ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/multipole/Dielectric_Supplemental.tex
Revision: 4434
Committed: Mon Aug 1 13:21:53 2016 UTC (9 years, 1 month ago) by gezelter
Content type: application/x-tex
File size: 30898 byte(s)
Log Message:
Latest changes for review 2

File Contents

# User Rev Content
1 mlamichh 4422
2 gezelter 4399 % ****** Start of file aipsamp.tex ******
3     %
4     % This file is part of the AIP files in the AIP distribution for REVTeX 4.
5     % Version 4.1 of REVTeX, October 2009
6     %
7     % Copyright (c) 2009 American Institute of Physics.
8     %
9     % See the AIP README file for restrictions and more information.
10     %
11     % TeX'ing this file requires that you have AMS-LaTeX 2.0 installed
12     % as well as the rest of the prerequisites for REVTeX 4.1
13     %
14     % It also requires running BibTeX. The commands are as follows:
15     %
16     % 1) latex aipsamp
17     % 2) bibtex aipsamp
18     % 3) latex aipsamp
19     % 4) latex aipsamp
20     %
21     % Use this file as a source of example code for your aip document.
22     % Use the file aiptemplate.tex as a template for your document.
23     \documentclass[%
24     aip,jcp,
25     amsmath,amssymb,
26     preprint,%
27     % reprint,%
28     %author-year,%
29     %author-numerical,%
30     jcp]{revtex4-1}
31    
32     \usepackage{graphicx}% Include figure files
33     \usepackage{dcolumn}% Align table columns on decimal point
34     %\usepackage{bm}% bold math
35     \usepackage{times}
36     \usepackage[version=3]{mhchem} % this is a great package for formatting chemical reactions
37     \usepackage{url}
38     \usepackage{rotating}
39 gezelter 4404 \usepackage{braket}
40 gezelter 4418 \usepackage{array}
41     \newcolumntype{L}[1]{>{\raggedright\let\newline\\\arraybackslash\hspace{0pt}}m{#1}}
42     \newcolumntype{C}[1]{>{\centering\let\newline\\\arraybackslash\hspace{0pt}}m{#1}}
43     \newcolumntype{R}[1]{>{\raggedleft\let\newline\\\arraybackslash\hspace{0pt}}m{#1}}
44 gezelter 4399
45 gezelter 4434 \renewcommand{\theequation}{S\arabic{equation}}
46     \renewcommand{\thefigure}{S\arabic{figure}}
47     \renewcommand{\thetable}{S\arabic{table}}
48     \renewcommand{\bibnumfmt}[1]{[S#1]~}
49     \renewcommand{\citenumfont}[1]{S#1}
50 gezelter 4404
51 gezelter 4399 %\usepackage[mathlines]{lineno}% Enable numbering of text and display math
52     %\linenumbers\relax % Commence numbering lines
53    
54     \begin{document}
55    
56 gezelter 4417 \title{Supplemental Material for: Real space electrostatics for
57     multipoles. III. Dielectric Properties}
58 gezelter 4399
59     \author{Madan Lamichhane}
60     \affiliation{Department of Physics, University
61     of Notre Dame, Notre Dame, IN 46556}
62     \author{Thomas Parsons}
63     \affiliation{Department of Chemistry and Biochemistry, University
64     of Notre Dame, Notre Dame, IN 46556}
65     \author{Kathie E. Newman}
66     \affiliation{Department of Physics, University
67     of Notre Dame, Notre Dame, IN 46556}
68     \author{J. Daniel Gezelter}
69     \email{gezelter@nd.edu.}
70     \affiliation{Department of Chemistry and Biochemistry, University
71     of Notre Dame, Notre Dame, IN 46556}
72    
73     \date{\today}% It is always \today, today,
74     % but any date may be explicitly specified
75    
76 gezelter 4418 \begin{abstract}
77     This document includes useful relationships for computing the
78     interactions between fields and field gradients and point multipolar
79 gezelter 4419 representations of molecular electrostatics. We also provide
80 gezelter 4418 explanatory derivations of a number of relationships used in the
81     main text. This includes the Boltzmann averages of quadrupole
82 gezelter 4419 orientations, and the interaction of a quadrupole density with the
83 gezelter 4418 self-generated field gradient. This last relationship is assumed to
84 gezelter 4432 be zero in the main text but is explicitly shown to be zero here. A
85     discussion of method-dependent corrections to the distance-dependent
86     Kirkwood factors is also included.
87 gezelter 4418 \end{abstract}
88    
89 gezelter 4399 \maketitle
90    
91 gezelter 4418 \section{Generating Uniform Field Gradients}
92 gezelter 4419 One important task in carrying out the simulations mentioned in the
93     main text was to generate uniform electric field gradients. To do
94     this, we relied heavily on both the notation and results from Torres
95     del Castillo and Mend\'{e}z Garido.\cite{Torres-del-Castillo:2006uo}
96     In this work, tensors were expressed in Cartesian components, using at
97     times a dyadic notation. This proves quite useful for computer
98     simulations that make use of toroidal boundary conditions.
99 gezelter 4399
100 gezelter 4417 An alternative formalism uses the theory of angular momentum and
101     spherical harmonics and is common in standard physics texts such as
102 gezelter 4418 Jackson,\cite{Jackson98} Morse and Feshbach,\cite{Morse:1946zr} and
103     Stone.\cite{Stone:1997ly} Because this approach has its own
104     advantages, relationships are provided below comparing that
105     terminology to the Cartesian tensor notation.
106 gezelter 4404
107 gezelter 4417 The gradient of the electric field,
108     \begin{equation*}
109     \mathsf{G}(\mathbf{r}) = -\nabla \nabla \Phi(\mathbf{r}),
110     \end{equation*}
111     where $\Phi(\mathbf{r})$ is the electrostatic potential. In a
112     charge-free region of space, $\nabla \cdot \mathbf{E}=0$, and
113     $\mathsf{G}$ is a symmetric traceless tensor. From symmetry
114     arguments, we know that this tensor can be written in terms of just
115     five independent components.
