyle\int |
434 |
|
|
q_{\alpha\beta}\; e^{-H/k_B T}\; d\Omega}{\displaystyle\int |
435 |
|
|
e^{-H/k_B T}\; d\Omega} \;=\; \frac{\displaystyle\int |
436 |
|
|
q_{\alpha\beta}\; e^{~q_{\mu\nu}\;\partial_\nu E_\mu /k_B T}\; |
437 |
|
|
d\Omega}{\displaystyle\int e^{~q_{\mu\nu}\;\partial_\nu E_\mu /k_B |
438 |
|
|
T}\; d\Omega }, |
439 |
gezelter |
4399 |
\label{boltzQuad} |
440 |
|
|
\end{equation} |
441 |
gezelter |
4419 |
where $H = H_o - q_{\mu\nu}\;\partial_\nu E_\mu $ is the energy of a |
442 |
|
|
quadrupole in the gradient of the applied field and $H_o$ is a |
443 |
|
|
function of internal coordinates of the molecule. The energy and |
444 |
|
|
quadrupole moment can be transformed into the body frame using a |
445 |
|
|
rotation matrix $\mathsf{\eta}^{-1}$, |
446 |
|
|
\begin{align} |
447 |
|
|
q_{\alpha\beta} &= \eta_{\alpha\alpha'}\;\eta_{\beta\beta'}\;{q}^* _{\alpha'\beta'} \\ |
448 |
|
|
H &= H_o - q:{\nabla}\mathbf{E} \\ |
449 |
|
|
&= H_o - q_{\mu\nu}\;\partial_\nu E_\mu \\ |
450 |
|
|
&= H_o |
451 |
|
|
-\eta_{\mu\mu'}\;\eta_{\nu\nu'}\;{q}^*_{\mu'\nu'}\;\partial_\nu |
452 |
|
|
E_\mu. \label{energyQuad} |
453 |
|
|
\end{align} |
454 |
gezelter |
4399 |
Here the starred tensors are the components in the body fixed |
455 |
gezelter |
4419 |
frame. Substituting equation (\ref{energyQuad}) in the equation |
456 |
|
|
(\ref{boltzQuad}) and taking linear terms in the expansion we obtain, |
457 |
gezelter |
4399 |
\begin{equation} |
458 |
gezelter |
4419 |
\braket{q_{\alpha\beta}} = \frac{\displaystyle \int q_{\alpha\beta} \left(1 + |
459 |
|
|
\frac{\eta_{\mu\mu'}\;\eta_{\nu\nu'}\;{q}^*_{\mu'\nu'}\;\partial_\nu |
460 |
|
|
E_\mu }{k_B T}\right)\; d\Omega}{\displaystyle \int \left(1 + \frac{\eta_{\mu\mu'}\;\eta_{\nu\nu'}\;{q}^*_{\mu'\nu'}\;\partial_\nu E_\mu }{k_B T}\right)\; d\Omega}. |
461 |
gezelter |
4399 |
\end{equation} |
462 |
gezelter |
4419 |
Recall that $\eta_{\alpha\alpha'}$ is the inverse of the rotation |
463 |
gezelter |
4421 |
matrix that transforms the body fixed coordinates to the space |
464 |
|
|
coordinates. |
465 |
gezelter |
4418 |
% \[\eta_{\alpha\alpha'} |
466 |
|
|
% = \left(\begin{array}{ccc} |
467 |
|
|
% cos\phi\; cos\psi - cos\theta\; sin\phi\; sin\psi & -cos\theta\; cos\psi\; sin\phi - cos\phi\; sin\psi & sin\theta\; sin\phi \\ |
468 |
|
|
% cos\psi\; sin\phi + cos\theta\; cos\phi \; sin\psi & cos\theta\; cos\phi\; cos\psi - sin\phi\; sin\psi & -cos\phi\; sin\theta \\ |
469 |
|
|
% sin\theta\; sin\psi & -cos\psi\; sin\theta & cos\theta |
470 |
|
|
% \end{array} \right).\] |
471 |
|
|
|
472 |
gezelter |
4419 |
Integration of the first and second terms in the denominator gives |
473 |
|
|
$8 \pi^2$ and |
474 |
|
|
$8 \pi^2 ({\nabla} \cdot \mathbf{E}) \mathrm{Tr}(q^*) / 3 $ |
475 |
|
|
respectively. The second term vanishes for charge free space (where |
