ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/multipole/Dielectric_Supplemental.tex
Revision: 4419
Committed: Tue Apr 12 20:03:08 2016 UTC (9 years, 5 months ago) by gezelter
Content type: application/x-tex
File size: 27179 byte(s)
Log Message:
Latest changes to supplemental, some typos in main ms.

File Contents

# User Rev Content
1 gezelter 4399 % ****** Start of file aipsamp.tex ******
2     %
3     % This file is part of the AIP files in the AIP distribution for REVTeX 4.
4     % Version 4.1 of REVTeX, October 2009
5     %
6     % Copyright (c) 2009 American Institute of Physics.
7     %
8     % See the AIP README file for restrictions and more information.
9     %
10     % TeX'ing this file requires that you have AMS-LaTeX 2.0 installed
11     % as well as the rest of the prerequisites for REVTeX 4.1
12     %
13     % It also requires running BibTeX. The commands are as follows:
14     %
15     % 1) latex aipsamp
16     % 2) bibtex aipsamp
17     % 3) latex aipsamp
18     % 4) latex aipsamp
19     %
20     % Use this file as a source of example code for your aip document.
21     % Use the file aiptemplate.tex as a template for your document.
22     \documentclass[%
23     aip,jcp,
24     amsmath,amssymb,
25     preprint,%
26     % reprint,%
27     %author-year,%
28     %author-numerical,%
29     jcp]{revtex4-1}
30    
31     \usepackage{graphicx}% Include figure files
32     \usepackage{dcolumn}% Align table columns on decimal point
33     %\usepackage{bm}% bold math
34     \usepackage{times}
35     \usepackage[version=3]{mhchem} % this is a great package for formatting chemical reactions
36     \usepackage{url}
37     \usepackage{rotating}
38 gezelter 4404 \usepackage{braket}
39 gezelter 4418 \usepackage{array}
40     \newcolumntype{L}[1]{>{\raggedright\let\newline\\\arraybackslash\hspace{0pt}}m{#1}}
41     \newcolumntype{C}[1]{>{\centering\let\newline\\\arraybackslash\hspace{0pt}}m{#1}}
42     \newcolumntype{R}[1]{>{\raggedleft\let\newline\\\arraybackslash\hspace{0pt}}m{#1}}
43 gezelter 4399
44 gezelter 4404
45 gezelter 4418
46 gezelter 4399 %\usepackage[mathlines]{lineno}% Enable numbering of text and display math
47     %\linenumbers\relax % Commence numbering lines
48    
49     \begin{document}
50    
51 gezelter 4417 \title{Supplemental Material for: Real space electrostatics for
52     multipoles. III. Dielectric Properties}
53 gezelter 4399
54     \author{Madan Lamichhane}
55     \affiliation{Department of Physics, University
56     of Notre Dame, Notre Dame, IN 46556}
57     \author{Thomas Parsons}
58     \affiliation{Department of Chemistry and Biochemistry, University
59     of Notre Dame, Notre Dame, IN 46556}
60     \author{Kathie E. Newman}
61     \affiliation{Department of Physics, University
62     of Notre Dame, Notre Dame, IN 46556}
63     \author{J. Daniel Gezelter}
64     \email{gezelter@nd.edu.}
65     \affiliation{Department of Chemistry and Biochemistry, University
66     of Notre Dame, Notre Dame, IN 46556}
67    
68     \date{\today}% It is always \today, today,
69     % but any date may be explicitly specified
70    
71 gezelter 4418 \begin{abstract}
72     This document includes useful relationships for computing the
73     interactions between fields and field gradients and point multipolar
74 gezelter 4419 representations of molecular electrostatics. We also provide
75 gezelter 4418 explanatory derivations of a number of relationships used in the
76     main text. This includes the Boltzmann averages of quadrupole
77 gezelter 4419 orientations, and the interaction of a quadrupole density with the
78 gezelter 4418 self-generated field gradient. This last relationship is assumed to
79     be zero in the main text but is explicitly shown to be zero here.
80     \end{abstract}
81    
82 gezelter 4399 \maketitle
83    
84 gezelter 4418 \section{Generating Uniform Field Gradients}
85 gezelter 4419 One important task in carrying out the simulations mentioned in the
86     main text was to generate uniform electric field gradients. To do
87     this, we relied heavily on both the notation and results from Torres
88     del Castillo and Mend\'{e}z Garido.\cite{Torres-del-Castillo:2006uo}
89     In this work, tensors were expressed in Cartesian components, using at
90     times a dyadic notation. This proves quite useful for computer
91     simulations that make use of toroidal boundary conditions.
92 gezelter 4399
93 gezelter 4417 An alternative formalism uses the theory of angular momentum and
94     spherical harmonics and is common in standard physics texts such as
95 gezelter 4418 Jackson,\cite{Jackson98} Morse and Feshbach,\cite{Morse:1946zr} and
96     Stone.\cite{Stone:1997ly} Because this approach has its own
97     advantages, relationships are provided below comparing that
98     terminology to the Cartesian tensor notation.
99 gezelter 4404
100 gezelter 4417 The gradient of the electric field,
101     \begin{equation*}
102     \mathsf{G}(\mathbf{r}) = -\nabla \nabla \Phi(\mathbf{r}),
103     \end{equation*}
104     where $\Phi(\mathbf{r})$ is the electrostatic potential. In a
105     charge-free region of space, $\nabla \cdot \mathbf{E}=0$, and
106     $\mathsf{G}$ is a symmetric traceless tensor. From symmetry
107     arguments, we know that this tensor can be written in terms of just
108     five independent components.