116    
117     Following Torres del Castillo and Mend\'{e}z Garido's notation, the
118     gradient of the electric field may also be written in terms of two
119     vectors $\mathbf{a}$ and $\mathbf{b}$,
120     \begin{equation*}
121     G_{ij}=\frac{1}{2} (a_i b_j + a_j b_i) - \frac{1}{3}(\mathbf a \cdot \mathbf b) \delta_{ij} .
122     \end{equation*}
123     If the vectors $\mathbf{a}$ and $\mathbf{b}$ are unit vectors, the
124     electrostatic potential that generates a uniform gradient may be
125     written:
126     \begin{align}
127 gezelter 4418 \Phi(x, y, z) =\; -\frac{g_o}{2} & \left(\left(a_1b_1 -
128     \frac{cos\psi}{3}\right)\;x^2+\left(a_2b_2
129     - \frac{cos\psi}{3}\right)\;y^2 +
130     \left(a_3b_3 -
131     \frac{cos\psi}{3}\right)\;z^2 \right. \nonumber \\
132     & + (a_1b_2 + a_2b_1)\; xy + (a_1b_3 + a_3b_1)\; xz + (a_2b_3 + a_3b_2)\; yz \bigg) .
133 gezelter 4417 \label{eq:appliedPotential}
134     \end{align}
135     Note $\mathbf{a}\cdot\mathbf{a} = \mathbf{b} \cdot \mathbf{b} = 1$,
136     $\mathbf{a} \cdot \mathbf{b}=\cos \psi$, and $g_0$ is the overall
137 gezelter 4418 strength of the potential.
138 gezelter 4417
139 gezelter 4418 Taking the gradient of Eq. (\ref{eq:appliedPotential}), we find the
140     field due to this potential,
141     \begin{equation}
142     \mathbf{E} = -\nabla \Phi
143     =\frac{g_o}{2} \left(\begin{array}{ccc}
144     2(a_1 b_1 - \frac{cos\psi}{3})\; x & +\; (a_1 b_2 + a_2 b_1)\; y & +\; (a_1 b_3 + a_3 b_1)\; z \\
145     (a_2 b_1 + a_1 b_2)\; x & +\; 2(a_2 b_2 - \frac{cos\psi}{3})\; y & +\; (a_2 b_3 + a_3 b_3)\; z \\
146     (a_3 b_1 + a_3 b_2)\; x & +\; (a_3 b_2 + a_2 b_3)\; y & +\; 2(a_3 b_3 - \frac{cos\psi}{3})\; z
147     \end{array} \right),
148     \label{eq:CE}
149     \end{equation}
150     while the gradient of the electric field in this form,
151     \begin{equation}
152     \mathsf{G} = \nabla\mathbf{E}
153     = \frac{g_o}{2}\left(\begin{array}{ccc}
154     2(a_1\; b_1 - \frac{cos\psi}{3}) & (a_1\; b_2 \;+ a_2\; b_1) & (a_1\; b_3 \;+ a_3\; b_1) \\
155     (a_2\; b_1 \;+ a_1\; b_2) & 2(a_2\; b_2 \;- \frac{cos\psi}{3}) & (a_2\; b_3 \;+ a_3\; b_3) \\
156     (a_3\; b_1 \;+ a_3\; b_2) & (a_3\; b_2 \;+ a_2\; b_3) & 2(a_3\; b_3 \;- \frac{cos\psi}{3})
157     \end{array} \right),
158     \label{eq:GC}
159     \end{equation}
160     is uniform over the entire space. Therefore, to describe a uniform
161     gradient in this notation, two unit vectors ($\mathbf{a}$ and
162     $\mathbf{b}$) as well as a potential strength, $g_0$, must be
163     specified. As expected, this requires five independent parameters.
164    
165     The common alternative to the Cartesian notation expresses the
166     electrostatic potential using the notation of Morse and
167     Feshbach,\cite{Morse:1946zr}
168 gezelter 4417 \begin{equation} \label{eq:quad_phi}
169 gezelter 4418 \Phi(x,y,z) = -\left[ a_{20} \frac{2 z^2 -x^2 - y^2}{2}
170 gezelter 4417 + 3 a_{21}^e \,xz + 3 a_{21}^o \,yz
171 gezelter 4418 + 6a_{22}^e \,xy + 3 a_{22}^o (x^2 - y^2) \right].
172 gezelter 4417 \end{equation}
173     Here we use the standard $(l,m)$ form for the $a_{lm}$ coefficients,
174     with superscript $e$ and $o$ denoting even and odd, respectively.
175     This form makes the functional analogy to ``d'' atomic states
176 gezelter 4418 apparent.
177    
178     Applying the gradient operator to Eq. (\ref{eq:quad_phi}) the electric
179     field due to this potential,
180     \begin{equation}
181     \mathbf{E} = -\nabla \Phi
182     = \left(\begin{array}{ccc}
183     \left( 6a_{22}^o -a_{20} \right)\; x &+\; 6a_{22}^e\; y &+\; 3a_{21}^e\; z \\
184     6a_{22}^e\; x & -\; (a_{20} + 6a_{22}^o)\; y & +\; 3a_{21}^o\; z \\
185     3a_{21}^e\; x & +\; 3a_{21}^o\; y & +\; 2a_{20}\; z
186     \end{array} \right),
187     \label{eq:MFE}
188     \end{equation}
189     while the gradient of the electric field in this form is:
190 gezelter 4417 \begin{equation} \label{eq:grad_e2}
191     \mathsf{G} =
192     \begin{pmatrix}
193     6 a_{22}^o - a_{20} & 6a_{22}^e & 3a_{21}^e\\
194     6a_{22}^e & -(a_{20}+6a_{22}^o) & 3a_{21}^o \\
195     3a_{21}^e & 3a_{21}^o & 2a_{20} \\
196     \end{pmatrix} \\
197     \end{equation}
198 gezelter 4418 which is also uniform over the entire space. This form for the
199     gradient can be factored as
200 gezelter 4417 \begin{gather}
201     \begin{aligned}
202     \mathsf{G} = a_{20}
203     \begin{pmatrix}
204     -1 & 0 & 0\\
205     0 & -1 & 0\\
206     0 & 0 & 2\\
207     \end{pmatrix}
208     +3a_{21}^e
209     \begin{pmatrix}
210     0 & 0 & 1\\
211     0 & 0 & 0\\
212     1 & 0 & 0\\
213     \end{pmatrix}
214     +3a_{21}^o
215     \begin{pmatrix}
216     0 & 0 & 0\\
217     0 & 0 & 1\\
218     0 & 1 & 0\\
219     \end{pmatrix}
220     +6a_{22}^e
221     \begin{pmatrix}
222     0 & 1 & 0\\
223     1 & 0 & 0\\
224     0 & 0 & 0\\
225     \end{pmatrix}
226     +6a_{22}^o
227     \begin{pmatrix}
228     1 & 0 & 0\\
229     0 & -1 & 0\\
230     0 & 0 & 0\\
231 gezelter 4421 \end{pmatrix}.