476 |
|
|
${\nabla} \cdot \mathbf{E}=0$). Similarly, integration of the first |
477 |
|
|
term in the numerator produces |
478 |
|
|
$8 \pi^2 \delta_{\alpha\beta} \mathrm{Tr}(q^*) / 3$ while the second |
479 |
|
|
produces |
480 |
|
|
$8 \pi^2 (3{q}^*_{\alpha'\beta'}{q}^*_{\beta'\alpha'} - |
481 |
|
|
{q}^*_{\alpha'\alpha'}{q}^*_{\beta'\beta'})\partial_\alpha E_\beta / |
482 |
|
|
15 k_B T $. |
483 |
|
|
Therefore the Boltzmann average of a quadrupole moment can be written |
484 |
|
|
as, |
485 |
gezelter |
4399 |
\begin{equation} |
486 |
gezelter |
4419 |
\langle q_{\alpha\beta} \rangle = \frac{1}{3} \mathrm{Tr}(q^*)\;\delta_{\alpha\beta} + \frac{{\bar{q_o}}^2}{15k_BT}\;\partial_\alpha E_\beta, |
487 |
gezelter |
4399 |
\end{equation} |
488 |
gezelter |
4419 |
where $\alpha_q = \frac{{\bar{q_o}}^2}{15k_BT} $ is a molecular |
489 |
|
|
quadrupole polarizablity and |
490 |
|
|
${\bar{q_o}}^2= |
491 |
|
|
3{q}^*_{\alpha'\beta'}{q}^*_{\beta'\alpha'}-{q}^*_{\alpha'\alpha'}{q}^*_{\beta'\beta'}$ |
492 |
|
|
is the square of the net quadrupole moment of a molecule. |
493 |
gezelter |
4399 |
|
494 |
gezelter |
4404 |
\section{Gradient of the field due to quadrupolar polarization} |
495 |
|
|
\label{singularQuad} |
496 |
gezelter |
4419 |
In section IV.C of the main text, we stated that for quadrupolar |
497 |
|
|
fluids, the self-contribution to the field gradient vanishes at the |
498 |
|
|
singularity. In this section, we prove this statement. For this |
499 |
|
|
purpose, we consider a distribution of charge $\rho(\mathbf{r})$ which |
500 |
|
|
gives rise to an electric field $\mathbf{E}(\mathbf{r})$ and gradient |
501 |
|
|
of the field $\nabla\mathbf{E}(\mathbf{r})$ throughout space. The |
502 |
|
|
gradient of the electric field over volume due to the charges within |
503 |
|
|
the sphere of radius $R$ is given by (cf. Ref. \onlinecite{Jackson98}, |
504 |
|
|
equation 4.14): |
505 |
gezelter |
4404 |
\begin{equation} |
506 |
gezelter |
4419 |
\int_{r<R} \nabla\mathbf{E} d\mathbf{r} = -\int_{r=R} R^2 \mathbf{E}\;\hat{n}\; d\Omega |
507 |
gezelter |
4404 |
\label{eq:8} |
508 |
|
|
\end{equation} |
509 |
|
|
where $d\Omega$ is the solid angle and $\hat{n}$ is the normal vector |
510 |
mlamichh |
4409 |
of the surface of the sphere, |
511 |
gezelter |
4404 |
\begin{equation} |
512 |
gezelter |
4419 |
\hat{n} = \sin\theta\cos\phi\; \hat{x} + \sin\theta\sin\phi\; \hat{y} + |
513 |
|
|
\cos\theta\; \hat{z} |
514 |
|
|
\end{equation} |
515 |
|
|
in spherical coordinates. For the charge density $\rho(\mathbf{r}')$, the |
516 |
|
|
total gradient of the electric field can be written as,\cite{Jackson98} |
517 |
|
|
\begin{equation} |
518 |
gezelter |
4421 |
\int_{r<R} {\nabla}\mathbf {E}\; d\mathbf{r}=-\int_{r=R} R^2\; |
519 |
|
|
{\nabla}\Phi\; \hat{n}\; d\Omega |
520 |
|
|