109    
110     Following Torres del Castillo and Mend\'{e}z Garido's notation, the
111     gradient of the electric field may also be written in terms of two
112     vectors $\mathbf{a}$ and $\mathbf{b}$,
113     \begin{equation*}
114     G_{ij}=\frac{1}{2} (a_i b_j + a_j b_i) - \frac{1}{3}(\mathbf a \cdot \mathbf b) \delta_{ij} .
115     \end{equation*}
116     If the vectors $\mathbf{a}$ and $\mathbf{b}$ are unit vectors, the
117     electrostatic potential that generates a uniform gradient may be
118     written:
119     \begin{align}
120 gezelter 4418 \Phi(x, y, z) =\; -\frac{g_o}{2} & \left(\left(a_1b_1 -
121     \frac{cos\psi}{3}\right)\;x^2+\left(a_2b_2
122     - \frac{cos\psi}{3}\right)\;y^2 +
123     \left(a_3b_3 -
124     \frac{cos\psi}{3}\right)\;z^2 \right. \nonumber \\
125     & + (a_1b_2 + a_2b_1)\; xy + (a_1b_3 + a_3b_1)\; xz + (a_2b_3 + a_3b_2)\; yz \bigg) .
126 gezelter 4417 \label{eq:appliedPotential}
127     \end{align}
128     Note $\mathbf{a}\cdot\mathbf{a} = \mathbf{b} \cdot \mathbf{b} = 1$,
129     $\mathbf{a} \cdot \mathbf{b}=\cos \psi$, and $g_0$ is the overall
130 gezelter 4418 strength of the potential.
131 gezelter 4417
132 gezelter 4418 Taking the gradient of Eq. (\ref{eq:appliedPotential}), we find the
133     field due to this potential,
134     \begin{equation}
135     \mathbf{E} = -\nabla \Phi
136     =\frac{g_o}{2} \left(\begin{array}{ccc}
137     2(a_1 b_1 - \frac{cos\psi}{3})\; x & +\; (a_1 b_2 + a_2 b_1)\; y & +\; (a_1 b_3 + a_3 b_1)\; z \\
138     (a_2 b_1 + a_1 b_2)\; x & +\; 2(a_2 b_2 - \frac{cos\psi}{3})\; y & +\; (a_2 b_3 + a_3 b_3)\; z \\
139     (a_3 b_1 + a_3 b_2)\; x & +\; (a_3 b_2 + a_2 b_3)\; y & +\; 2(a_3 b_3 - \frac{cos\psi}{3})\; z
140     \end{array} \right),
141     \label{eq:CE}
142     \end{equation}
143     while the gradient of the electric field in this form,
144     \begin{equation}
145     \mathsf{G} = \nabla\mathbf{E}
146     = \frac{g_o}{2}\left(\begin{array}{ccc}
147     2(a_1\; b_1 - \frac{cos\psi}{3}) & (a_1\; b_2 \;+ a_2\; b_1) & (a_1\; b_3 \;+ a_3\; b_1) \\
148     (a_2\; b_1 \;+ a_1\; b_2) & 2(a_2\; b_2 \;- \frac{cos\psi}{3}) & (a_2\; b_3 \;+ a_3\; b_3) \\
149     (a_3\; b_1 \;+ a_3\; b_2) & (a_3\; b_2 \;+ a_2\; b_3) & 2(a_3\; b_3 \;- \frac{cos\psi}{3})
150     \end{array} \right),
151     \label{eq:GC}
152     \end{equation}
153     is uniform over the entire space. Therefore, to describe a uniform
154     gradient in this notation, two unit vectors ($\mathbf{a}$ and
155     $\mathbf{b}$) as well as a potential strength, $g_0$, must be
156     specified. As expected, this requires five independent parameters.
157    
158     The common alternative to the Cartesian notation expresses the
159     electrostatic potential using the notation of Morse and
160     Feshbach,\cite{Morse:1946zr}
161 gezelter 4417 \begin{equation} \label{eq:quad_phi}
162 gezelter 4418 \Phi(x,y,z) = -\left[ a_{20} \frac{2 z^2 -x^2 - y^2}{2}
163 gezelter 4417 + 3 a_{21}^e \,xz + 3 a_{21}^o \,yz
164 gezelter 4418 + 6a_{22}^e \,xy + 3 a_{22}^o (x^2 - y^2) \right].
165 gezelter 4417 \end{equation}
166     Here we use the standard $(l,m)$ form for the $a_{lm}$ coefficients,
167     with superscript $e$ and $o$ denoting even and odd, respectively.
168     This form makes the functional analogy to ``d'' atomic states
169 gezelter 4418 apparent.