232 gezelter 4417 \end{aligned}
233     \label{eq:intro_tensors}
234     \end{gather}
235     The five matrices in the expression above represent five different
236 gezelter 4418 symmetric traceless tensors of rank 2.
237 gezelter 4417
238 gezelter 4418 It is useful to find the Cartesian vectors $\mathbf a$ and $\mathbf b$
239     that generate the five types of tensors shown in
240     Eq. (\ref{eq:intro_tensors}). If the two vectors are co-linear, e.g.,
241     $\psi=0$, $\mathbf{a}=(0,0,1)$ and $\mathbf{b}=(0,0,1)$, then
242 gezelter 4417 \begin{equation*}
243     \mathsf{G} = \frac{g_0}{3}
244     \begin{pmatrix}
245     -1 & 0 & 0 \\
246     0 & -1 & 0 \\
247     0 & 0 & 2 \\
248     \end{pmatrix} ,
249     \end{equation*}
250     which is the $a_{20}$ symmetry.
251     To generate the $a_{22}^o$ symmetry, we take:
252     $\mathbf{a}= (\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}},0)$ and
253     $\mathbf{b}=(\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}},0)$
254     and find:
255     \begin{equation*}
256     \mathsf{G}=\frac{g_0}{2}
257     \begin{pmatrix}
258     1 & 0 & 0 \\
259     0 & -1 & 0 \\
260     0 & 0 & 0 \\
261     \end{pmatrix} .
262     \end{equation*}
263     To generate the $a_{22}^e$ symmetry, we take:
264     $\mathbf{a}= (1, 0, 0)$ and $\mathbf{b} = (0,1,0)$ and find:
265     \begin{equation*}
266     \mathsf{G}=\frac{g_0}{2}
267     \begin{pmatrix}
268     0 & 1 & 0 \\
269     1 & 0 & 0 \\
270     0 & 0 & 0 \\
271     \end{pmatrix} .
272     \end{equation*}
273     The pattern is straightforward to continue for the other symmetries.
274    
275     We find the notation of Ref. \onlinecite{Torres-del-Castillo:2006uo}
276 gezelter 4418 helpful when creating specific types of constant gradient electric
277     fields in simulations. For this reason,
278 gezelter 4421 Eqs. (\ref{eq:appliedPotential}), (\ref{eq:CE}), and (\ref{eq:GC}) are
279 gezelter 4418 implemented in our code. In the simulations using constant applied
280     gradients that are mentioned in the main text, we utilized a field
281     with the $a_{22}^e$ symmetry using vectors, $\mathbf{a}= (1, 0, 0)$
282     and $\mathbf{b} = (0,1,0)$.
283 gezelter 4417
284     \section{Point-multipolar interactions with a spatially-varying electric field}
285    
286     This section develops formulas for the force and torque exerted by an
287     external electric field, $\mathbf{E}(\mathbf{r})$, on object
288 gezelter 4421 $a$.\cite{Raab:2004ve} Object $a$ has an embedded collection of
289     charges and in simulations will represent a molecule, ion, or a
290     coarse-grained substructure. We describe the charge distributions
291     using primitive multipoles defined in Ref. \onlinecite{PaperI} by
292 gezelter 4417 \begin{align}
293     C_a =&\sum_{k \, \text{in }a} q_k , \label{eq:charge} \\
294     D_{a\alpha} =&\sum_{k \, \text{in }a} q_k r_{k\alpha}, \label{eq:dipole}\\
295     Q_{a\alpha\beta} =& \frac{1}{2} \sum_{k \, \text{in } a} q_k
296     r_{k\alpha} r_{k\beta},
297     \label{eq:quadrupole}
298     \end{align}
299     where $\mathbf{r}_k$ is the local coordinate system for the object
300     (usually the center of mass of object $a$). Components of vectors and
301 gezelter 4418 tensors are given using the Einstein repeated summation notation. Note
302     that the definition of the primitive quadrupole here differs from the
303     standard traceless form, and contains an additional Taylor-series
304     based factor of $1/2$. In Ref. \onlinecite{PaperI}, we derived the
305     forces and torques each object exerts on the other objects in the
306     system.
307 gezelter 4417
308     Here we must also consider an external electric field that varies in
309     space: $\mathbf E(\mathbf r)$. Each of the local charges $q_k$ in
310     object $a$ will then experience a slightly different field. This
311     electric field can be expanded in a Taylor series around the local
312     origin of each object. For a particular charge $q_k$, the electric
313     field at that site's position is given by:
314     \begin{equation}
315     \mathbf{E}(\mathbf{r}_k) = E_\gamma|_{\mathbf{r}_k = 0} + \nabla_\delta E_\gamma |_{\mathbf{r}_k = 0} r_{k \delta}
316     + \frac {1}{2} \nabla_\delta \nabla_\varepsilon E_\gamma|_{\mathbf{r}_k = 0} r_{k \delta}
317     r_{k \varepsilon} + ...
