ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/multipole/Dielectric_Supplemental.tex
Revision: 4418
Committed: Sun Apr 10 15:13:19 2016 UTC (9 years, 5 months ago) by gezelter
Content type: application/x-tex
File size: 27482 byte(s)
Log Message:
Latest version of supplemental

File Contents

# User Rev Content
1 gezelter 4399 % ****** Start of file aipsamp.tex ******
2     %
3     % This file is part of the AIP files in the AIP distribution for REVTeX 4.
4     % Version 4.1 of REVTeX, October 2009
5     %
6     % Copyright (c) 2009 American Institute of Physics.
7     %
8     % See the AIP README file for restrictions and more information.
9     %
10     % TeX'ing this file requires that you have AMS-LaTeX 2.0 installed
11     % as well as the rest of the prerequisites for REVTeX 4.1
12     %
13     % It also requires running BibTeX. The commands are as follows:
14     %
15     % 1) latex aipsamp
16     % 2) bibtex aipsamp
17     % 3) latex aipsamp
18     % 4) latex aipsamp
19     %
20     % Use this file as a source of example code for your aip document.
21     % Use the file aiptemplate.tex as a template for your document.
22     \documentclass[%
23     aip,jcp,
24     amsmath,amssymb,
25     preprint,%
26     % reprint,%
27     %author-year,%
28     %author-numerical,%
29     jcp]{revtex4-1}
30    
31     \usepackage{graphicx}% Include figure files
32     \usepackage{dcolumn}% Align table columns on decimal point
33     %\usepackage{bm}% bold math
34     \usepackage{times}
35     \usepackage[version=3]{mhchem} % this is a great package for formatting chemical reactions
36     \usepackage{url}
37     \usepackage{rotating}
38 gezelter 4404 \usepackage{braket}
39 gezelter 4418 \usepackage{array}
40     \newcolumntype{L}[1]{>{\raggedright\let\newline\\\arraybackslash\hspace{0pt}}m{#1}}
41     \newcolumntype{C}[1]{>{\centering\let\newline\\\arraybackslash\hspace{0pt}}m{#1}}
42     \newcolumntype{R}[1]{>{\raggedleft\let\newline\\\arraybackslash\hspace{0pt}}m{#1}}
43 gezelter 4399
44 gezelter 4404
45 gezelter 4418
46 gezelter 4399 %\usepackage[mathlines]{lineno}% Enable numbering of text and display math
47     %\linenumbers\relax % Commence numbering lines
48    
49     \begin{document}
50    
51 gezelter 4417 \title{Supplemental Material for: Real space electrostatics for
52     multipoles. III. Dielectric Properties}
53 gezelter 4399
54     \author{Madan Lamichhane}
55     \affiliation{Department of Physics, University
56     of Notre Dame, Notre Dame, IN 46556}
57     \author{Thomas Parsons}
58     \affiliation{Department of Chemistry and Biochemistry, University
59     of Notre Dame, Notre Dame, IN 46556}
60     \author{Kathie E. Newman}
61     \affiliation{Department of Physics, University
62     of Notre Dame, Notre Dame, IN 46556}
63     \author{J. Daniel Gezelter}
64     \email{gezelter@nd.edu.}
65     \affiliation{Department of Chemistry and Biochemistry, University
66     of Notre Dame, Notre Dame, IN 46556}
67    
68     \date{\today}% It is always \today, today,
69     % but any date may be explicitly specified
70    
71 gezelter 4418 \begin{abstract}
72     This document includes useful relationships for computing the
73     interactions between fields and field gradients and point multipolar
74     representations of molecular electrostatics. We also provide
75     explanatory derivations of a number of relationships used in the
76     main text. This includes the Boltzmann averages of quadrupole
77     orientations, and the interaction of a quadrupole with the
78     self-generated field gradient. This last relationship is assumed to
79     be zero in the main text but is explicitly shown to be zero here.
80     \end{abstract}
81    
82 gezelter 4399 \maketitle
83    
84 gezelter 4418 \section{Generating Uniform Field Gradients}
85     One important task in performing out the simulations mentioned in the
86     main text was to generate uniform electric field gradients. We rely
87     heavily on both the notation and results from Torres del Castillo and
88     Mend\'{e}z Garido.\cite{Torres-del-Castillo:2006uo} In this work,
89     tensors were expressed in Cartesian components, using at times a
90     dyadic notation. This proves quite useful for computer simulations
91     that make use of toroidal boundary conditions.
92 gezelter 4399
93 gezelter 4417 An alternative formalism uses the theory of angular momentum and
94     spherical harmonics and is common in standard physics texts such as
95 gezelter 4418 Jackson,\cite{Jackson98} Morse and Feshbach,\cite{Morse:1946zr} and
96     Stone.\cite{Stone:1997ly} Because this approach has its own
97     advantages, relationships are provided below comparing that
98     terminology to the Cartesian tensor notation.
99 gezelter 4404
100 gezelter 4417 The gradient of the electric field,
101     \begin{equation*}
102     \mathsf{G}(\mathbf{r}) = -\nabla \nabla \Phi(\mathbf{r}),
103     \end{equation*}
104     where $\Phi(\mathbf{r})$ is the electrostatic potential. In a
105     charge-free region of space, $\nabla \cdot \mathbf{E}=0$, and
106     $\mathsf{G}$ is a symmetric traceless tensor. From symmetry
107     arguments, we know that this tensor can be written in terms of just
108     five independent components.