170    
171     Applying the gradient operator to Eq. (\ref{eq:quad_phi}) the electric
172     field due to this potential,
173     \begin{equation}
174     \mathbf{E} = -\nabla \Phi
175     = \left(\begin{array}{ccc}
176     \left( 6a_{22}^o -a_{20} \right)\; x &+\; 6a_{22}^e\; y &+\; 3a_{21}^e\; z \\
177     6a_{22}^e\; x & -\; (a_{20} + 6a_{22}^o)\; y & +\; 3a_{21}^o\; z \\
178     3a_{21}^e\; x & +\; 3a_{21}^o\; y & +\; 2a_{20}\; z
179     \end{array} \right),
180     \label{eq:MFE}
181     \end{equation}
182     while the gradient of the electric field in this form is:
183 gezelter 4417 \begin{equation} \label{eq:grad_e2}
184     \mathsf{G} =
185     \begin{pmatrix}
186     6 a_{22}^o - a_{20} & 6a_{22}^e & 3a_{21}^e\\
187     6a_{22}^e & -(a_{20}+6a_{22}^o) & 3a_{21}^o \\
188     3a_{21}^e & 3a_{21}^o & 2a_{20} \\
189     \end{pmatrix} \\
190     \end{equation}
191 gezelter 4418 which is also uniform over the entire space. This form for the
192     gradient can be factored as
193 gezelter 4417 \begin{gather}
194     \begin{aligned}
195     \mathsf{G} = a_{20}
196     \begin{pmatrix}
197     -1 & 0 & 0\\
198     0 & -1 & 0\\
199     0 & 0 & 2\\
200     \end{pmatrix}
201     +3a_{21}^e
202     \begin{pmatrix}
203     0 & 0 & 1\\
204     0 & 0 & 0\\
205     1 & 0 & 0\\
206     \end{pmatrix}
207     +3a_{21}^o
208     \begin{pmatrix}
209     0 & 0 & 0\\
210     0 & 0 & 1\\
211     0 & 1 & 0\\
212     \end{pmatrix}
213     +6a_{22}^e
214     \begin{pmatrix}
215     0 & 1 & 0\\
216     1 & 0 & 0\\
217     0 & 0 & 0\\
218     \end{pmatrix}
219     +6a_{22}^o
220     \begin{pmatrix}
221     1 & 0 & 0\\
222     0 & -1 & 0\\
223     0 & 0 & 0\\
224     \end{pmatrix}
225     \end{aligned}
226     \label{eq:intro_tensors}
227     \end{gather}
228     The five matrices in the expression above represent five different
229 gezelter 4418 symmetric traceless tensors of rank 2.
230 gezelter 4417
231 gezelter 4418 It is useful to find the Cartesian vectors $\mathbf a$ and $\mathbf b$
232     that generate the five types of tensors shown in
233     Eq. (\ref{eq:intro_tensors}). If the two vectors are co-linear, e.g.,
234     $\psi=0$, $\mathbf{a}=(0,0,1)$ and $\mathbf{b}=(0,0,1)$, then
235 gezelter 4417 \begin{equation*}
236     \mathsf{G} = \frac{g_0}{3}
237     \begin{pmatrix}
238     -1 & 0 & 0 \\
239     0 & -1 & 0 \\
240     0 & 0 & 2 \\
241     \end{pmatrix} ,
242     \end{equation*}
243     which is the $a_{20}$ symmetry.
244     To generate the $a_{22}^o$ symmetry, we take:
245     $\mathbf{a}= (\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}},0)$ and
246     $\mathbf{b}=(\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}},0)$
247     and find:
248     \begin{equation*}
249     \mathsf{G}=\frac{g_0}{2}
250     \begin{pmatrix}
251     1 & 0 & 0 \\
252     0 & -1 & 0 \\
253     0 & 0 & 0 \\
254     \end{pmatrix} .
255     \end{equation*}
256     To generate the $a_{22}^e$ symmetry, we take:
257     $\mathbf{a}= (1, 0, 0)$ and $\mathbf{b} = (0,1,0)$ and find:
258     \begin{equation*}
259     \mathsf{G}=\frac{g_0}{2}
260     \begin{pmatrix}
261     0 & 1 & 0 \\
262     1 & 0 & 0 \\
263     0 & 0 & 0 \\
264     \end{pmatrix} .
265     \end{equation*}
266     The pattern is straightforward to continue for the other symmetries.
267    
268     We find the notation of Ref. \onlinecite{Torres-del-Castillo:2006uo}
269 gezelter 4418 helpful when creating specific types of constant gradient electric
270     fields in simulations. For this reason,
271 gezelter 4417 Eqs. (\ref{eq:appliedPotential}), (\ref{eq:GC}), and (\ref{eq:CE}) are
272 gezelter 4418 implemented in our code. In the simulations using constant applied
273     gradients that are mentioned in the main text, we utilized a field
274     with the $a_{22}^e$ symmetry using vectors, $\mathbf{a}= (1, 0, 0)$
275     and $\mathbf{b} = (0,1,0)$.
276 gezelter 4417
277     \section{Point-multipolar interactions with a spatially-varying electric field}
278    
279     This section develops formulas for the force and torque exerted by an
280     external electric field, $\mathbf{E}(\mathbf{r})$, on object
281     $a$. Object $a$ has an embedded collection of charges and in
282     simulations will represent a molecule, ion, or a coarse-grained
283     substructure. We describe the charge distributions using primitive
284     multipoles defined in Ref. \onlinecite{PaperI} by
285     \begin{align}
286     C_a =&\sum_{k \, \text{in }a} q_k , \label{eq:charge} \\
287     D_{a\alpha} =&\sum_{k \, \text{in }a} q_k r_{k\alpha}, \label{eq:dipole}\\
288     Q_{a\alpha\beta} =& \frac{1}{2} \sum_{k \, \text{in } a} q_k
289     r_{k\alpha} r_{k\beta},
290     \label{eq:quadrupole}
291     \end{align}
292     where $\mathbf{r}_k$ is the local coordinate system for the object
293     (usually the center of mass of object $a$). Components of vectors and
294 gezelter 4418 tensors are given using the Einstein repeated summation notation. Note
295     that the definition of the primitive quadrupole here differs from the
296     standard traceless form, and contains an additional Taylor-series
297     based factor of $1/2$. In Ref. \onlinecite{PaperI}, we derived the
298     forces and torques each object exerts on the other objects in the
299     system.