318     \end{equation}
319 gezelter 4418 Note that if one shrinks object $a$ to a single point, the
320     ${E}_\gamma$ terms are all evaluated at the center of the object (now
321     a point). Thus later the ${E}_\gamma$ terms can be written using the
322     same (molecular) origin for all point charges in the object. The force
323 gezelter 4421 exerted on object $a$ by the electric field is given by,
324 gezelter 4417 \begin{align}
325 gezelter 4421 F^a_\gamma = \sum_{k \textrm{~in~} a} q_k E_\gamma(\mathbf{r}_k) &= \sum_{k \textrm{~in~} a} q_k \lbrace E_\gamma + \nabla_\delta E_\gamma r_{k \delta}
326 gezelter 4417 + \frac {1}{2} \nabla_\delta \nabla_\varepsilon E_\gamma r_{k \delta}
327     r_{k \varepsilon} + ... \rbrace \\
328     &= C_a E_\gamma + D_{a \delta} \nabla_\delta E_\gamma
329     + Q_{a \delta \varepsilon} \nabla_\delta \nabla_\varepsilon E_\gamma +
330     ...
331     \end{align}
332 gezelter 4418 Thus in terms of the global origin $\mathbf{r}$, ${F}_\gamma(\mathbf{r}) = C {E}_\gamma(\mathbf{r})$ etc.
333 gezelter 4417
334     Similarly, the torque exerted by the field on $a$ can be expressed as
335     \begin{align}
336     \tau^a_\alpha &= \sum_{k \textrm{~in~} a} (\mathbf r_k \times q_k \mathbf E)_\alpha \\
337     & = \sum_{k \textrm{~in~} a} \epsilon_{\alpha \beta \gamma} q_k
338     r_{k\beta} E_\gamma(\mathbf r_k) \\
339     & = \epsilon_{\alpha \beta \gamma} D_\beta E_\gamma
340     + 2 \epsilon_{\alpha \beta \gamma} Q_{\beta \delta} \nabla_\delta
341     E_\gamma + ...
342     \end{align}
343     We note that the Levi-Civita symbol can be eliminated by utilizing the matrix cross product as defined in Ref. \onlinecite{Smith98}:
344     \begin{equation}
345     \left[\mathsf{A} \times \mathsf{B}\right]_\alpha = \sum_\beta
346     \left[\mathsf{A}_{\alpha+1,\beta} \mathsf{B}_{\alpha+2,\beta}
347     -\mathsf{A}_{\alpha+2,\beta} \mathsf{B}_{\alpha+1,\beta}
348     \right]
349     \label{eq:matrixCross}
350     \end{equation}
351     where $\alpha+1$ and $\alpha+2$ are regarded as cyclic permuations of
352     the matrix indices. Finally, the interaction energy $U^a$ of object $a$ with the external field is given by,
353     \begin{equation}
354     U^a = \sum_{k~in~a} q_k \phi_k (\mathrm{r}_k)
355     \end{equation}
356     Performing another Taylor series expansion about the local body origin,
357     \begin{equation}
358     \phi({\mathbf{r}_k}) = \phi|_{\mathbf{r}_k = 0 } + r_{k \alpha} \nabla_\alpha \phi_\alpha|_{\mathbf{r}_k = 0 } + \frac{1}{2} r_{k\alpha}r_{k\beta}\nabla_\alpha \nabla_\beta \phi|_{\mathbf{r}_k = 0} + ...
359     \end{equation}
360 gezelter 4421 Writing this in terms of the global origin $\mathbf{r}$, we find
361 gezelter 4417 \begin{equation}
362     U(\mathbf{r}) = \mathrm{C} \phi(\mathbf{r}) - \mathrm{D}_\alpha \mathrm{E}_\alpha - \mathrm{Q}_{\alpha\beta}\nabla_\alpha \mathrm{E}_\beta + ...
363     \end{equation}
364 gezelter 4418 These results have been summarized in Table \ref{tab:UFT}.
365 gezelter 4417
366     \begin{table}
367     \caption{Potential energy $(U)$, force $(\mathbf{F})$, and torque
368 gezelter 4418 $(\mathbf{\tau})$ expressions for a multipolar site at $\mathbf{r}$ in an
369     electric field, $\mathbf{E}(\mathbf{r})$ using the definitions of the multipoles in Eqs. (\ref{eq:charge}), (\ref{eq:dipole}) and (\ref{eq:quadrupole}).
370     \label{tab:UFT}}
371     \begin{tabular}{r|C{3cm}C{3cm}C{3cm}}
372 gezelter 4417 & Charge & Dipole & Quadrupole \\ \hline
373     $U(\mathbf{r})$ & $C \phi(\mathbf{r})$ & $-\mathbf{D} \cdot \mathbf{E}(\mathbf{r})$ & $- \mathsf{Q}:\nabla \mathbf{E}(\mathbf{r})$ \\
374     $\mathbf{F}(\mathbf{r})$ & $C \mathbf{E}(\mathbf{r})$ & $\mathbf{D} \cdot \nabla \mathbf{E}(\mathbf{r})$ & $\mathsf{Q} : \nabla\nabla\mathbf{E}(\mathbf{r})$ \\
375     $\mathbf{\tau}(\mathbf{r})$ & & $\mathbf{D} \times \mathbf{E}(\mathbf{r})$ & $2 \mathsf{Q} \times \nabla \mathbf{E}(\mathbf{r})$
376     \end{tabular}
377     \end{table}
378    
379 gezelter 4399 \section{Boltzmann averages for orientational polarization}
380 gezelter 4419 If we consider a collection of molecules in the presence of external
381     field, the perturbation experienced by any one molecule will include
382     contributions to the field or field gradient produced by the all other
383     molecules in the system. In subsections
384 gezelter 4399 \ref{subsec:boltzAverage-Dipole} and \ref{subsec:boltzAverage-Quad},
385 gezelter 4419 we discuss the molecular polarization due solely to external field
386     perturbations. This illustrates the origins of the polarizability
387     equations (Eqs. 6, 20, and 21) in the main text.