=-\frac{1}{4\pi\;\epsilon_o}\int_{r=R} R^2\; {\nabla}\;\left(\int |
521 |
|
|
\frac{\rho(\mathbf |
522 |
|
|
r')}{|\mathbf{r}-\mathbf{r}'|}\;d\mathbf{r}'\right) \hat{n}\; |
523 |
|
|
d\Omega . |
524 |
gezelter |
4404 |
\label{eq:9} |
525 |
|
|
\end{equation} |
526 |
|
|
The radial function in the equation (\ref{eq:9}) can be expressed in |
527 |
mlamichh |
4409 |
terms of spherical harmonics as,\cite{Jackson98} |
528 |
gezelter |
4404 |
\begin{equation} |
529 |
mlamichh |
4409 |
\frac{1}{|\mathbf{r} - \mathbf{r}'|} = 4\pi \sum_{l=0}^{\infty}\sum_{m=-l}^{m=l}\frac{1}{2l+1}\;\frac{{r^l_<}}{{r^{l+1}_>}}\;{Y^*}_{lm}(\theta', \phi')\;Y_{lm}(\theta, \phi) |
530 |
gezelter |
4404 |
\label{eq:10} |
531 |
|
|
\end{equation} |
532 |
|
|
If the sphere completely encloses the charge density then $ r_< = r'$ and $r_> = R$. Substituting equation (\ref{eq:10}) into (\ref{eq:9}) we get, |
533 |
|
|
\begin{equation} |
534 |
|
|
\begin{split} |
535 |
gezelter |
4419 |
\int_{r<R} {\nabla}\mathbf{E}\;d\mathbf{r} &=-\frac{R^2}{\epsilon_o}\int_{r=R} \; {\nabla}\;\left(\int \rho(\mathbf r')\sum_{l=0}^{\infty}\sum_{m=-l}^{m=l}\frac{1}{2l+1}\;\frac{{r'^l}}{{R^{l+1}}}\;{Y^*}_{lm}(\theta', \phi')\;Y_{lm}(\theta, \phi)\;d\mathbf{r}'\right) \hat{n}\; d\Omega \\ |
536 |
|
|
&= -\frac{R^2}{\epsilon_o}\sum_{l=0}^{\infty}\sum_{m=-l}^{m=l}\frac{1}{2l+1}\;\int \rho(\mathbf r')\;{r'^l}\;{Y^*}_{lm}(\theta', \phi')\left(\int_{r=R}\vec{\nabla}\left({R^{-(l+1)}}\;Y_{lm}(\theta, \phi)\right)\hat{n}\; d\Omega \right)d\mathbf{r} |
537 |
gezelter |
4421 |
' . |
538 |
gezelter |
4404 |
\end{split} |
539 |
|
|
\label{eq:11} |
540 |
|
|
\end{equation} |
541 |
|
|
The gradient of the product of radial function and spherical harmonics |
542 |
mlamichh |
4409 |
is given by:\cite{Arfkan} |
543 |
gezelter |
4404 |
\begin{equation} |
544 |
|
|
\begin{split} |
545 |
mlamichh |
4409 |
{\nabla}\left[ f(r)\;Y_{lm}(\theta, \phi)\right] = &-\left(\frac{l+1}{2l+1}\right)^{1/2}\; \left[\frac{\partial}{\partial r}-\frac{l}{r} \right]f(r)\; Y_{l, l+1, m}(\theta, \phi)\\ &+ \left(\frac{l}{2l+1}\right)^{1/2}\left[\frac |
546 |
gezelter |
4404 |
{\partial}{\partial r}+\frac{l}{r} \right]f(r)\; Y_{l, l-1, m}(\theta, \phi). |
547 |
|
|
\end{split} |
548 |
|
|
\label{eq:12} |
549 |
|
|
\end{equation} |
550 |
gezelter |
4419 |
where $Y_{l,l+1,m}(\theta, \phi)$ is a vector spherical |
551 |
|
|
harmonic.\cite{Arfkan} Using equation (\ref{eq:12}) we get, |
552 |
gezelter |
4404 |
\begin{equation} |
553 |
mlamichh |
4409 |
{\nabla}\left({R^{-(l+1)}}\;Y_{lm}(\theta, \phi)\right) = [(l+1)(2l+1)]^{1/2}\; Y_{l,l+1,m}(\theta, \phi) \; \frac{1}{R^{l+2}}, |
554 |
gezelter |
4404 |
\label{eq:13} |
555 |
|
|
\end{equation} |
556 |
gezelter |
4419 |
Using Clebsch-Gordan coefficients $C(l+1,1,l|m_1,m_2,m)$, the vector |
557 |
|
|
spherical harmonics can be written in terms of spherical harmonics, |