300 gezelter 4417
301     Here we must also consider an external electric field that varies in
302     space: $\mathbf E(\mathbf r)$. Each of the local charges $q_k$ in
303     object $a$ will then experience a slightly different field. This
304     electric field can be expanded in a Taylor series around the local
305     origin of each object. For a particular charge $q_k$, the electric
306     field at that site's position is given by:
307     \begin{equation}
308     \mathbf{E}(\mathbf{r}_k) = E_\gamma|_{\mathbf{r}_k = 0} + \nabla_\delta E_\gamma |_{\mathbf{r}_k = 0} r_{k \delta}
309     + \frac {1}{2} \nabla_\delta \nabla_\varepsilon E_\gamma|_{\mathbf{r}_k = 0} r_{k \delta}
310     r_{k \varepsilon} + ...
311     \end{equation}
312 gezelter 4418 Note that if one shrinks object $a$ to a single point, the
313     ${E}_\gamma$ terms are all evaluated at the center of the object (now
314     a point). Thus later the ${E}_\gamma$ terms can be written using the
315     same (molecular) origin for all point charges in the object. The force
316 gezelter 4419 exerted on object $a$ by the electric field is given by,\cite{Raab:2004ve}
317 gezelter 4417 \begin{align}
318     F^a_\gamma = \sum_{k \textrm{~in~} a} E_\gamma(\mathbf{r}_k) &= \sum_{k \textrm{~in~} a} q_k \lbrace E_\gamma + \nabla_\delta E_\gamma r_{k \delta}
319     + \frac {1}{2} \nabla_\delta \nabla_\varepsilon E_\gamma r_{k \delta}
320     r_{k \varepsilon} + ... \rbrace \\
321     &= C_a E_\gamma + D_{a \delta} \nabla_\delta E_\gamma
322     + Q_{a \delta \varepsilon} \nabla_\delta \nabla_\varepsilon E_\gamma +
323     ...
324     \end{align}
325 gezelter 4418 Thus in terms of the global origin $\mathbf{r}$, ${F}_\gamma(\mathbf{r}) = C {E}_\gamma(\mathbf{r})$ etc.
326 gezelter 4417
327     Similarly, the torque exerted by the field on $a$ can be expressed as
328     \begin{align}
329     \tau^a_\alpha &= \sum_{k \textrm{~in~} a} (\mathbf r_k \times q_k \mathbf E)_\alpha \\
330     & = \sum_{k \textrm{~in~} a} \epsilon_{\alpha \beta \gamma} q_k
331     r_{k\beta} E_\gamma(\mathbf r_k) \\
332     & = \epsilon_{\alpha \beta \gamma} D_\beta E_\gamma
333     + 2 \epsilon_{\alpha \beta \gamma} Q_{\beta \delta} \nabla_\delta
334     E_\gamma + ...
335     \end{align}
336     We note that the Levi-Civita symbol can be eliminated by utilizing the matrix cross product as defined in Ref. \onlinecite{Smith98}:
337     \begin{equation}
338     \left[\mathsf{A} \times \mathsf{B}\right]_\alpha = \sum_\beta
339     \left[\mathsf{A}_{\alpha+1,\beta} \mathsf{B}_{\alpha+2,\beta}
340     -\mathsf{A}_{\alpha+2,\beta} \mathsf{B}_{\alpha+1,\beta}
341     \right]
342     \label{eq:matrixCross}
343     \end{equation}
344     where $\alpha+1$ and $\alpha+2$ are regarded as cyclic permuations of
345     the matrix indices. Finally, the interaction energy $U^a$ of object $a$ with the external field is given by,
346     \begin{equation}
347     U^a = \sum_{k~in~a} q_k \phi_k (\mathrm{r}_k)
348     \end{equation}
349     Performing another Taylor series expansion about the local body origin,
350     \begin{equation}
351     \phi({\mathbf{r}_k}) = \phi|_{\mathbf{r}_k = 0 } + r_{k \alpha} \nabla_\alpha \phi_\alpha|_{\mathbf{r}_k = 0 } + \frac{1}{2} r_{k\alpha}r_{k\beta}\nabla_\alpha \nabla_\beta \phi|_{\mathbf{r}_k = 0} + ...
352     \end{equation}
353     Writing this in terms of the global origin $\mathrm{r}$, we find
354     \begin{equation}
355     U(\mathbf{r}) = \mathrm{C} \phi(\mathbf{r}) - \mathrm{D}_\alpha \mathrm{E}_\alpha - \mathrm{Q}_{\alpha\beta}\nabla_\alpha \mathrm{E}_\beta + ...
356     \end{equation}
357 gezelter 4418 These results have been summarized in Table \ref{tab:UFT}.
