ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/multipole/Dielectric_Supplemental.tex
Revision: 4409
Committed: Wed Mar 30 21:09:54 2016 UTC (9 years, 5 months ago) by mlamichh
Content type: application/x-tex
File size: 21239 byte(s)
Log Message:
corrected supplemental materials

File Contents

# User Rev Content
1 gezelter 4399 % ****** Start of file aipsamp.tex ******
2     %
3     % This file is part of the AIP files in the AIP distribution for REVTeX 4.
4     % Version 4.1 of REVTeX, October 2009
5     %
6     % Copyright (c) 2009 American Institute of Physics.
7     %
8     % See the AIP README file for restrictions and more information.
9     %
10     % TeX'ing this file requires that you have AMS-LaTeX 2.0 installed
11     % as well as the rest of the prerequisites for REVTeX 4.1
12     %
13     % It also requires running BibTeX. The commands are as follows:
14     %
15     % 1) latex aipsamp
16     % 2) bibtex aipsamp
17     % 3) latex aipsamp
18     % 4) latex aipsamp
19     %
20     % Use this file as a source of example code for your aip document.
21     % Use the file aiptemplate.tex as a template for your document.
22     \documentclass[%
23     aip,jcp,
24     amsmath,amssymb,
25     preprint,%
26     % reprint,%
27     %author-year,%
28     %author-numerical,%
29     jcp]{revtex4-1}
30    
31     \usepackage{graphicx}% Include figure files
32     \usepackage{dcolumn}% Align table columns on decimal point
33     %\usepackage{bm}% bold math
34     \usepackage{times}
35     \usepackage[version=3]{mhchem} % this is a great package for formatting chemical reactions
36     \usepackage{url}
37     \usepackage{rotating}
38 gezelter 4404 \usepackage{braket}
39 gezelter 4399
40 gezelter 4404
41 gezelter 4399 %\usepackage[mathlines]{lineno}% Enable numbering of text and display math
42     %\linenumbers\relax % Commence numbering lines
43    
44     \begin{document}
45    
46     \title[Real space electrostatics for multipoles. III. Dielectric Properties]
47     {Supplemental Material for: Real space electrostatics for multipoles. III. Dielectric Properties}
48    
49     \author{Madan Lamichhane}
50     \affiliation{Department of Physics, University
51     of Notre Dame, Notre Dame, IN 46556}
52     \author{Thomas Parsons}
53     \affiliation{Department of Chemistry and Biochemistry, University
54     of Notre Dame, Notre Dame, IN 46556}
55     \author{Kathie E. Newman}
56     \affiliation{Department of Physics, University
57     of Notre Dame, Notre Dame, IN 46556}
58     \author{J. Daniel Gezelter}
59     \email{gezelter@nd.edu.}
60     \affiliation{Department of Chemistry and Biochemistry, University
61     of Notre Dame, Notre Dame, IN 46556}
62    
63     \date{\today}% It is always \today, today,
64     % but any date may be explicitly specified
65    
66     \maketitle
67    
68     \newpage
69    
70 gezelter 4404
71 gezelter 4399 \section{Boltzmann averages for orientational polarization}
72     The dielectric properties of the system is mainly arise from two
73     different ways: i) the applied field distort the charge distributions
74     so it produces an induced multipolar moment in each molecule; and ii)
75     the applied field tends to line up originally randomly oriented
76     molecular moment towards the direction of the applied field. In this
77     study, we basically focus on the orientational contribution in the
78     dielectric properties. If we consider a system of molecules in the
79     presence of external field perturbation, the perturbation experienced
80     by any molecule will not be only due to external field or field
81     gradient but also due to the field or field gradient produced by the
82     all other molecules in the system. In the following subsections
83     \ref{subsec:boltzAverage-Dipole} and \ref{subsec:boltzAverage-Quad},
84     we will discuss about the molecular polarization only due to external
85     field perturbation. The contribution of the field or field gradient
86     due to all other molecules will be taken into account while
87 mlamichh 4409 calculating correction factor in the paper.
88 gezelter 4399
89     \subsection{Dipoles}
90     \label{subsec:boltzAverage-Dipole}
91     Consider a system of molecules, each with permanent dipole moment
92     $p_o$. In the absense of external field, thermal agitation orients the
93     dipoles randomly, reducing the system moment to zero. External fields
94     will tend to line up the dipoles in the direction of applied field.
95     Here we have considered net field from all other molecules is
96     considered to be zero. Therefore the total Hamiltonian of each
97     molecule is,\cite{Jackson98}
98     \begin{equation}
99 mlamichh 4409 H = H_o - \bf{p_o}\cdot \mathbf{E},
100 gezelter 4399 \end{equation}
101     where $H_o$ is a function of the internal coordinates of the molecule.