109    
110     Following Torres del Castillo and Mend\'{e}z Garido's notation, the
111     gradient of the electric field may also be written in terms of two
112     vectors $\mathbf{a}$ and $\mathbf{b}$,
113     \begin{equation*}
114     G_{ij}=\frac{1}{2} (a_i b_j + a_j b_i) - \frac{1}{3}(\mathbf a \cdot \mathbf b) \delta_{ij} .
115     \end{equation*}
116     If the vectors $\mathbf{a}$ and $\mathbf{b}$ are unit vectors, the
117     electrostatic potential that generates a uniform gradient may be
118     written:
119     \begin{align}
120 gezelter 4418 \Phi(x, y, z) =\; -\frac{g_o}{2} & \left(\left(a_1b_1 -
121     \frac{cos\psi}{3}\right)\;x^2+\left(a_2b_2
122     - \frac{cos\psi}{3}\right)\;y^2 +
123     \left(a_3b_3 -
124     \frac{cos\psi}{3}\right)\;z^2 \right. \nonumber \\
125     & + (a_1b_2 + a_2b_1)\; xy + (a_1b_3 + a_3b_1)\; xz + (a_2b_3 + a_3b_2)\; yz \bigg) .
126 gezelter 4417 \label{eq:appliedPotential}
127     \end{align}
128     Note $\mathbf{a}\cdot\mathbf{a} = \mathbf{b} \cdot \mathbf{b} = 1$,
129     $\mathbf{a} \cdot \mathbf{b}=\cos \psi$, and $g_0$ is the overall
130 gezelter 4418 strength of the potential.
131 gezelter 4417
132 gezelter 4418 Taking the gradient of Eq. (\ref{eq:appliedPotential}), we find the
133     field due to this potential,
134     \begin{equation}
135     \mathbf{E} = -\nabla \Phi
136     =\frac{g_o}{2} \left(\begin{array}{ccc}
137     2(a_1 b_1 - \frac{cos\psi}{3})\; x & +\; (a_1 b_2 + a_2 b_1)\; y & +\; (a_1 b_3 + a_3 b_1)\; z \\
138     (a_2 b_1 + a_1 b_2)\; x & +\; 2(a_2 b_2 - \frac{cos\psi}{3})\; y & +\; (a_2 b_3 + a_3 b_3)\; z \\
139     (a_3 b_1 + a_3 b_2)\; x & +\; (a_3 b_2 + a_2 b_3)\; y & +\; 2(a_3 b_3 - \frac{cos\psi}{3})\; z
140     \end{array} \right),
141     \label{eq:CE}
142     \end{equation}
143     while the gradient of the electric field in this form,
144     \begin{equation}
145     \mathsf{G} = \nabla\mathbf{E}
146     = \frac{g_o}{2}\left(\begin{array}{ccc}
147     2(a_1\; b_1 - \frac{cos\psi}{3}) & (a_1\; b_2 \;+ a_2\; b_1) & (a_1\; b_3 \;+ a_3\; b_1) \\
148     (a_2\; b_1 \;+ a_1\; b_2) & 2(a_2\; b_2 \;- \frac{cos\psi}{3}) & (a_2\; b_3 \;+ a_3\; b_3) \\
149     (a_3\; b_1 \;+ a_3\; b_2) & (a_3\; b_2 \;+ a_2\; b_3) & 2(a_3\; b_3 \;- \frac{cos\psi}{3})
150     \end{array} \right),
151     \label{eq:GC}
152     \end{equation}
153     is uniform over the entire space. Therefore, to describe a uniform
154     gradient in this notation, two unit vectors ($\mathbf{a}$ and
155     $\mathbf{b}$) as well as a potential strength, $g_0$, must be
156     specified. As expected, this requires five independent parameters.
157    
158     The common alternative to the Cartesian notation expresses the
159     electrostatic potential using the notation of Morse and
160     Feshbach,\cite{Morse:1946zr}
161 gezelter 4417 \begin{equation} \label{eq:quad_phi}
162 gezelter 4418 \Phi(x,y,z) = -\left[ a_{20} \frac{2 z^2 -x^2 - y^2}{2}
163 gezelter 4417 + 3 a_{21}^e \,xz + 3 a_{21}^o \,yz
164 gezelter 4418 + 6a_{22}^e \,xy + 3 a_{22}^o (x^2 - y^2) \right].
165 gezelter 4417 \end{equation}
166     Here we use the standard $(l,m)$ form for the $a_{lm}$ coefficients,
167     with superscript $e$ and $o$ denoting even and odd, respectively.
168     This form makes the functional analogy to ``d'' atomic states
169 gezelter 4418 apparent.