358 gezelter 4417
359     \begin{table}
360     \caption{Potential energy $(U)$, force $(\mathbf{F})$, and torque
361 gezelter 4418 $(\mathbf{\tau})$ expressions for a multipolar site at $\mathbf{r}$ in an
362     electric field, $\mathbf{E}(\mathbf{r})$ using the definitions of the multipoles in Eqs. (\ref{eq:charge}), (\ref{eq:dipole}) and (\ref{eq:quadrupole}).
363     \label{tab:UFT}}
364     \begin{tabular}{r|C{3cm}C{3cm}C{3cm}}
365 gezelter 4417 & Charge & Dipole & Quadrupole \\ \hline
366     $U(\mathbf{r})$ & $C \phi(\mathbf{r})$ & $-\mathbf{D} \cdot \mathbf{E}(\mathbf{r})$ & $- \mathsf{Q}:\nabla \mathbf{E}(\mathbf{r})$ \\
367     $\mathbf{F}(\mathbf{r})$ & $C \mathbf{E}(\mathbf{r})$ & $\mathbf{D} \cdot \nabla \mathbf{E}(\mathbf{r})$ & $\mathsf{Q} : \nabla\nabla\mathbf{E}(\mathbf{r})$ \\
368     $\mathbf{\tau}(\mathbf{r})$ & & $\mathbf{D} \times \mathbf{E}(\mathbf{r})$ & $2 \mathsf{Q} \times \nabla \mathbf{E}(\mathbf{r})$
369     \end{tabular}
370     \end{table}
371    
372 gezelter 4399 \section{Boltzmann averages for orientational polarization}
373 gezelter 4419 If we consider a collection of molecules in the presence of external
374     field, the perturbation experienced by any one molecule will include
375     contributions to the field or field gradient produced by the all other
376     molecules in the system. In subsections
377 gezelter 4399 \ref{subsec:boltzAverage-Dipole} and \ref{subsec:boltzAverage-Quad},
378 gezelter 4419 we discuss the molecular polarization due solely to external field
379     perturbations. This illustrates the origins of the polarizability
380     equations (Eqs. 6, 20, and 21) in the main text.
381 gezelter 4399
382     \subsection{Dipoles}
383     \label{subsec:boltzAverage-Dipole}
384     Consider a system of molecules, each with permanent dipole moment
385 gezelter 4419 $p_o$. In the absense of an external field, thermal agitation orients
386     the dipoles randomly, and the system moment, $\mathbf{P}$, is zero.
387     External fields will line up the dipoles in the direction of applied
388     field. Here we consider the net field from all other molecules to be
389     zero. Therefore the total Hamiltonian acting on each molecule
390     is,\cite{Jackson98}
391 gezelter 4399 \begin{equation}
392 gezelter 4419 H = H_o - \mathbf{p}_o \cdot \mathbf{E},
393 gezelter 4399 \end{equation}
394     where $H_o$ is a function of the internal coordinates of the molecule.
395 gezelter 4419 The Boltzmann average of the dipole moment in the direction of the
396     field is given by,
397 gezelter 4399 \begin{equation}
398 gezelter 4419 \langle p_{mol} \rangle = \frac{\displaystyle\int p_o \cos\theta
399     e^{~p_o E \cos\theta /k_B T}\; d\Omega}{\displaystyle\int e^{~p_o E \cos\theta/k_B
400     T}\; d\Omega},
401 gezelter 4399 \end{equation}
402 gezelter 4419 where the $z$-axis is taken in the direction of the applied field,
403     $\bf{E}$ and
404     $\int d\Omega = \int_0^\pi \sin\theta\; d\theta \int_0^{2\pi} d\phi
405     \int_0^{2\pi} d\psi$
406     is an integration over Euler angles describing the orientation of the
407     molecule.
408    
409     If the external fields are small, \textit{i.e.}
410     $p_oE \cos\theta / k_B T << 1$,
411 gezelter 4399 \begin{equation}
412 gezelter 4419 \langle p_{mol} \rangle \approx \frac{{p_o}^2}{3 k_B T}E,
413 gezelter 4399 \end{equation}
414 gezelter 4419 where $ \alpha_p = \frac{{p_o}^2}{3 k_B T}$ is the molecular
415 gezelter 4399 polarizability. The orientational polarization depends inversely on
416 gezelter 4419 the temperature as the applied field must overcome thermal agitation
417     to orient the dipoles.