558 |
gezelter |
4404 |
\begin{equation} |
559 |
gezelter |
4419 |
Y_{l,l+1,m}(\theta, \phi) = \sum_{m_1, m_2} C(l+1,1,l|m_1,m_2,m)\; Y_{l+1}^{m_1}(\theta,\phi)\; \hat{e}_{m_2}. |
560 |
gezelter |
4404 |
\label{eq:14} |
561 |
|
|
\end{equation} |
562 |
mlamichh |
4409 |
Here $\hat{e}_{m_2}$ is a spherical tensor of rank 1 which can be expressed |
563 |
gezelter |
4404 |
in terms of Cartesian coordinates, |
564 |
|
|
\begin{equation} |
565 |
mlamichh |
4409 |
{\hat{e}}_{+1} = - \frac{\hat{x}+i\hat{y}}{\sqrt{2}},\quad {\hat{e}}_{0} = \hat{z},\quad and \quad {\hat{e}}_{-1} = \frac{\hat{x}-i\hat{y}}{\sqrt{2}}. |
566 |
gezelter |
4404 |
\label{eq:15} |
567 |
|
|
\end{equation} |
568 |
mlamichh |
4409 |
The normal vector $\hat{n} $ is then expressed in terms of spherical tensor of rank 1 as shown in below, |
569 |
gezelter |
4404 |
\begin{equation} |
570 |
gezelter |
4419 |
\hat{n} = \sqrt{\frac{4\pi}{3}}\left(-Y_1^{-1}{\hat{e}}_1 - Y_1^{1}{\hat{e}}_{-1} + Y_1^{0}{\hat{e}}_0 \right). |
571 |
gezelter |
4404 |
\label{eq:16} |
572 |
|
|
\end{equation} |
573 |
|
|
The surface integral of the product of $\hat{n}$ and |
574 |
gezelter |
4419 |
$Y_{l+1}^{m_1}(\theta, \phi)$ gives, |
575 |
gezelter |
4404 |
\begin{equation} |
576 |
|
|
\begin{split} |
577 |
gezelter |
4419 |
\int \hat{n}\;Y_{l+1}^{m_1}\;d\Omega &= \int \sqrt{\frac{4\pi}{3}}\left(-Y_1^{-1}{\hat{e}}_1 -Y_1^{1}{\hat{e}}_{-1} + Y_1^{0}{\hat{e}}_0 \right)\;Y_{l+1}^{m_1}\; d\Omega \\ |
578 |
|
|
&= \int \sqrt{\frac{4\pi}{3}}\left({Y_1^{1}}^* {\hat{e}}_1 +{Y_1^{-1}}^* {\hat{e}}_{-1} + {Y_1^{0}}^* {\hat{e}}_0 \right)\;Y_{l+1}^{m_1}\; d\Omega \\ |
579 |
gezelter |
4404 |
&= \sqrt{\frac{4\pi}{3}}\left({\delta}_{l+1, 1}\;{\delta}_{1, m_1}\;{\hat{e}}_1 + {\delta}_{l+1, 1}\;{\delta}_{-1, m_1}\;{\hat{e}}_{-1}+ {\delta}_{l+1, 1}\;{\delta}_{0, m_1} \;{\hat{e}}_0\right), |
580 |
|
|
\end{split} |
581 |
|
|
\label{eq:17} |
582 |
|
|
\end{equation} |
583 |
gezelter |
4419 |
where $Y_{l}^{-m} = (-1)^m\;{Y_{l}^{m}}^* $ and |
584 |
|
|
$ \int {Y_{l}^{m}}^* Y_{l'}^{m'}\;d\Omega = |
585 |
gezelter |
4404 |
\delta_{ll'}\delta_{mm'} $. |
586 |
|
|
Non-vanishing values of equation \ref{eq:17} require $l = 0$, |
587 |
|
|
therefore the value of $ m = 0 $. Since the values of $ m_1$ are -1, |
588 |
|
|
1, and 0 then $m_2$ takes the values 1, -1, and 0, respectively |
589 |
|
|
provided that $m = m_1 + m_2$. Equation \ref{eq:11} can therefore be |
590 |
|
|
modified, |
591 |
|
|
\begin{equation} |
592 |
|
|
\begin{split} |
593 |
gezelter |
4419 |
\int_{r<R} {\nabla}\mathbf{E}\;d\mathbf{r} = &- \sqrt{\frac{4\pi}{{3}}}\;\frac{1}{\epsilon_o}\int \rho(r')\;{Y^*}_{00}(\theta', \phi')[ C(1, 1, 0|-1,1,0)\;{\hat{e}_{-1}}{\hat{e}_{1}}\\ &+ C(1, 1, 0|-1,1,0)\;{\hat{e}_{1}}{\hat{e}_{-1}}+C( |
594 |
|
|
1, 1, 0|0,0,0)\;{\hat{e}_{0}}{\hat{e}_{0}} ]\; d\mathbf{r}' \\ |