102     The Boltzmann average of the dipole moment is given by,
103     \begin{equation}
104     \braket{p_{mol}} = \frac{\displaystyle\int d\Omega\; p_o\; cos\theta\; e^{\frac{p_oE\; cos\theta}{k_B T}}}{\displaystyle\int d\Omega\; e^{\frac{p_oE\;cos\theta}{k_B T}}},
105     \end{equation}
106     where $\bf{E}$ is selected along z-axis. If we consider that the
107     applied field is small, \textit{i.e.} $\frac{p_oE\; cos\theta}{k_B T} << 1$,
108     \begin{equation}
109     \braket{p_{mol}} \approx \frac{1}{3}\frac{{p_o}^2}{k_B T}E,
110     \end{equation}
111     where $ \alpha_p = \frac{1}{3}\frac{{p_o}^2}{k_B T}$ is a molecular
112     polarizability. The orientational polarization depends inversely on
113     the temperature and applied field must overcome the thermal agitation.
114    
115     \subsection{Quadrupoles}
116     \label{subsec:boltzAverage-Quad}
117     Consider a system of molecules with permanent quadrupole moment
118 mlamichh 4409 $q_{\alpha\beta}$. The average quadrupole moment at temperature T in
119 gezelter 4399 the presence of uniform applied field gradient is given
120     by,\cite{AduGyamfi78, AduGyamfi81}
121     \begin{equation}
122     \braket{q_{\alpha\beta}} \;=\; \frac{\displaystyle\int d\Omega\; e^{-\frac{H}{k_B T}}q_{\alpha\beta}}{\displaystyle\int d\Omega\; e^{-\frac{H}{k_B T}}} \;=\; \frac{\displaystyle\int d\Omega\; e^{\frac{q_{\mu\nu}\;\partial_\nu E_\mu}{k_B T}}q_{\alpha\beta}}{\displaystyle\int d\Omega\; e^{\frac{q_{\mu\nu}\;\partial_\nu E_\mu}{k_B T}}},
123     \label{boltzQuad}
124     \end{equation}
125     where $\int d\Omega = \int_0^{2\pi} \int_0^\pi \int_0^{2\pi}
126     sin\theta\; d\theta\ d\phi\ d\psi$ is the integration over Euler
127     angles, $ H = H_o -q_{\mu\nu}\;\partial_\nu E_\mu $ is the energy of
128     a quadrupole in the gradient of the
129     applied field and $ H_o$ is a function of internal coordinates of the molecule. The energy and quadrupole moment can be transformed into body frame using following relation,
130     \begin{equation}
131     \begin{split}
132     &q_{\alpha\beta} = \eta_{\alpha\alpha'}\;\eta_{\beta\beta'}\;{q}^* _{\alpha'\beta'} \\
133 mlamichh 4409 &H = H_o - q:{\nabla}\mathbf{E} = H_o - q_{\mu\nu}\;\partial_\nu E_\mu = H_o -\eta_{\mu\mu'}\;\eta_{\nu\nu'}\;{q}^*_{\mu'\nu'}\;\partial_\nu E_\mu.
134 gezelter 4399 \end{split}
135     \label{energyQuad}
136     \end{equation}
137     Here the starred tensors are the components in the body fixed
138     frame. Substituting equation (\ref{energyQuad}) in the equation (\ref{boltzQuad})
139     and taking linear terms in the expansion we get,
140     \begin{equation}
141     \braket{q_{\alpha\beta}} = \frac{ \int d\Omega \left(1 + \frac{\eta_{\mu\mu'}\;\eta_{\nu\nu'}\;{q}^*_{\mu'\nu'}\;\partial_\nu E_\mu }{k_B T}\right)q_{\alpha\beta}}{ \int d\Omega \left(1 + \frac{\eta_{\mu\mu'}\;\eta_{\nu\nu'}\;{q}^*_{\mu'\nu'}\;\partial_\nu E_\mu }{k_B T}\right)},
142     \end{equation}
143     where $\eta_{\alpha\alpha'}$ is the inverse of the rotation matrix that transforms
144     the body fixed co-ordinates to the space co-ordinates,
145     \[\eta_{\alpha\alpha'}
146     = \left(\begin{array}{ccc}
147     cos\phi\; cos\psi - cos\theta\; sin\phi\; sin\psi & -cos\theta\; cos\psi\; sin\phi - cos\phi\; sin\psi & sin\theta\; sin\phi \\
148     cos\psi\; sin\phi + cos\theta\; cos\phi \; sin\psi & cos\theta\; cos\phi\; cos\psi - sin\phi\; sin\psi & -cos\phi\; sin\theta \\
149     sin\theta\; sin\psi & -cos\psi\; sin\theta & cos\theta
150     \end{array} \right).\]