418 gezelter 4399
419     \subsection{Quadrupoles}
420     \label{subsec:boltzAverage-Quad}
421 gezelter 4419 If instead, our system consists of molecules with permanent
422     \textit{quadrupole} tensor $q_{\alpha\beta}$. The average quadrupole
423     at temperature $T$ in the presence of uniform applied field gradient
424     is given by,\cite{AduGyamfi78, AduGyamfi81}
425 gezelter 4399 \begin{equation}
426 gezelter 4419 \langle q_{\alpha\beta} \rangle \;=\; \frac{\displaystyle\int
427     q_{\alpha\beta}\; e^{-H/k_B T}\; d\Omega}{\displaystyle\int
428     e^{-H/k_B T}\; d\Omega} \;=\; \frac{\displaystyle\int
429     q_{\alpha\beta}\; e^{~q_{\mu\nu}\;\partial_\nu E_\mu /k_B T}\;
430     d\Omega}{\displaystyle\int e^{~q_{\mu\nu}\;\partial_\nu E_\mu /k_B
431     T}\; d\Omega },
432 gezelter 4399 \label{boltzQuad}
433     \end{equation}
434 gezelter 4419 where $H = H_o - q_{\mu\nu}\;\partial_\nu E_\mu $ is the energy of a
435     quadrupole in the gradient of the applied field and $H_o$ is a
436     function of internal coordinates of the molecule. The energy and
437     quadrupole moment can be transformed into the body frame using a
438     rotation matrix $\mathsf{\eta}^{-1}$,
439     \begin{align}
440     q_{\alpha\beta} &= \eta_{\alpha\alpha'}\;\eta_{\beta\beta'}\;{q}^* _{\alpha'\beta'} \\
441     H &= H_o - q:{\nabla}\mathbf{E} \\
442     &= H_o - q_{\mu\nu}\;\partial_\nu E_\mu \\
443     &= H_o
444     -\eta_{\mu\mu'}\;\eta_{\nu\nu'}\;{q}^*_{\mu'\nu'}\;\partial_\nu
445     E_\mu. \label{energyQuad}
446     \end{align}
447 gezelter 4399 Here the starred tensors are the components in the body fixed
448 gezelter 4419 frame. Substituting equation (\ref{energyQuad}) in the equation
449     (\ref{boltzQuad}) and taking linear terms in the expansion we obtain,
450 gezelter 4399 \begin{equation}
451 gezelter 4419 \braket{q_{\alpha\beta}} = \frac{\displaystyle \int q_{\alpha\beta} \left(1 +
452     \frac{\eta_{\mu\mu'}\;\eta_{\nu\nu'}\;{q}^*_{\mu'\nu'}\;\partial_\nu
453     E_\mu }{k_B T}\right)\; d\Omega}{\displaystyle \int \left(1 + \frac{\eta_{\mu\mu'}\;\eta_{\nu\nu'}\;{q}^*_{\mu'\nu'}\;\partial_\nu E_\mu }{k_B T}\right)\; d\Omega}.
454 gezelter 4399 \end{equation}
455 gezelter 4419 Recall that $\eta_{\alpha\alpha'}$ is the inverse of the rotation
456     matrix that transforms the body fixed co-ordinates to the space
457     co-ordinates.
458 gezelter 4418 % \[\eta_{\alpha\alpha'}
459     % = \left(\begin{array}{ccc}
460     % cos\phi\; cos\psi - cos\theta\; sin\phi\; sin\psi & -cos\theta\; cos\psi\; sin\phi - cos\phi\; sin\psi & sin\theta\; sin\phi \\
461     % cos\psi\; sin\phi + cos\theta\; cos\phi \; sin\psi & cos\theta\; cos\phi\; cos\psi - sin\phi\; sin\psi & -cos\phi\; sin\theta \\
462     % sin\theta\; sin\psi & -cos\psi\; sin\theta & cos\theta
463     % \end{array} \right).\]
464    
465 gezelter 4419 Integration of the first and second terms in the denominator gives
466     $8 \pi^2$ and
467     $8 \pi^2 ({\nabla} \cdot \mathbf{E}) \mathrm{Tr}(q^*) / 3 $
468     respectively. The second term vanishes for charge free space (where
469     ${\nabla} \cdot \mathbf{E}=0$). Similarly, integration of the first
470     term in the numerator produces
471     $8 \pi^2 \delta_{\alpha\beta} \mathrm{Tr}(q^*) / 3$ while the second
472     produces
473     $8 \pi^2 (3{q}^*_{\alpha'\beta'}{q}^*_{\beta'\alpha'} -
474     {q}^*_{\alpha'\alpha'}{q}^*_{\beta'\beta'})\partial_\alpha E_\beta /
475     15 k_B T $.
476     Therefore the Boltzmann average of a quadrupole moment can be written
477     as,
478 gezelter 4399 \begin{equation}
479 gezelter 4419 \langle q_{\alpha\beta} \rangle = \frac{1}{3} \mathrm{Tr}(q^*)\;\delta_{\alpha\beta} + \frac{{\bar{q_o}}^2}{15k_BT}\;\partial_\alpha E_\beta,
480 gezelter 4399 \end{equation}
481 gezelter 4419 where $\alpha_q = \frac{{\bar{q_o}}^2}{15k_BT} $ is a molecular
482     quadrupole polarizablity and
483     ${\bar{q_o}}^2=
484     3{q}^*_{\alpha'\beta'}{q}^*_{\beta'\alpha'}-{q}^*_{\alpha'\alpha'}{q}^*_{\beta'\beta'}$
485     is the square of the net quadrupole moment of a molecule.