170    
171     Applying the gradient operator to Eq. (\ref{eq:quad_phi}) the electric
172     field due to this potential,
173     \begin{equation}
174     \mathbf{E} = -\nabla \Phi
175     = \left(\begin{array}{ccc}
176     \left( 6a_{22}^o -a_{20} \right)\; x &+\; 6a_{22}^e\; y &+\; 3a_{21}^e\; z \\
177     6a_{22}^e\; x & -\; (a_{20} + 6a_{22}^o)\; y & +\; 3a_{21}^o\; z \\
178     3a_{21}^e\; x & +\; 3a_{21}^o\; y & +\; 2a_{20}\; z
179     \end{array} \right),
180     \label{eq:MFE}
181     \end{equation}
182     while the gradient of the electric field in this form is:
183 gezelter 4417 \begin{equation} \label{eq:grad_e2}
184     \mathsf{G} =
185     \begin{pmatrix}
186     6 a_{22}^o - a_{20} & 6a_{22}^e & 3a_{21}^e\\
187     6a_{22}^e & -(a_{20}+6a_{22}^o) & 3a_{21}^o \\
188     3a_{21}^e & 3a_{21}^o & 2a_{20} \\
189     \end{pmatrix} \\
190     \end{equation}
191 gezelter 4418 which is also uniform over the entire space. This form for the
192     gradient can be factored as
193 gezelter 4417 \begin{gather}
194     \begin{aligned}
195     \mathsf{G} = a_{20}
196     \begin{pmatrix}
197     -1 & 0 & 0\\
198     0 & -1 & 0\\
199     0 & 0 & 2\\
200     \end{pmatrix}
201     +3a_{21}^e
202     \begin{pmatrix}
203     0 & 0 & 1\\
204     0 & 0 & 0\\
205     1 & 0 & 0\\
206     \end{pmatrix}
207     +3a_{21}^o
208     \begin{pmatrix}
209     0 & 0 & 0\\
210     0 & 0 & 1\\
211     0 & 1 & 0\\
212     \end{pmatrix}
213     +6a_{22}^e
214     \begin{pmatrix}
215     0 & 1 & 0\\
216     1 & 0 & 0\\
217     0 & 0 & 0\\
218     \end{pmatrix}
219     +6a_{22}^o
220     \begin{pmatrix}
221     1 & 0 & 0\\
222     0 & -1 & 0\\
223     0 & 0 & 0\\
224     \end{pmatrix}
225     \end{aligned}
226     \label{eq:intro_tensors}
227     \end{gather}
228     The five matrices in the expression above represent five different
229 gezelter 4418 symmetric traceless tensors of rank 2.
230 gezelter 4417
231 gezelter 4418 It is useful to find the Cartesian vectors $\mathbf a$ and $\mathbf b$
232     that generate the five types of tensors shown in
233     Eq. (\ref{eq:intro_tensors}). If the two vectors are co-linear, e.g.,
234     $\psi=0$, $\mathbf{a}=(0,0,1)$ and $\mathbf{b}=(0,0,1)$, then
235 gezelter 4417 \begin{equation*}
236     \mathsf{G} = \frac{g_0}{3}
237     \begin{pmatrix}
238     -1 & 0 & 0 \\
239     0 & -1 & 0 \\
240     0 & 0 & 2 \\
241     \end{pmatrix} ,
242     \end{equation*}
243     which is the $a_{20}$ symmetry.
244     To generate the $a_{22}^o$ symmetry, we take:
245     $\mathbf{a}= (\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}},0)$ and
246     $\mathbf{b}=(\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}},0)$
247     and find:
248     \begin{equation*}
249     \mathsf{G}=\frac{g_0}{2}
250     \begin{pmatrix}
251     1 & 0 & 0 \\
252     0 & -1 & 0 \\
253     0 & 0 & 0 \\
254     \end{pmatrix} .
255     \end{equation*}
256     To generate the $a_{22}^e$ symmetry, we take:
257     $\mathbf{a}= (1, 0, 0)$ and $\mathbf{b} = (0,1,0)$ and find:
258     \begin{equation*}
259     \mathsf{G}=\frac{g_0}{2}
260     \begin{pmatrix}
261     0 & 1 & 0 \\
262     1 & 0 & 0 \\
263     0 & 0 & 0 \\
264     \end{pmatrix} .
265     \end{equation*}
266     The pattern is straightforward to continue for the other symmetries.
267    
268     We find the notation of Ref. \onlinecite{Torres-del-Castillo:2006uo}
269 gezelter 4418 helpful when creating specific types of constant gradient electric
270     fields in simulations. For this reason,
271 gezelter 4417 Eqs. (\ref{eq:appliedPotential}), (\ref{eq:GC}), and (\ref{eq:CE}) are
272 gezelter 4418 implemented in our code. In the simulations using constant applied
273     gradients that are mentioned in the main text, we utilized a field
274     with the $a_{22}^e$ symmetry using vectors, $\mathbf{a}= (1, 0, 0)$
275     and $\mathbf{b} = (0,1,0)$.
276 gezelter 4417
277     \section{Point-multipolar interactions with a spatially-varying electric field}
278    
279     This section develops formulas for the force and torque exerted by an
280     external electric field, $\mathbf{E}(\mathbf{r})$, on object
281     $a$. Object $a$ has an embedded collection of charges and in
282     simulations will represent a molecule, ion, or a coarse-grained
283     substructure. We describe the charge distributions using primitive
284     multipoles defined in Ref. \onlinecite{PaperI} by
285     \begin{align}
286     C_a =&\sum_{k \, \text{in }a} q_k , \label{eq:charge} \\
287     D_{a\alpha} =&\sum_{k \, \text{in }a} q_k r_{k\alpha}, \label{eq:dipole}\\
288     Q_{a\alpha\beta} =& \frac{1}{2} \sum_{k \, \text{in } a} q_k
289     r_{k\alpha} r_{k\beta},
290     \label{eq:quadrupole}
291     \end{align}
292     where $\mathbf{r}_k$ is the local coordinate system for the object
293     (usually the center of mass of object $a$). Components of vectors and
294 gezelter 4418 tensors are given using the Einstein repeated summation notation. Note
295     that the definition of the primitive quadrupole here differs from the
296     standard traceless form, and contains an additional Taylor-series
297     based factor of $1/2$. In Ref. \onlinecite{PaperI}, we derived the
298     forces and torques each object exerts on the other objects in the
299     system.