151     Integration of 1st and 2nd terms in the denominator gives $8 \pi^2$
152 mlamichh 4409 and $8 \pi^2 /3\;{\nabla}.\mathbf{E}\; Tr(q^*) $ respectively. The
153     second term vanishes for charge free space, ${\nabla}.\mathbf{E} \; = \; 0$. Similarly integration of the
154 gezelter 4399 1st term in the numerator produces
155     $8 \pi^2 /3\; Tr(q^*)\delta_{\alpha\beta}$ and the 2nd term produces
156     $8 \pi^2 /15k_B T (3{q}^*_{\alpha'\beta'}{q}^*_{\beta'\alpha'} -
157     {q}^*_{\alpha'\alpha'}{q}^*_{\beta'\beta'})\partial_\alpha E_\beta$,
158 mlamichh 4409 if ${\nabla}.\mathbf{E} \; = \; 0$,
159 gezelter 4399 $ \partial_\alpha E_\beta = \partial_\beta E_\alpha$ and
160     ${q}^*_{\alpha'\beta'}= {q}^*_{\beta'\alpha'}$. Therefore the
161     Boltzmann average of a quadrupole moment can be written as,
162    
163     \begin{equation}
164     \braket{q_{\alpha\beta}}\; = \; \frac{1}{3} Tr(q^*)\;\delta_{\alpha\beta} + \frac{{\bar{q_o}}^2}{15k_BT}\;\partial_\alpha E_\beta,
165     \end{equation}
166 mlamichh 4409 where $ \alpha_q = \frac{{\bar{q_o}}^2}{15k_BT} $ is a molecular quadrupole polarizablity and ${\bar{q_o}}^2=
167 gezelter 4399 3{q}^*_{\alpha'\beta'}{q}^*_{\beta'\alpha'}-{q}^*_{\alpha'\alpha'}{q}^*_{\beta'\beta'}$ is a square of the net quadrupole moment of a molecule.
168    
169 gezelter 4404 \section{External application of a uniform field gradient}
170     \label{Ap:fieldOrGradient}
171 gezelter 4399
172 mlamichh 4409 To satisfy the condition $ \nabla \cdot \mathbf{E} = 0 $, within the box of molecules we have taken electrostatic potential in the following form
173 gezelter 4404 \begin{equation}
174     \begin{split}
175     \phi(x, y, z) =\; &-g_o \left(\frac{1}{2}(a_1\;b_1 - \frac{cos\psi}{3})\;x^2+\frac{1}{2}(a_2\;b_2 - \frac{cos\psi}{3})\;y^2 + \frac{1}{2}(a_3\;b_3 - \frac{cos\psi}{3})\;z^2 \right. \\
176     & \left. + \frac{(a_1\;b_2 + a_2\;b_1)}{2} x\;y + \frac{(a_1\;b_3 + a_3\;b_1)}{2} x\;z + \frac{(a_2\;b_3 + a_3\;b_2)}{2} y\;z \right),
177     \end{split}
178     \label{eq:appliedPotential}
179     \end{equation}
180     where $a = (a_1, a_2, a_3)$ and $b = (b_1, b_2, b_3)$ are basis vectors determine coefficients in x, y, and z direction. And $g_o$ and $\psi$ are overall strength of the potential and angle between basis vectors respectively. The electric field derived from the above potential is,
181 mlamichh 4409 \[\mathbf{E}
182     = \frac{g_o}{2} \left(\begin{array}{ccc}
183 gezelter 4404 2(a_1\; b_1 - \frac{cos\psi}{3})\;x \;+ (a_1\; b_2 \;+ a_2\; b_1)\;y + (a_1\; b_3 \;+ a_3\; b_1)\;z \\
184 mlamichh 4409 (a_2\; b_1 \;+ a_1\; b_2)\;x + 2(a_2\; b_2 \;- \frac{cos\psi}{3})\;y + (a_2\; b_3 \;+ a_3\; b_2)\;z \\
185 gezelter 4404 (a_3\; b_1 \;+ a_3\; b_2)\;x + (a_3\; b_2 \;+ a_2\; b_3)y + 2(a_3\; b_3 \;- \frac{cos\psi}{3})\;z
186     \end{array} \right).\]
187     The gradient of the applied field derived from the potential can be written in the following form,
188 mlamichh 4409 \[\nabla\mathbf{E}
189 gezelter 4404 = \frac{g_o}{2}\left(\begin{array}{ccc}
190 mlamichh 4409 2(a_1\; b_1 - \frac{cos\psi}{3}) & (a_1\; b_2 \;+ a_2\; b_1) & (a_1\; b_3 \;+ a_3\; b_1) \\
191     (a_2\; b_1 \;+ a_1\; b_2) & 2(a_2\; b_2 \;- \frac{cos\psi}{3}) & (a_2\; b_3 \;+ a_3\; b_2) \\
192     (a_3\; b_1 \;+ a_3\; b_2) & (a_3\; b_2 \;+ a_2\; b_3) & 2(a_3\; b_3 \;- \frac{cos\psi}{3})
193 gezelter 4404 \end{array} \right).\]
194    
195    
196     \section{Point-multipolar interactions with a spatially-varying electric field}
197    