486 gezelter 4399
487 gezelter 4404 \section{Gradient of the field due to quadrupolar polarization}
488     \label{singularQuad}
489 gezelter 4419 In section IV.C of the main text, we stated that for quadrupolar
490     fluids, the self-contribution to the field gradient vanishes at the
491     singularity. In this section, we prove this statement. For this
492     purpose, we consider a distribution of charge $\rho(\mathbf{r})$ which
493     gives rise to an electric field $\mathbf{E}(\mathbf{r})$ and gradient
494     of the field $\nabla\mathbf{E}(\mathbf{r})$ throughout space. The
495     gradient of the electric field over volume due to the charges within
496     the sphere of radius $R$ is given by (cf. Ref. \onlinecite{Jackson98},
497     equation 4.14):
498 gezelter 4404 \begin{equation}
499 gezelter 4419 \int_{r<R} \nabla\mathbf{E} d\mathbf{r} = -\int_{r=R} R^2 \mathbf{E}\;\hat{n}\; d\Omega
500 gezelter 4404 \label{eq:8}
501     \end{equation}
502     where $d\Omega$ is the solid angle and $\hat{n}$ is the normal vector
503 mlamichh 4409 of the surface of the sphere,
504 gezelter 4404 \begin{equation}
505 gezelter 4419 \hat{n} = \sin\theta\cos\phi\; \hat{x} + \sin\theta\sin\phi\; \hat{y} +
506     \cos\theta\; \hat{z}
507     \end{equation}
508     in spherical coordinates. For the charge density $\rho(\mathbf{r}')$, the
509     total gradient of the electric field can be written as,\cite{Jackson98}
510     \begin{equation}
511     \int_{r<R} {\nabla}\mathbf {E}\; d\mathbf{r}=-\int_{r=R} R^2\; {\nabla}\Phi\; \hat{n}\; d\Omega =-\frac{1}{4\pi\;\epsilon_o}\int_{r=R} R^2\; {\nabla}\;\left(\int \frac{\rho(\mathbf r')}{|\mathbf{r}-\mathbf{r}'|}\;d\mathbf{r}'\right) \hat{n}\; d\Omega
512 gezelter 4404 \label{eq:9}
513     \end{equation}
514     The radial function in the equation (\ref{eq:9}) can be expressed in
515 mlamichh 4409 terms of spherical harmonics as,\cite{Jackson98}
516 gezelter 4404 \begin{equation}
517 mlamichh 4409 \frac{1}{|\mathbf{r} - \mathbf{r}'|} = 4\pi \sum_{l=0}^{\infty}\sum_{m=-l}^{m=l}\frac{1}{2l+1}\;\frac{{r^l_<}}{{r^{l+1}_>}}\;{Y^*}_{lm}(\theta', \phi')\;Y_{lm}(\theta, \phi)
518 gezelter 4404 \label{eq:10}
519     \end{equation}
520     If the sphere completely encloses the charge density then $ r_< = r'$ and $r_> = R$. Substituting equation (\ref{eq:10}) into (\ref{eq:9}) we get,
521     \begin{equation}
522     \begin{split}
523 gezelter 4419 \int_{r<R} {\nabla}\mathbf{E}\;d\mathbf{r} &=-\frac{R^2}{\epsilon_o}\int_{r=R} \; {\nabla}\;\left(\int \rho(\mathbf r')\sum_{l=0}^{\infty}\sum_{m=-l}^{m=l}\frac{1}{2l+1}\;\frac{{r'^l}}{{R^{l+1}}}\;{Y^*}_{lm}(\theta', \phi')\;Y_{lm}(\theta, \phi)\;d\mathbf{r}'\right) \hat{n}\; d\Omega \\
524     &= -\frac{R^2}{\epsilon_o}\sum_{l=0}^{\infty}\sum_{m=-l}^{m=l}\frac{1}{2l+1}\;\int \rho(\mathbf r')\;{r'^l}\;{Y^*}_{lm}(\theta', \phi')\left(\int_{r=R}\vec{\nabla}\left({R^{-(l+1)}}\;Y_{lm}(\theta, \phi)\right)\hat{n}\; d\Omega \right)d\mathbf{r}
525 gezelter 4404 '
526     \end{split}
527     \label{eq:11}
528     \end{equation}
529     The gradient of the product of radial function and spherical harmonics
530 mlamichh 4409 is given by:\cite{Arfkan}
531 gezelter 4404 \begin{equation}
532     \begin{split}
533 mlamichh 4409 {\nabla}\left[ f(r)\;Y_{lm}(\theta, \phi)\right] = &-\left(\frac{l+1}{2l+1}\right)^{1/2}\; \left[\frac{\partial}{\partial r}-\frac{l}{r} \right]f(r)\; Y_{l, l+1, m}(\theta, \phi)\\ &+ \left(\frac{l}{2l+1}\right)^{1/2}\left[\frac
534 gezelter 4404 {\partial}{\partial r}+\frac{l}{r} \right]f(r)\; Y_{l, l-1, m}(\theta, \phi).
535     \end{split}
536     \label{eq:12}
537     \end{equation}
538 gezelter 4419 where $Y_{l,l+1,m}(\theta, \phi)$ is a vector spherical
539     harmonic.\cite{Arfkan} Using equation (\ref{eq:12}) we get,
540 gezelter 4404 \begin{equation}
541 mlamichh 4409 {\nabla}\left({R^{-(l+1)}}\;Y_{lm}(\theta, \phi)\right) = [(l+1)(2l+1)]^{1/2}\; Y_{l,l+1,m}(\theta, \phi) \; \frac{1}{R^{l+2}},
542 gezelter 4404 \label{eq:13}
543     \end{equation}
544 gezelter 4419 Using Clebsch-Gordan coefficients $C(l+1,1,l|m_1,m_2,m)$, the vector
545     spherical harmonics can be written in terms of spherical harmonics,
546 gezelter 4404 \begin{equation}
547 gezelter 4419 Y_{l,l+1,m}(\theta, \phi) = \sum_{m_1, m_2} C(l+1,1,l|m_1,m_2,m)\; Y_{l+1}^{m_1}(\theta,\phi)\; \hat{e}_{m_2}.