388 gezelter 4399
389     \subsection{Dipoles}
390     \label{subsec:boltzAverage-Dipole}
391     Consider a system of molecules, each with permanent dipole moment
392 gezelter 4419 $p_o$. In the absense of an external field, thermal agitation orients
393     the dipoles randomly, and the system moment, $\mathbf{P}$, is zero.
394     External fields will line up the dipoles in the direction of applied
395     field. Here we consider the net field from all other molecules to be
396     zero. Therefore the total Hamiltonian acting on each molecule
397     is,\cite{Jackson98}
398 gezelter 4399 \begin{equation}
399 gezelter 4419 H = H_o - \mathbf{p}_o \cdot \mathbf{E},
400 gezelter 4399 \end{equation}
401     where $H_o$ is a function of the internal coordinates of the molecule.
402 gezelter 4419 The Boltzmann average of the dipole moment in the direction of the
403     field is given by,
404 gezelter 4399 \begin{equation}
405 gezelter 4419 \langle p_{mol} \rangle = \frac{\displaystyle\int p_o \cos\theta
406     e^{~p_o E \cos\theta /k_B T}\; d\Omega}{\displaystyle\int e^{~p_o E \cos\theta/k_B
407     T}\; d\Omega},
408 gezelter 4399 \end{equation}
409 gezelter 4419 where the $z$-axis is taken in the direction of the applied field,
410     $\bf{E}$ and
411     $\int d\Omega = \int_0^\pi \sin\theta\; d\theta \int_0^{2\pi} d\phi
412     \int_0^{2\pi} d\psi$
413     is an integration over Euler angles describing the orientation of the
414     molecule.
415    
416     If the external fields are small, \textit{i.e.}
417     $p_oE \cos\theta / k_B T << 1$,
418 gezelter 4399 \begin{equation}
419 gezelter 4419 \langle p_{mol} \rangle \approx \frac{{p_o}^2}{3 k_B T}E,
420 gezelter 4399 \end{equation}
421 gezelter 4419 where $ \alpha_p = \frac{{p_o}^2}{3 k_B T}$ is the molecular
422 gezelter 4399 polarizability. The orientational polarization depends inversely on
423 gezelter 4419 the temperature as the applied field must overcome thermal agitation
424     to orient the dipoles.
425 gezelter 4399
426     \subsection{Quadrupoles}
427     \label{subsec:boltzAverage-Quad}
428 gezelter 4419 If instead, our system consists of molecules with permanent
429     \textit{quadrupole} tensor $q_{\alpha\beta}$. The average quadrupole
430     at temperature $T$ in the presence of uniform applied field gradient
431     is given by,\cite{AduGyamfi78, AduGyamfi81}
432 gezelter 4399 \begin{equation}
433 gezelter 4419 \langle q_{\alpha\beta} \rangle \;=\; \frac{\displaystyle\int
434     q_{\alpha\beta}\; e^{-H/k_B T}\; d\Omega}{\displaystyle\int
435     e^{-H/k_B T}\; d\Omega} \;=\; \frac{\displaystyle\int
436     q_{\alpha\beta}\; e^{~q_{\mu\nu}\;\partial_\nu E_\mu /k_B T}\;
437     d\Omega}{\displaystyle\int e^{~q_{\mu\nu}\;\partial_\nu E_\mu /k_B
438     T}\; d\Omega },
439 gezelter 4399 \label{boltzQuad}
440     \end{equation}
441 gezelter 4419 where $H = H_o - q_{\mu\nu}\;\partial_\nu E_\mu $ is the energy of a
442     quadrupole in the gradient of the applied field and $H_o$ is a
443     function of internal coordinates of the molecule. The energy and
444     quadrupole moment can be transformed into the body frame using a
445     rotation matrix $\mathsf{\eta}^{-1}$,
446     \begin{align}
447     q_{\alpha\beta} &= \eta_{\alpha\alpha'}\;\eta_{\beta\beta'}\;{q}^* _{\alpha'\beta'} \\
448     H &= H_o - q:{\nabla}\mathbf{E} \\
449     &= H_o - q_{\mu\nu}\;\partial_\nu E_\mu \\
450     &= H_o
451     -\eta_{\mu\mu'}\;\eta_{\nu\nu'}\;{q}^*_{\mu'\nu'}\;\partial_\nu
452     E_\mu. \label{energyQuad}
453     \end{align}
454 gezelter 4399 Here the starred tensors are the components in the body fixed
455 gezelter 4419 frame. Substituting equation (\ref{energyQuad}) in the equation
456     (\ref{boltzQuad}) and taking linear terms in the expansion we obtain,
457 gezelter 4399 \begin{equation}
458 gezelter 4419 \braket{q_{\alpha\beta}} = \frac{\displaystyle \int q_{\alpha\beta} \left(1 +
459     \frac{\eta_{\mu\mu'}\;\eta_{\nu\nu'}\;{q}^*_{\mu'\nu'}\;\partial_\nu
460     E_\mu }{k_B T}\right)\; d\Omega}{\displaystyle \int \left(1 + \frac{\eta_{\mu\mu'}\;\eta_{\nu\nu'}\;{q}^*_{\mu'\nu'}\;\partial_\nu E_\mu }{k_B T}\right)\; d\Omega}.
461 gezelter 4399 \end{equation}
462 gezelter 4419 Recall that $\eta_{\alpha\alpha'}$ is the inverse of the rotation
463 gezelter 4421 matrix that transforms the body fixed coordinates to the space
464     coordinates.