300 gezelter 4417
301     Here we must also consider an external electric field that varies in
302     space: $\mathbf E(\mathbf r)$. Each of the local charges $q_k$ in
303     object $a$ will then experience a slightly different field. This
304     electric field can be expanded in a Taylor series around the local
305     origin of each object. For a particular charge $q_k$, the electric
306     field at that site's position is given by:
307     \begin{equation}
308     \mathbf{E}(\mathbf{r}_k) = E_\gamma|_{\mathbf{r}_k = 0} + \nabla_\delta E_\gamma |_{\mathbf{r}_k = 0} r_{k \delta}
309     + \frac {1}{2} \nabla_\delta \nabla_\varepsilon E_\gamma|_{\mathbf{r}_k = 0} r_{k \delta}
310     r_{k \varepsilon} + ...
311     \end{equation}
312 gezelter 4418 Note that if one shrinks object $a$ to a single point, the
313     ${E}_\gamma$ terms are all evaluated at the center of the object (now
314     a point). Thus later the ${E}_\gamma$ terms can be written using the
315     same (molecular) origin for all point charges in the object. The force
316     exerted on object $a$ by the electric field is given by,
317 gezelter 4417 \begin{align}
318     F^a_\gamma = \sum_{k \textrm{~in~} a} E_\gamma(\mathbf{r}_k) &= \sum_{k \textrm{~in~} a} q_k \lbrace E_\gamma + \nabla_\delta E_\gamma r_{k \delta}
319     + \frac {1}{2} \nabla_\delta \nabla_\varepsilon E_\gamma r_{k \delta}
320     r_{k \varepsilon} + ... \rbrace \\
321     &= C_a E_\gamma + D_{a \delta} \nabla_\delta E_\gamma
322     + Q_{a \delta \varepsilon} \nabla_\delta \nabla_\varepsilon E_\gamma +
323     ...
324     \end{align}
325 gezelter 4418 Thus in terms of the global origin $\mathbf{r}$, ${F}_\gamma(\mathbf{r}) = C {E}_\gamma(\mathbf{r})$ etc.
326 gezelter 4417
327     Similarly, the torque exerted by the field on $a$ can be expressed as
328     \begin{align}
329     \tau^a_\alpha &= \sum_{k \textrm{~in~} a} (\mathbf r_k \times q_k \mathbf E)_\alpha \\
330     & = \sum_{k \textrm{~in~} a} \epsilon_{\alpha \beta \gamma} q_k
331     r_{k\beta} E_\gamma(\mathbf r_k) \\
332     & = \epsilon_{\alpha \beta \gamma} D_\beta E_\gamma
333     + 2 \epsilon_{\alpha \beta \gamma} Q_{\beta \delta} \nabla_\delta
334     E_\gamma + ...
335     \end{align}
336     We note that the Levi-Civita symbol can be eliminated by utilizing the matrix cross product as defined in Ref. \onlinecite{Smith98}:
337     \begin{equation}
338     \left[\mathsf{A} \times \mathsf{B}\right]_\alpha = \sum_\beta
339     \left[\mathsf{A}_{\alpha+1,\beta} \mathsf{B}_{\alpha+2,\beta}
340     -\mathsf{A}_{\alpha+2,\beta} \mathsf{B}_{\alpha+1,\beta}
341     \right]
342     \label{eq:matrixCross}
343     \end{equation}
344     where $\alpha+1$ and $\alpha+2$ are regarded as cyclic permuations of
345     the matrix indices. Finally, the interaction energy $U^a$ of object $a$ with the external field is given by,
346     \begin{equation}
347     U^a = \sum_{k~in~a} q_k \phi_k (\mathrm{r}_k)
348     \end{equation}
349     Performing another Taylor series expansion about the local body origin,
350     \begin{equation}
351     \phi({\mathbf{r}_k}) = \phi|_{\mathbf{r}_k = 0 } + r_{k \alpha} \nabla_\alpha \phi_\alpha|_{\mathbf{r}_k = 0 } + \frac{1}{2} r_{k\alpha}r_{k\beta}\nabla_\alpha \nabla_\beta \phi|_{\mathbf{r}_k = 0} + ...
352     \end{equation}
353     Writing this in terms of the global origin $\mathrm{r}$, we find
354     \begin{equation}
355     U(\mathbf{r}) = \mathrm{C} \phi(\mathbf{r}) - \mathrm{D}_\alpha \mathrm{E}_\alpha - \mathrm{Q}_{\alpha\beta}\nabla_\alpha \mathrm{E}_\beta + ...
356     \end{equation}
357 gezelter 4418 These results have been summarized in Table \ref{tab:UFT}.