548 gezelter 4404 \label{eq:14}
549     \end{equation}
550 mlamichh 4409 Here $\hat{e}_{m_2}$ is a spherical tensor of rank 1 which can be expressed
551 gezelter 4404 in terms of Cartesian coordinates,
552     \begin{equation}
553 mlamichh 4409 {\hat{e}}_{+1} = - \frac{\hat{x}+i\hat{y}}{\sqrt{2}},\quad {\hat{e}}_{0} = \hat{z},\quad and \quad {\hat{e}}_{-1} = \frac{\hat{x}-i\hat{y}}{\sqrt{2}}.
554 gezelter 4404 \label{eq:15}
555     \end{equation}
556 mlamichh 4409 The normal vector $\hat{n} $ is then expressed in terms of spherical tensor of rank 1 as shown in below,
557 gezelter 4404 \begin{equation}
558 gezelter 4419 \hat{n} = \sqrt{\frac{4\pi}{3}}\left(-Y_1^{-1}{\hat{e}}_1 - Y_1^{1}{\hat{e}}_{-1} + Y_1^{0}{\hat{e}}_0 \right).
559 gezelter 4404 \label{eq:16}
560     \end{equation}
561     The surface integral of the product of $\hat{n}$ and
562 gezelter 4419 $Y_{l+1}^{m_1}(\theta, \phi)$ gives,
563 gezelter 4404 \begin{equation}
564     \begin{split}
565 gezelter 4419 \int \hat{n}\;Y_{l+1}^{m_1}\;d\Omega &= \int \sqrt{\frac{4\pi}{3}}\left(-Y_1^{-1}{\hat{e}}_1 -Y_1^{1}{\hat{e}}_{-1} + Y_1^{0}{\hat{e}}_0 \right)\;Y_{l+1}^{m_1}\; d\Omega \\
566     &= \int \sqrt{\frac{4\pi}{3}}\left({Y_1^{1}}^* {\hat{e}}_1 +{Y_1^{-1}}^* {\hat{e}}_{-1} + {Y_1^{0}}^* {\hat{e}}_0 \right)\;Y_{l+1}^{m_1}\; d\Omega \\
567 gezelter 4404 &= \sqrt{\frac{4\pi}{3}}\left({\delta}_{l+1, 1}\;{\delta}_{1, m_1}\;{\hat{e}}_1 + {\delta}_{l+1, 1}\;{\delta}_{-1, m_1}\;{\hat{e}}_{-1}+ {\delta}_{l+1, 1}\;{\delta}_{0, m_1} \;{\hat{e}}_0\right),
568     \end{split}
569     \label{eq:17}
570     \end{equation}
571 gezelter 4419 where $Y_{l}^{-m} = (-1)^m\;{Y_{l}^{m}}^* $ and
572     $ \int {Y_{l}^{m}}^* Y_{l'}^{m'}\;d\Omega =
573 gezelter 4404 \delta_{ll'}\delta_{mm'} $.
574     Non-vanishing values of equation \ref{eq:17} require $l = 0$,
575     therefore the value of $ m = 0 $. Since the values of $ m_1$ are -1,
576     1, and 0 then $m_2$ takes the values 1, -1, and 0, respectively
577     provided that $m = m_1 + m_2$. Equation \ref{eq:11} can therefore be
578     modified,
579     \begin{equation}
580     \begin{split}
581 gezelter 4419 \int_{r<R} {\nabla}\mathbf{E}\;d\mathbf{r} = &- \sqrt{\frac{4\pi}{{3}}}\;\frac{1}{\epsilon_o}\int \rho(r')\;{Y^*}_{00}(\theta', \phi')[ C(1, 1, 0|-1,1,0)\;{\hat{e}_{-1}}{\hat{e}_{1}}\\ &+ C(1, 1, 0|-1,1,0)\;{\hat{e}_{1}}{\hat{e}_{-1}}+C(
582     1, 1, 0|0,0,0)\;{\hat{e}_{0}}{\hat{e}_{0}} ]\; d\mathbf{r}' \\
583     &= -\sqrt{\frac{4\pi}{{3}}}\;\frac{1}{\epsilon_o}\int \rho(r')\;d\mathbf{r}'\left({\hat{e}_{-1}}{\hat{e}_{1}}+{\hat{e}_{1}}{\hat{e}_{-1}}-{\hat{e}_{0}}{\hat{e}_{0}}\right)\\
584     &= - \sqrt{\frac{4\pi}{{3}}}\;\frac{1}{\epsilon_o}\;C_\mathrm{total}\;\left({\hat{e}_{-1}}{\hat{e}_{1}}+{\hat{e}_{1}}{\hat{e}_{-1}}-{\hat{e}_{0}}{\hat{e}_{0}}\right).
585 gezelter 4404 \end{split}
586     \label{eq:19}
587     \end{equation}
588 gezelter 4419 In the last step, the charge density was integrated over the sphere,
589     yielding a total charge $C_\mathrm{total}$.Equation (\ref{eq:19})
590     gives the total gradient of the field over a sphere due to the
591     distribution of the charges. For quadrupolar fluids the total charge
592     within a sphere is zero, therefore
593     $ \int_{r<R} {\nabla}\mathbf{E}\;d\mathbf{r} = 0 $. Hence the quadrupolar
594 gezelter 4404 polarization produces zero net gradient of the field inside the
595     sphere.
596    
597 gezelter 4399 \bibliography{dielectric_new}
598     \end{document}
599     %
600     % ****** End of file multipole.tex ******