465 gezelter 4418 % \[\eta_{\alpha\alpha'}
466     % = \left(\begin{array}{ccc}
467     % cos\phi\; cos\psi - cos\theta\; sin\phi\; sin\psi & -cos\theta\; cos\psi\; sin\phi - cos\phi\; sin\psi & sin\theta\; sin\phi \\
468     % cos\psi\; sin\phi + cos\theta\; cos\phi \; sin\psi & cos\theta\; cos\phi\; cos\psi - sin\phi\; sin\psi & -cos\phi\; sin\theta \\
469     % sin\theta\; sin\psi & -cos\psi\; sin\theta & cos\theta
470     % \end{array} \right).\]
471    
472 gezelter 4419 Integration of the first and second terms in the denominator gives
473     $8 \pi^2$ and
474     $8 \pi^2 ({\nabla} \cdot \mathbf{E}) \mathrm{Tr}(q^*) / 3 $
475     respectively. The second term vanishes for charge free space (where
476     ${\nabla} \cdot \mathbf{E}=0$). Similarly, integration of the first
477     term in the numerator produces
478     $8 \pi^2 \delta_{\alpha\beta} \mathrm{Tr}(q^*) / 3$ while the second
479     produces
480     $8 \pi^2 (3{q}^*_{\alpha'\beta'}{q}^*_{\beta'\alpha'} -
481     {q}^*_{\alpha'\alpha'}{q}^*_{\beta'\beta'})\partial_\alpha E_\beta /
482     15 k_B T $.
483     Therefore the Boltzmann average of a quadrupole moment can be written
484     as,
485 gezelter 4399 \begin{equation}
486 gezelter 4419 \langle q_{\alpha\beta} \rangle = \frac{1}{3} \mathrm{Tr}(q^*)\;\delta_{\alpha\beta} + \frac{{\bar{q_o}}^2}{15k_BT}\;\partial_\alpha E_\beta,
487 gezelter 4399 \end{equation}
488 gezelter 4419 where $\alpha_q = \frac{{\bar{q_o}}^2}{15k_BT} $ is a molecular
489     quadrupole polarizablity and
490     ${\bar{q_o}}^2=
491     3{q}^*_{\alpha'\beta'}{q}^*_{\beta'\alpha'}-{q}^*_{\alpha'\alpha'}{q}^*_{\beta'\beta'}$
492     is the square of the net quadrupole moment of a molecule.
493 gezelter 4399
494 gezelter 4404 \section{Gradient of the field due to quadrupolar polarization}
495     \label{singularQuad}
496 gezelter 4419 In section IV.C of the main text, we stated that for quadrupolar
497     fluids, the self-contribution to the field gradient vanishes at the
498     singularity. In this section, we prove this statement. For this
499     purpose, we consider a distribution of charge $\rho(\mathbf{r})$ which
500     gives rise to an electric field $\mathbf{E}(\mathbf{r})$ and gradient
501     of the field $\nabla\mathbf{E}(\mathbf{r})$ throughout space. The
502     gradient of the electric field over volume due to the charges within
503     the sphere of radius $R$ is given by (cf. Ref. \onlinecite{Jackson98},
504     equation 4.14):
505 gezelter 4404 \begin{equation}
506 gezelter 4419 \int_{r<R} \nabla\mathbf{E} d\mathbf{r} = -\int_{r=R} R^2 \mathbf{E}\;\hat{n}\; d\Omega
507 gezelter 4404 \label{eq:8}
508     \end{equation}
509     where $d\Omega$ is the solid angle and $\hat{n}$ is the normal vector
510 mlamichh 4409 of the surface of the sphere,
511 gezelter 4404 \begin{equation}
512 gezelter 4419 \hat{n} = \sin\theta\cos\phi\; \hat{x} + \sin\theta\sin\phi\; \hat{y} +
513     \cos\theta\; \hat{z}
514     \end{equation}
515     in spherical coordinates. For the charge density $\rho(\mathbf{r}')$, the
516     total gradient of the electric field can be written as,\cite{Jackson98}
517     \begin{equation}
518 gezelter 4421 \int_{r<R} {\nabla}\mathbf {E}\; d\mathbf{r}=-\int_{r=R} R^2\;
519     {\nabla}\Phi\; \hat{n}\; d\Omega
520     =-\frac{1}{4\pi\;\epsilon_o}\int_{r=R} R^2\; {\nabla}\;\left(\int
521     \frac{\rho(\mathbf
522     r')}{|\mathbf{r}-\mathbf{r}'|}\;d\mathbf{r}'\right) \hat{n}\;
523     d\Omega .
524 gezelter 4404 \label{eq:9}
525     \end{equation}
526     The radial function in the equation (\ref{eq:9}) can be expressed in
527 mlamichh 4409 terms of spherical harmonics as,\cite{Jackson98}
528 gezelter 4404 \begin{equation}
529 mlamichh 4409 \frac{1}{|\mathbf{r} - \mathbf{r}'|} = 4\pi \sum_{l=0}^{\infty}\sum_{m=-l}^{m=l}\frac{1}{2l+1}\;\frac{{r^l_<}}{{r^{l+1}_>}}\;{Y^*}_{lm}(\theta', \phi')\;Y_{lm}(\theta, \phi)
530 gezelter 4404 \label{eq:10}
531     \end{equation}
532     If the sphere completely encloses the charge density then $ r_< = r'$ and $r_> = R$. Substituting equation (\ref{eq:10}) into (\ref{eq:9}) we get,
533     \begin{equation}
534     \begin{split}
535 gezelter 4419 \int_{r<R} {\nabla}\mathbf{E}\;d\mathbf{r} &=-\frac{R^2}{\epsilon_o}\int_{r=R} \; {\nabla}\;\left(\int \rho(\mathbf r')\sum_{l=0}^{\infty}\sum_{m=-l}^{m=l}\frac{1}{2l+1}\;\frac{{r'^l}}{{R^{l+1}}}\;{Y^*}_{lm}(\theta', \phi')\;Y_{lm}(\theta, \phi)\;d\mathbf{r}'\right) \hat{n}\; d\Omega \\
536     &= -\frac{R^2}{\epsilon_o}\sum_{l=0}^{\infty}\sum_{m=-l}^{m=l}\frac{1}{2l+1}\;\int \rho(\mathbf r')\;{r'^l}\;{Y^*}_{lm}(\theta', \phi')\left(\int_{r=R}\vec{\nabla}\left({R^{-(l+1)}}\;Y_{lm}(\theta, \phi)\right)\hat{n}\; d\Omega \right)d\mathbf{r}
537 gezelter 4421 ' .