358 gezelter 4417
359     \begin{table}
360     \caption{Potential energy $(U)$, force $(\mathbf{F})$, and torque
361 gezelter 4418 $(\mathbf{\tau})$ expressions for a multipolar site at $\mathbf{r}$ in an
362     electric field, $\mathbf{E}(\mathbf{r})$ using the definitions of the multipoles in Eqs. (\ref{eq:charge}), (\ref{eq:dipole}) and (\ref{eq:quadrupole}).
363     \label{tab:UFT}}
364     \begin{tabular}{r|C{3cm}C{3cm}C{3cm}}
365 gezelter 4417 & Charge & Dipole & Quadrupole \\ \hline
366     $U(\mathbf{r})$ & $C \phi(\mathbf{r})$ & $-\mathbf{D} \cdot \mathbf{E}(\mathbf{r})$ & $- \mathsf{Q}:\nabla \mathbf{E}(\mathbf{r})$ \\
367     $\mathbf{F}(\mathbf{r})$ & $C \mathbf{E}(\mathbf{r})$ & $\mathbf{D} \cdot \nabla \mathbf{E}(\mathbf{r})$ & $\mathsf{Q} : \nabla\nabla\mathbf{E}(\mathbf{r})$ \\
368     $\mathbf{\tau}(\mathbf{r})$ & & $\mathbf{D} \times \mathbf{E}(\mathbf{r})$ & $2 \mathsf{Q} \times \nabla \mathbf{E}(\mathbf{r})$
369     \end{tabular}
370     \end{table}
371    
372 gezelter 4399 \section{Boltzmann averages for orientational polarization}
373 gezelter 4418 The dielectric properties of the system mainly arise from two
374 gezelter 4399 different ways: i) the applied field distort the charge distributions
375     so it produces an induced multipolar moment in each molecule; and ii)
376     the applied field tends to line up originally randomly oriented
377     molecular moment towards the direction of the applied field. In this
378     study, we basically focus on the orientational contribution in the
379     dielectric properties. If we consider a system of molecules in the
380     presence of external field perturbation, the perturbation experienced
381     by any molecule will not be only due to external field or field
382     gradient but also due to the field or field gradient produced by the
383     all other molecules in the system. In the following subsections
384     \ref{subsec:boltzAverage-Dipole} and \ref{subsec:boltzAverage-Quad},
385     we will discuss about the molecular polarization only due to external
386     field perturbation. The contribution of the field or field gradient
387     due to all other molecules will be taken into account while
388 mlamichh 4409 calculating correction factor in the paper.
389 gezelter 4399
390     \subsection{Dipoles}
391     \label{subsec:boltzAverage-Dipole}
392     Consider a system of molecules, each with permanent dipole moment
393     $p_o$. In the absense of external field, thermal agitation orients the
394     dipoles randomly, reducing the system moment to zero. External fields
395     will tend to line up the dipoles in the direction of applied field.
396     Here we have considered net field from all other molecules is
397     considered to be zero. Therefore the total Hamiltonian of each
398     molecule is,\cite{Jackson98}
399     \begin{equation}
400 mlamichh 4410 H = H_o - \mathbf{p_o}\cdot \mathbf{E},
401 gezelter 4399 \end{equation}
402     where $H_o$ is a function of the internal coordinates of the molecule.
403     The Boltzmann average of the dipole moment is given by,
404     \begin{equation}
405     \braket{p_{mol}} = \frac{\displaystyle\int d\Omega\; p_o\; cos\theta\; e^{\frac{p_oE\; cos\theta}{k_B T}}}{\displaystyle\int d\Omega\; e^{\frac{p_oE\;cos\theta}{k_B T}}},
406     \end{equation}
407     where $\bf{E}$ is selected along z-axis. If we consider that the
408     applied field is small, \textit{i.e.} $\frac{p_oE\; cos\theta}{k_B T} << 1$,
409     \begin{equation}
410     \braket{p_{mol}} \approx \frac{1}{3}\frac{{p_o}^2}{k_B T}E,
411     \end{equation}
412     where $ \alpha_p = \frac{1}{3}\frac{{p_o}^2}{k_B T}$ is a molecular
413     polarizability. The orientational polarization depends inversely on
414     the temperature and applied field must overcome the thermal agitation.
415    
416     \subsection{Quadrupoles}
417     \label{subsec:boltzAverage-Quad}
418     Consider a system of molecules with permanent quadrupole moment
419 mlamichh 4409 $q_{\alpha\beta}$. The average quadrupole moment at temperature T in
420 gezelter 4399 the presence of uniform applied field gradient is given
421     by,\cite{AduGyamfi78, AduGyamfi81}
422     \begin{equation}
423     \braket{q_{\alpha\beta}} \;=\; \frac{\displaystyle\int d\Omega\; e^{-\frac{H}{k_B T}}q_{\alpha\beta}}{\displaystyle\int d\Omega\; e^{-\frac{H}{k_B T}}} \;=\; \frac{\displaystyle\int d\Omega\; e^{\frac{q_{\mu\nu}\;\partial_\nu E_\mu}{k_B T}}q_{\alpha\beta}}{\displaystyle\int d\Omega\; e^{\frac{q_{\mu\nu}\;\partial_\nu E_\mu}{k_B T}}},
424     \label{boltzQuad}
425     \end{equation}
426     where $\int d\Omega = \int_0^{2\pi} \int_0^\pi \int_0^{2\pi}
427     sin\theta\; d\theta\ d\phi\ d\psi$ is the integration over Euler
428     angles, $ H = H_o -q_{\mu\nu}\;\partial_\nu E_\mu $ is the energy of
429     a quadrupole in the gradient of the
430     applied field and $ H_o$ is a function of internal coordinates of the molecule. The energy and quadrupole moment can be transformed into body frame using following relation,
431     \begin{equation}
432     \begin{split}
433     &q_{\alpha\beta} = \eta_{\alpha\alpha'}\;\eta_{\beta\beta'}\;{q}^* _{\alpha'\beta'} \\
434 mlamichh 4409 &H = H_o - q:{\nabla}\mathbf{E} = H_o - q_{\mu\nu}\;\partial_\nu E_\mu = H_o -\eta_{\mu\mu'}\;\eta_{\nu\nu'}\;{q}^*_{\mu'\nu'}\;\partial_\nu E_\mu.