595 |
|
|
&= -\sqrt{\frac{4\pi}{{3}}}\;\frac{1}{\epsilon_o}\int \rho(r')\;d\mathbf{r}'\left({\hat{e}_{-1}}{\hat{e}_{1}}+{\hat{e}_{1}}{\hat{e}_{-1}}-{\hat{e}_{0}}{\hat{e}_{0}}\right)\\ |
596 |
|
|
&= - \sqrt{\frac{4\pi}{{3}}}\;\frac{1}{\epsilon_o}\;C_\mathrm{total}\;\left({\hat{e}_{-1}}{\hat{e}_{1}}+{\hat{e}_{1}}{\hat{e}_{-1}}-{\hat{e}_{0}}{\hat{e}_{0}}\right). |
597 |
gezelter |
4404 |
\end{split} |
598 |
|
|
\label{eq:19} |
599 |
|
|
\end{equation} |
600 |
gezelter |
4419 |
In the last step, the charge density was integrated over the sphere, |
601 |
gezelter |
4421 |
yielding a total charge $C_\mathrm{total}$. Equation (\ref{eq:19}) |
602 |
gezelter |
4419 |
gives the total gradient of the field over a sphere due to the |
603 |
|
|
distribution of the charges. For quadrupolar fluids the total charge |
604 |
|
|
within a sphere is zero, therefore |
605 |
|
|
$ \int_{r<R} {\nabla}\mathbf{E}\;d\mathbf{r} = 0 $. Hence the quadrupolar |
606 |
gezelter |
4404 |
polarization produces zero net gradient of the field inside the |
607 |
|
|
sphere. |
608 |
|
|
|
609 |
gezelter |
4432 |
\section{Corrections to the distance-dependent Kirkwood function} |
610 |
|
|
\label{kirkwood} |
611 |
|
|
In the main text, we provide data on the distance-dependent Kirkwood |
612 |
|
|
function, |
613 |
|
|
\begin{equation} |
614 |
|
|
G_K(r) = \left< \frac{1}{N} \sum_{i} \sum_{\substack{j \\ r_{ij} < r}} |
615 |
|
|
\frac{\mathbf{D}_i \cdot \mathbf{D}_j}{\left| D_i \right| \left| D_j |
616 |
|
|
\right|} \right>, |
617 |
|
|
\label{eq:kirkwood} |
618 |
|
|
\end{equation} |
619 |
|
|
which is a sensitive measure of orientational ordering in dipolar |
620 |
|
|
liquids. We noted in the main text that because the Kirkwood function |
621 |
|
|
is measuring the same bulk dipolar response as the dielectric |
622 |
gezelter |
4434 |
constant, it is possible to apply a correction for the truncation, |
623 |
|
|
force shifting, and damping to arrive at a corrected Kirkwood |
624 |
|
|
function. Starting with Eq. (16) in the main text and recognizing |
625 |
|
|
$\epsilon = 1 + \chi_D$ and $\epsilon_{CB} = 1 + \alpha_D$, we arrive |
626 |
|
|
at a relationship between the (corrected) susceptibility, |
627 |
gezelter |
4432 |
\begin{equation} |
628 |
gezelter |
4434 |
\chi_D = \frac{\alpha_D}{1 + (A-1) \frac{\alpha_D}{3}}. |
629 |
|
|
\label{eq:chiAlpha} |
630 |
|
|
\end{equation} |
631 |
|
|
and the dipole polarizability, which is easily obtained from bulk |
632 |
|
|
simulations, |
633 |
|
|
\begin{equation} |
634 |
|
|
\alpha_D =\frac{\braket{\mathbf{M}^2}-{\braket{\mathbf{M}}}^2}{3 |
635 |
|
|
\epsilon_o V k_B T}. |
636 |
|
|
\end{equation} |
637 |
|
|
In the absence of bulk dipolar ordering, ${\braket{\mathbf{M}}}^2=0$, |
638 |
|
|
and we may recognize the polarizability as a limit of the |
639 |
|
|