538 gezelter 4404 \end{split}
539     \label{eq:11}
540     \end{equation}
541     The gradient of the product of radial function and spherical harmonics
542 mlamichh 4409 is given by:\cite{Arfkan}
543 gezelter 4404 \begin{equation}
544     \begin{split}
545 mlamichh 4409 {\nabla}\left[ f(r)\;Y_{lm}(\theta, \phi)\right] = &-\left(\frac{l+1}{2l+1}\right)^{1/2}\; \left[\frac{\partial}{\partial r}-\frac{l}{r} \right]f(r)\; Y_{l, l+1, m}(\theta, \phi)\\ &+ \left(\frac{l}{2l+1}\right)^{1/2}\left[\frac
546 gezelter 4404 {\partial}{\partial r}+\frac{l}{r} \right]f(r)\; Y_{l, l-1, m}(\theta, \phi).
547     \end{split}
548     \label{eq:12}
549     \end{equation}
550 gezelter 4419 where $Y_{l,l+1,m}(\theta, \phi)$ is a vector spherical
551     harmonic.\cite{Arfkan} Using equation (\ref{eq:12}) we get,
552 gezelter 4404 \begin{equation}
553 mlamichh 4409 {\nabla}\left({R^{-(l+1)}}\;Y_{lm}(\theta, \phi)\right) = [(l+1)(2l+1)]^{1/2}\; Y_{l,l+1,m}(\theta, \phi) \; \frac{1}{R^{l+2}},
554 gezelter 4404 \label{eq:13}
555     \end{equation}
556 gezelter 4419 Using Clebsch-Gordan coefficients $C(l+1,1,l|m_1,m_2,m)$, the vector
557     spherical harmonics can be written in terms of spherical harmonics,
558 gezelter 4404 \begin{equation}
559 gezelter 4419 Y_{l,l+1,m}(\theta, \phi) = \sum_{m_1, m_2} C(l+1,1,l|m_1,m_2,m)\; Y_{l+1}^{m_1}(\theta,\phi)\; \hat{e}_{m_2}.
560 gezelter 4404 \label{eq:14}
561     \end{equation}
562 mlamichh 4409 Here $\hat{e}_{m_2}$ is a spherical tensor of rank 1 which can be expressed
563 gezelter 4404 in terms of Cartesian coordinates,
564     \begin{equation}
565 mlamichh 4409 {\hat{e}}_{+1} = - \frac{\hat{x}+i\hat{y}}{\sqrt{2}},\quad {\hat{e}}_{0} = \hat{z},\quad and \quad {\hat{e}}_{-1} = \frac{\hat{x}-i\hat{y}}{\sqrt{2}}.
566 gezelter 4404 \label{eq:15}
567     \end{equation}
568 mlamichh 4409 The normal vector $\hat{n} $ is then expressed in terms of spherical tensor of rank 1 as shown in below,
569 gezelter 4404 \begin{equation}
570 gezelter 4419 \hat{n} = \sqrt{\frac{4\pi}{3}}\left(-Y_1^{-1}{\hat{e}}_1 - Y_1^{1}{\hat{e}}_{-1} + Y_1^{0}{\hat{e}}_0 \right).
571 gezelter 4404 \label{eq:16}
572     \end{equation}
573     The surface integral of the product of $\hat{n}$ and
574 gezelter 4419 $Y_{l+1}^{m_1}(\theta, \phi)$ gives,
575 gezelter 4404 \begin{equation}
576     \begin{split}
577 gezelter 4419 \int \hat{n}\;Y_{l+1}^{m_1}\;d\Omega &= \int \sqrt{\frac{4\pi}{3}}\left(-Y_1^{-1}{\hat{e}}_1 -Y_1^{1}{\hat{e}}_{-1} + Y_1^{0}{\hat{e}}_0 \right)\;Y_{l+1}^{m_1}\; d\Omega \\
578     &= \int \sqrt{\frac{4\pi}{3}}\left({Y_1^{1}}^* {\hat{e}}_1 +{Y_1^{-1}}^* {\hat{e}}_{-1} + {Y_1^{0}}^* {\hat{e}}_0 \right)\;Y_{l+1}^{m_1}\; d\Omega \\
579 gezelter 4404 &= \sqrt{\frac{4\pi}{3}}\left({\delta}_{l+1, 1}\;{\delta}_{1, m_1}\;{\hat{e}}_1 + {\delta}_{l+1, 1}\;{\delta}_{-1, m_1}\;{\hat{e}}_{-1}+ {\delta}_{l+1, 1}\;{\delta}_{0, m_1} \;{\hat{e}}_0\right),
580     \end{split}
581     \label{eq:17}
582     \end{equation}
583 gezelter 4419 where $Y_{l}^{-m} = (-1)^m\;{Y_{l}^{m}}^* $ and
584     $ \int {Y_{l}^{m}}^* Y_{l'}^{m'}\;d\Omega =
585 gezelter 4404 \delta_{ll'}\delta_{mm'} $.
586     Non-vanishing values of equation \ref{eq:17} require $l = 0$,
587     therefore the value of $ m = 0 $. Since the values of $ m_1$ are -1,
588     1, and 0 then $m_2$ takes the values 1, -1, and 0, respectively
589     provided that $m = m_1 + m_2$. Equation \ref{eq:11} can therefore be
590     modified,
591     \begin{equation}
592     \begin{split}
593 gezelter 4419 \int_{r<R} {\nabla}\mathbf{E}\;d\mathbf{r} = &- \sqrt{\frac{4\pi}{{3}}}\;\frac{1}{\epsilon_o}\int \rho(r')\;{Y^*}_{00}(\theta', \phi')[ C(1, 1, 0|-1,1,0)\;{\hat{e}_{-1}}{\hat{e}_{1}}\\ &+ C(1, 1, 0|-1,1,0)\;{\hat{e}_{1}}{\hat{e}_{-1}}+C(
594     1, 1, 0|0,0,0)\;{\hat{e}_{0}}{\hat{e}_{0}} ]\; d\mathbf{r}' \\
595     &= -\sqrt{\frac{4\pi}{{3}}}\;\frac{1}{\epsilon_o}\int \rho(r')\;d\mathbf{r}'\left({\hat{e}_{-1}}{\hat{e}_{1}}+{\hat{e}_{1}}{\hat{e}_{-1}}-{\hat{e}_{0}}{\hat{e}_{0}}\right)\\
596     &= - \sqrt{\frac{4\pi}{{3}}}\;\frac{1}{\epsilon_o}\;C_\mathrm{total}\;\left({\hat{e}_{-1}}{\hat{e}_{1}}+{\hat{e}_{1}}{\hat{e}_{-1}}-{\hat{e}_{0}}{\hat{e}_{0}}\right).