435 gezelter 4399 \end{split}
436     \label{energyQuad}
437     \end{equation}
438     Here the starred tensors are the components in the body fixed
439     frame. Substituting equation (\ref{energyQuad}) in the equation (\ref{boltzQuad})
440     and taking linear terms in the expansion we get,
441     \begin{equation}
442     \braket{q_{\alpha\beta}} = \frac{ \int d\Omega \left(1 + \frac{\eta_{\mu\mu'}\;\eta_{\nu\nu'}\;{q}^*_{\mu'\nu'}\;\partial_\nu E_\mu }{k_B T}\right)q_{\alpha\beta}}{ \int d\Omega \left(1 + \frac{\eta_{\mu\mu'}\;\eta_{\nu\nu'}\;{q}^*_{\mu'\nu'}\;\partial_\nu E_\mu }{k_B T}\right)},
443     \end{equation}
444     where $\eta_{\alpha\alpha'}$ is the inverse of the rotation matrix that transforms
445 gezelter 4418 the body fixed co-ordinates to the space co-ordinates.
446     % \[\eta_{\alpha\alpha'}
447     % = \left(\begin{array}{ccc}
448     % cos\phi\; cos\psi - cos\theta\; sin\phi\; sin\psi & -cos\theta\; cos\psi\; sin\phi - cos\phi\; sin\psi & sin\theta\; sin\phi \\
449     % cos\psi\; sin\phi + cos\theta\; cos\phi \; sin\psi & cos\theta\; cos\phi\; cos\psi - sin\phi\; sin\psi & -cos\phi\; sin\theta \\
450     % sin\theta\; sin\psi & -cos\psi\; sin\theta & cos\theta
451     % \end{array} \right).\]
452    
453 gezelter 4399 Integration of 1st and 2nd terms in the denominator gives $8 \pi^2$
454 mlamichh 4409 and $8 \pi^2 /3\;{\nabla}.\mathbf{E}\; Tr(q^*) $ respectively. The
455     second term vanishes for charge free space, ${\nabla}.\mathbf{E} \; = \; 0$. Similarly integration of the
456 gezelter 4399 1st term in the numerator produces
457     $8 \pi^2 /3\; Tr(q^*)\delta_{\alpha\beta}$ and the 2nd term produces
458     $8 \pi^2 /15k_B T (3{q}^*_{\alpha'\beta'}{q}^*_{\beta'\alpha'} -
459     {q}^*_{\alpha'\alpha'}{q}^*_{\beta'\beta'})\partial_\alpha E_\beta$,
460 mlamichh 4409 if ${\nabla}.\mathbf{E} \; = \; 0$,
461 gezelter 4399 $ \partial_\alpha E_\beta = \partial_\beta E_\alpha$ and
462     ${q}^*_{\alpha'\beta'}= {q}^*_{\beta'\alpha'}$. Therefore the
463     Boltzmann average of a quadrupole moment can be written as,
464    
465     \begin{equation}
466     \braket{q_{\alpha\beta}}\; = \; \frac{1}{3} Tr(q^*)\;\delta_{\alpha\beta} + \frac{{\bar{q_o}}^2}{15k_BT}\;\partial_\alpha E_\beta,
467     \end{equation}
468 mlamichh 4409 where $ \alpha_q = \frac{{\bar{q_o}}^2}{15k_BT} $ is a molecular quadrupole polarizablity and ${\bar{q_o}}^2=
469 gezelter 4399 3{q}^*_{\alpha'\beta'}{q}^*_{\beta'\alpha'}-{q}^*_{\alpha'\alpha'}{q}^*_{\beta'\beta'}$ is a square of the net quadrupole moment of a molecule.