distance-dependent Kirkwood function, |
640 |
|
|
\begin{equation} |
641 |
|
|
\alpha_D = \left( \frac{\rho D^2}{3 \epsilon_0 k_B T}\right) \lim_{r->\infty} |
642 |
|
|
G_K(r). |
643 |
|
|
\label{eq:alphaGK} |
644 |
|
|
\end{equation} |
645 |
|
|
Here we have used the number density, $\rho = N/V$ and the molecular |
646 |
|
|
dipole moment, $D$, to connect with Eq. (\ref{eq:kirkwood}). By |
647 |
|
|
analogy, the dipolar susceptibility may be connected with a corrected |
648 |
|
|
(but unknown) version of the Kirkwood function, |
649 |
|
|
\begin{equation} |
650 |
|
|
\chi_D = \left(\frac{\rho D^2}{3 \epsilon_0 k_B T}\right) \lim_{r->\infty} |
651 |
|
|
G_K^c(r). |
652 |
|
|
\label{eq:chiGKc} |
653 |
|
|
\end{equation} |
654 |
|
|
Substituting the corrected and raw Kirkwood expressions, |
655 |
|
|
Eqs. (\ref{eq:chiGKc}) and (\ref{eq:alphaGK}), into |
656 |
|
|
Eq. (\ref{eq:chiAlpha}), and removing the limits, we obtain a |
657 |
|
|
correction formula for the Kirkwood function, |
658 |
|
|
\begin{equation} |
659 |
gezelter |
4432 |
G_K^c(r) = \frac{G_K(r)}{ 1 + (A-1) \frac{\rho D^2 G_K(r)}{9 |
660 |
gezelter |
4434 |
\epsilon_0 k_B T}}. |
661 |
gezelter |
4432 |
\label{eq:kirkwoodCorr} |
662 |
|
|
\end{equation} |
663 |
gezelter |
4434 |
Note that this correction forumla uses the same $A$ parameter from |
664 |
|
|
Table I in the main text. As in case of the dielectric constant, the |
665 |
|
|
Kirkwood correction is similarly sensitive to values of $A$ away from |
666 |
|
|
unity. In Fig.~\ref{fig:kirkwoodCorr} we show the corrected |
667 |
|
|
$G_K^c(r)$ functions for the three real space methods with |
668 |
|
|
$r_c = 3.52 \sigma = 12$~\AA~ and for the Ewald sum (with |
669 |
|
|
$\kappa = 0.3119$~\AA$^{-1}$). |
670 |
gezelter |
4432 |
|
671 |
|
|
\begin{figure} |
672 |
|
|
\includegraphics[width=\linewidth]{kirkwoodCorr.eps} |
673 |
|
|
\caption{Corrected distance-dependent factors of the dipolar system |
674 |
|
|
for the three real space methods at a range of Gaussian damping |
675 |
gezelter |
4434 |
parameters ($\alpha$) with a cutoff |
676 |
|
|
$r_c = 3.52 \sigma = 12$~\AA$^{-1}$.} |
677 |
gezelter |
4432 |
\label{fig:kirkwoodCorr} |
678 |
|
|
\end{figure} |
679 |
|
|
|
680 |
|
|
The correction does help reduce the effect of the ``hole'' in the |
681 |
|
|
underdamped cases, particularly for the GSF method. However, this |
682 |
|
|
comes at the expense of a divergence when $G_K(r) \sim 1$ for the |
683 |
|
|
underdamped SP case. We find it more useful to look at the |
684 |
|
|
uncorrected $G_K(r)$ functions to study orientational correlations, |
685 |
|
|
which is why the uncorrected functions are shown in the main text. |
686 |
|
|
|
687 |
gezelter |
4399 |
\bibliography{dielectric_new} |
688 |
|
|
\end{document} |
689 |
|
|
% |
690 |
|
|
% ****** End of file multipole.tex ****** |