597 gezelter 4404 \end{split}
598     \label{eq:19}
599     \end{equation}
600 gezelter 4419 In the last step, the charge density was integrated over the sphere,
601 gezelter 4421 yielding a total charge $C_\mathrm{total}$. Equation (\ref{eq:19})
602 gezelter 4419 gives the total gradient of the field over a sphere due to the
603     distribution of the charges. For quadrupolar fluids the total charge
604     within a sphere is zero, therefore
605     $ \int_{r<R} {\nabla}\mathbf{E}\;d\mathbf{r} = 0 $. Hence the quadrupolar
606 gezelter 4404 polarization produces zero net gradient of the field inside the
607     sphere.
608    
609 gezelter 4432 \section{Corrections to the distance-dependent Kirkwood function}
610     \label{kirkwood}
611     In the main text, we provide data on the distance-dependent Kirkwood
612     function,
613     \begin{equation}
614     G_K(r) = \left< \frac{1}{N} \sum_{i} \sum_{\substack{j \\ r_{ij} < r}}
615     \frac{\mathbf{D}_i \cdot \mathbf{D}_j}{\left| D_i \right| \left| D_j
616     \right|} \right>,
617     \label{eq:kirkwood}
618     \end{equation}
619     which is a sensitive measure of orientational ordering in dipolar
620     liquids. We noted in the main text that because the Kirkwood function
621     is measuring the same bulk dipolar response as the dielectric
622 gezelter 4434 constant, it is possible to apply a correction for the truncation,
623     force shifting, and damping to arrive at a corrected Kirkwood
624     function. Starting with Eq. (16) in the main text and recognizing
625     $\epsilon = 1 + \chi_D$ and $\epsilon_{CB} = 1 + \alpha_D$, we arrive
626     at a relationship between the (corrected) susceptibility,
627 gezelter 4432 \begin{equation}
628 gezelter 4434 \chi_D = \frac{\alpha_D}{1 + (A-1) \frac{\alpha_D}{3}}.
629     \label{eq:chiAlpha}
630     \end{equation}
631     and the dipole polarizability, which is easily obtained from bulk
632     simulations,
633     \begin{equation}
634     \alpha_D =\frac{\braket{\mathbf{M}^2}-{\braket{\mathbf{M}}}^2}{3
635     \epsilon_o V k_B T}.
636     \end{equation}
637     In the absence of bulk dipolar ordering, ${\braket{\mathbf{M}}}^2=0$,
638     and we may recognize the polarizability as a limit of the
639     distance-dependent Kirkwood function,
640     \begin{equation}
641     \alpha_D = \left( \frac{\rho D^2}{3 \epsilon_0 k_B T}\right) \lim_{r->\infty}
642     G_K(r).
643     \label{eq:alphaGK}
644     \end{equation}
645     Here we have used the number density, $\rho = N/V$ and the molecular
646     dipole moment, $D$, to connect with Eq. (\ref{eq:kirkwood}). By
647     analogy, the dipolar susceptibility may be connected with a corrected
648     (but unknown) version of the Kirkwood function,
649     \begin{equation}
650     \chi_D = \left(\frac{\rho D^2}{3 \epsilon_0 k_B T}\right) \lim_{r->\infty}
651     G_K^c(r).
652     \label{eq:chiGKc}
653     \end{equation}
654     Substituting the corrected and raw Kirkwood expressions,
655     Eqs. (\ref{eq:chiGKc}) and (\ref{eq:alphaGK}), into
656     Eq. (\ref{eq:chiAlpha}), and removing the limits, we obtain a
657     correction formula for the Kirkwood function,
658     \begin{equation}
659 gezelter 4432 G_K^c(r) = \frac{G_K(r)}{ 1 + (A-1) \frac{\rho D^2 G_K(r)}{9
660 gezelter 4434 \epsilon_0 k_B T}}.
661 gezelter 4432 \label{eq:kirkwoodCorr}
662     \end{equation}
663 gezelter 4434 Note that this correction forumla uses the same $A$ parameter from
664     Table I in the main text. As in case of the dielectric constant, the
665     Kirkwood correction is similarly sensitive to values of $A$ away from
666     unity. In Fig.~\ref{fig:kirkwoodCorr} we show the corrected
667     $G_K^c(r)$ functions for the three real space methods with
668     $r_c = 3.52 \sigma = 12$~\AA~ and for the Ewald sum (with
669     $\kappa = 0.3119$~\AA$^{-1}$).
670 gezelter 4432
671     \begin{figure}
672     \includegraphics[width=\linewidth]{kirkwoodCorr.eps}
673     \caption{Corrected distance-dependent factors of the dipolar system
674     for the three real space methods at a range of Gaussian damping
675 gezelter 4434 parameters ($\alpha$) with a cutoff
676     $r_c = 3.52 \sigma = 12$~\AA$^{-1}$.}
677 gezelter 4432 \label{fig:kirkwoodCorr}
678     \end{figure}
679    
680     The correction does help reduce the effect of the ``hole'' in the
681     underdamped cases, particularly for the GSF method. However, this
682     comes at the expense of a divergence when $G_K(r) \sim 1$ for the
683     underdamped SP case. We find it more useful to look at the
684     uncorrected $G_K(r)$ functions to study orientational correlations,
685     which is why the uncorrected functions are shown in the main text.
686    
687 gezelter 4399 \bibliography{dielectric_new}
688     \end{document}
689     %
690     % ****** End of file multipole.tex ******