470    
471 gezelter 4404 \section{Gradient of the field due to quadrupolar polarization}
472     \label{singularQuad}
473     In this section, we will discuss the gradient of the field produced by
474     quadrupolar polarization. For this purpose, we consider a distribution
475 mlamichh 4409 of charge ${\rho}(\mathbf r)$ which gives rise to an electric field
476     $\mathbf{E}(\mathbf r)$ and gradient of the field ${\nabla} \mathbf{E}(\mathbf r)$
477 gezelter 4404 throughout space. The total gradient of the electric field over volume
478     due to the all charges within the sphere of radius $R$ is given by
479     (cf. Jackson equation 4.14):
480     \begin{equation}
481 mlamichh 4409 \int_{r<R} {\nabla}\mathbf{E}\;d^3r = -\int_{r=R} R^2 \mathbf{E}\;\hat{n}\; d\Omega
482 gezelter 4404 \label{eq:8}
483     \end{equation}
484     where $d\Omega$ is the solid angle and $\hat{n}$ is the normal vector
485 mlamichh 4409 of the surface of the sphere,
486     $\hat{n} = sin[\theta]cos[\phi]\hat{x} + sin[\theta]sin[\phi]\hat{y} +
487 gezelter 4404 cos[\theta]\hat{z}$
488 mlamichh 4409 in spherical coordinates. For the charge density ${\rho}(\mathbf r')$, the
489     total gradient of the electric field can be written as, ~\cite{Jackson98}
490 gezelter 4404 \begin{equation}
491 mlamichh 4409 \int_{r<R} {\nabla}\mathbf {E}\; d^3r=-\int_{r=R} R^2\; {\nabla}\Phi\; \hat{n}\; d\Omega =-\frac{1}{4\pi\;\epsilon_o}\int_{r=R} R^2\; {\nabla}\;\left(\int \frac{\rho(\mathbf r')}{|\mathbf{r}-\mathbf{r}'|}\;d^3r'\right) \hat{n}\; d\Omega
492 gezelter 4404 \label{eq:9}
493     \end{equation}
494     The radial function in the equation (\ref{eq:9}) can be expressed in
495 mlamichh 4409 terms of spherical harmonics as,\cite{Jackson98}
496 gezelter 4404 \begin{equation}
497 mlamichh 4409 \frac{1}{|\mathbf{r} - \mathbf{r}'|} = 4\pi \sum_{l=0}^{\infty}\sum_{m=-l}^{m=l}\frac{1}{2l+1}\;\frac{{r^l_<}}{{r^{l+1}_>}}\;{Y^*}_{lm}(\theta', \phi')\;Y_{lm}(\theta, \phi)
498 gezelter 4404 \label{eq:10}
499     \end{equation}
500     If the sphere completely encloses the charge density then $ r_< = r'$ and $r_> = R$. Substituting equation (\ref{eq:10}) into (\ref{eq:9}) we get,
501     \begin{equation}
502     \begin{split}
503 mlamichh 4409 \int_{r<R} {\nabla}\mathbf{E}\;d^3r &=-\frac{R^2}{\epsilon_o}\int_{r=R} \; {\nabla}\;\left(\int \rho(\mathbf r')\sum_{l=0}^{\infty}\sum_{m=-l}^{m=l}\frac{1}{2l+1}\;\frac{{r'^l}}{{R^{l+1}}}\;{Y^*}_{lm}(\theta', \phi')\;Y_{lm}(\theta, \phi)\;d^3r'\right) \hat{n}\; d\Omega \\
504     &= -\frac{R^2}{\epsilon_o}\sum_{l=0}^{\infty}\sum_{m=-l}^{m=l}\frac{1}{2l+1}\;\int \rho(\mathbf r')\;{r'^l}\;{Y^*}_{lm}(\theta', \phi')\left(\int_{r=R}\vec{\nabla}\left({R^{-(l+1)}}\;Y_{lm}(\theta, \phi)\right)\hat{n}\; d\Omega \right)d^3r
505 gezelter 4404 '
506     \end{split}
507     \label{eq:11}
508     \end{equation}
509     The gradient of the product of radial function and spherical harmonics
510 mlamichh 4409 is given by:\cite{Arfkan}
511 gezelter 4404 \begin{equation}
512     \begin{split}
513 mlamichh 4409 {\nabla}\left[ f(r)\;Y_{lm}(\theta, \phi)\right] = &-\left(\frac{l+1}{2l+1}\right)^{1/2}\; \left[\frac{\partial}{\partial r}-\frac{l}{r} \right]f(r)\; Y_{l, l+1, m}(\theta, \phi)\\ &+ \left(\frac{l}{2l+1}\right)^{1/2}\left[\frac
514 gezelter 4404 {\partial}{\partial r}+\frac{l}{r} \right]f(r)\; Y_{l, l-1, m}(\theta, \phi).
515     \end{split}
516     \label{eq:12}
517     \end{equation}
518     Using equation (\ref{eq:12}) we get,
519     \begin{equation}
520 mlamichh 4409 {\nabla}\left({R^{-(l+1)}}\;Y_{lm}(\theta, \phi)\right) = [(l+1)(2l+1)]^{1/2}\; Y_{l,l+1,m}(\theta, \phi) \; \frac{1}{R^{l+2}},
521 gezelter 4404 \label{eq:13}
522     \end{equation}
523 mlamichh 4409 where $ Y_{l,l+1,m}(\theta, \phi)$ is a vector spherical harmonics \cite{Arfkan}. Using Clebsch-Gorden coefficients $C(l+1, 1, l|m_1,m_2,m) $, equation \ref{eq:14} can be written in spherical harmonics,
524 gezelter 4404 \begin{equation}
525 mlamichh 4409 Y_{l,l+1,m}(\theta, \phi) = \sum_{m_1, m_2} C(l+1,1,l|m_1,m_2,m)\; {Y_{l+1}}^{m_1}(\theta,\phi)\; \hat{e}_{m_2}.
526 gezelter 4404 \label{eq:14}
527     \end{equation}
528 mlamichh 4409 Here $\hat{e}_{m_2}$ is a spherical tensor of rank 1 which can be expressed
529 gezelter 4404 in terms of Cartesian coordinates,
530     \begin{equation}
531 mlamichh 4409 {\hat{e}}_{+1} = - \frac{\hat{x}+i\hat{y}}{\sqrt{2}},\quad {\hat{e}}_{0} = \hat{z},\quad and \quad {\hat{e}}_{-1} = \frac{\hat{x}-i\hat{y}}{\sqrt{2}}.
532 gezelter 4404 \label{eq:15}
533     \end{equation}
534 mlamichh 4409 The normal vector $\hat{n} $ is then expressed in terms of spherical tensor of rank 1 as shown in below,
535 gezelter 4404 \begin{equation}
536 mlamichh 4409 \hat{n} = \sqrt{\frac{4\pi}{3}}\left(-{Y_1}^{-1}{\hat{e}}_1 -{Y_1}^{1}{\hat{e}}_{-1} + {Y_1}^{0}{\hat{e}}_0 \right).
537 gezelter 4404 \label{eq:16}
538     \end{equation}
539     The surface integral of the product of $\hat{n}$ and
540     ${Y_{l+1}}^{m_1}(\theta, \phi)$ gives,
541     \begin{equation}
542     \begin{split}
543     \int \hat{n}\;{Y_{l+1}}^{m_1}\;d\Omega &= \int \sqrt{\frac{4\pi}{3}}\left(-{Y_1}^{-1}{\hat{e}}_1 -{Y_1}^{1}{\hat{e}}_{-1} + {Y_1}^{0}{\hat{e}}_0 \right)\;{Y_{l+1}}^{m_1}\; d\Omega \\
544     &= \int \sqrt{\frac{4\pi}{3}}\left({{Y_1}^{1}}^* {\hat{e}}_1 +{{Y_1}^{-1}}^* {\hat{e}}_{-1} + {{Y_1}^{0}}^* {\hat{e}}_0 \right)\;{Y_{l+1}}^{m_1}\; d\Omega \\
545     &= \sqrt{\frac{4\pi}{3}}\left({\delta}_{l+1, 1}\;{\delta}_{1, m_1}\;{\hat{e}}_1 + {\delta}_{l+1, 1}\;{\delta}_{-1, m_1}\;{\hat{e}}_{-1}+ {\delta}_{l+1, 1}\;{\delta}_{0, m_1} \;{\hat{e}}_0\right),
546     \end{split}
547     \label{eq:17}
548     \end{equation}
549     where ${Y_{l}}^{-m} = (-1)^m\;{{Y_{l}}^{m}}^* $ and
550     $ \int {{Y_{l}}^{m}}^*\;{Y_{l'}}^{m'}\;d\Omega =
551     \delta_{ll'}\delta_{mm'} $.
552     Non-vanishing values of equation \ref{eq:17} require $l = 0$,
553     therefore the value of $ m = 0 $. Since the values of $ m_1$ are -1,
554     1, and 0 then $m_2$ takes the values 1, -1, and 0, respectively
555     provided that $m = m_1 + m_2$. Equation \ref{eq:11} can therefore be
556     modified,
557     \begin{equation}
558     \begin{split}
559 mlamichh 4409 \int_{r<R} {\nabla}\mathbf{E}\;d^3r = &- \sqrt{\frac{4\pi}{{3}}}\;\frac{1}{\epsilon_o}\int \rho(r')\;{Y^*}_{00}(\theta', \phi')[ C(1, 1, 0|-1,1,0)\;{\hat{e}_{-1}}{\hat{e}_{1}}\\ &+ C(1, 1, 0|-1,1,0)\;{\hat{e}_{1}}{\hat{e}_{-1}}+C(
560     1, 1, 0|0,0,0)\;{\hat{e}_{0}}{\hat{e}_{0}} ]\; d^3r' \\
561     &= -\sqrt{\frac{4\pi}{{3}}}\;\frac{1}{\epsilon_o}\int \rho(r')\;d^3r'\left({\hat{e}_{-1}}{\hat{e}_{1}}+{\hat{e}_{1}}{\hat{e}_{-1}}-{\hat{e}_{0}}{\hat{e}_{0}}\right)\\
562 gezelter 4404 &= - \sqrt{\frac{4\pi}{{3}}}\;\frac{1}{\epsilon_o}\;C_{total}\;\left({\hat{e}_{-1}}{\hat{e}_{1}}+{\hat{e}_{1}}{\hat{e}_{-1}}-{\hat{e}_{0}}{\hat{e}_{0}}\right).
563     \end{split}
564     \label{eq:19}
565     \end{equation}
566 mlamichh 4409 In the last step, the charge density was integrated over the sphere, yielding a total charge $\mathrm{C_total}$.Equation (\ref{eq:19}) gives the total gradient of the field over a sphere due to the distribution of the charges.
567     For quadrupolar fluids the total charge within a sphere is zero, therefore
568     $ \int_{r<R} {\nabla}\mathbf{E}\;d^3r = 0 $. Hence the quadrupolar
569 gezelter 4404 polarization produces zero net gradient of the field inside the
570     sphere.
571    
572 gezelter 4418 \section{Geometric Factors for Two Embedded Point Charges}
573 gezelter 4404
574 gezelter 4399 \bibliography{dielectric_new}
575     \end{document}
576     %
577     % ****** End of file multipole.tex ******