198 mlamichh 4409 We want to derive formulas for the force and torque exerted by an external electric field $\mathbf{E}(\mathbf{r})$ on object $a$. Object a has an embedded collection of charges and in simulations will normally represent a molecule or ion. We describe the charge distributions using primitive monopoles defined in paper I by
199    
200 gezelter 4404 \begin{align}
201     C_a =&\sum_{k \, \text{in }a} q_k , \label{eq:charge} \\
202     D_{a\alpha} =&\sum_{k \, \text{in }a} q_k r_{k\alpha}, \label{eq:dipole}\\
203     Q_{a\alpha\beta} =& \frac{1}{2} \sum_{k \, \text{in } a} q_k
204 mlamichh 4409 r_{k\alpha} r_{k\beta},
205     \label{eq:quadrupole}
206 gezelter 4404 \end{align}
207 mlamichh 4409 where $\mathbf{r}_k$ is the local coordinate system for the object (for convenience, the real origin is at the "center" of object $a$). Components of vectors and tensors are given using Green indices, using the Einstein repeated summation notation.Note that the definition of the primitive quadrupole here differs from the standard traceless form, and contains an additional Taylor-series based factor of $1/2$. In Paper I \cite{PaperI}, we derived the forces and torques each object exerts on the other objects in the system.
208 gezelter 4404
209     Here we must also consider an external electric field that varies in
210     space: $\mathbf E(\mathbf r)$. Each of the local charges $q_k$ in
211     object $a$ will then experience a slightly different field. This
212     electric field can be expanded in a Taylor series around the local
213 mlamichh 4409 origin of each object.
214 gezelter 4404 For a particular charge $q_k$, the electric field at that site's
215     position is given by:
216     \begin{equation}
217 mlamichh 4409 \mathbf{E}(\mathbf{r}_k) = E_\gamma|_{\mathbf{r}_k = 0} + \nabla_\delta E_\gamma |_{\mathbf{r}_k = 0} r_{k \delta}
218     + \frac {1}{2} \nabla_\delta \nabla_\varepsilon E_\gamma|_{\mathbf{r}_k = 0} r_{k \delta}
219 gezelter 4404 r_{k \varepsilon} + ...
220     \end{equation}
221 mlamichh 4409 Note that once one shrinks object $a$ to point size, the ${E}_\gamma$ terms are all evaluated at the center of the object (now a point). Thus later the ${E}_\gamma$ terms can be written using the same global origin for all objects $a, b, c, ...$ in the system. The force exerted on object $a$ by the electric field is given by,
222 gezelter 4404
223     \begin{align}
224 mlamichh 4409 F^a_\gamma = \sum_{k \textrm{~in~} a} E_\gamma(\mathbf{r}_k) &= \sum_{k \textrm{~in~} a} q_k \lbrace E_\gamma + \nabla_\delta E_\gamma r_{k \delta}
225 gezelter 4404 + \frac {1}{2} \nabla_\delta \nabla_\varepsilon E_\gamma r_{k \delta}
226     r_{k \varepsilon} + ... \rbrace \\
227     &= C_a E_\gamma + D_{a \delta} \nabla_\delta E_\gamma
228     + Q_{a \delta \varepsilon} \nabla_\delta \nabla_\varepsilon E_\gamma +
229     ...
230     \end{align}
231 mlamichh 4409 Thus in terms of the global origin $\mathbf{r}$, ${F}_\gamma(\mathbf{r}) = C {E}_\gamma(\mathbf{r})$ etc.
232    
233 gezelter 4404 Similarly, the torque exerted by the field on $a$ can be expressed as
234     \begin{align}
235 mlamichh 4409 \tau^a_\alpha &= \sum_{k \textrm{~in~} a} (\mathbf r_k \times q_k \mathbf E)_\alpha \\
236 gezelter 4404 & = \sum_{k \textrm{~in~} a} \epsilon_{\alpha \beta \gamma} q_k
237     r_{k\beta} E_\gamma(\mathbf r_k) \\
238     & = \epsilon_{\alpha \beta \gamma} D_\beta E_\gamma
239     + 2 \epsilon_{\alpha \beta \gamma} Q_{\beta \delta} \nabla_\delta
240     E_\gamma + ...
241     \end{align}
242 mlamichh 4409 We note that the Levi-Civita symbol can be eliminated by utilizing the matrix cross product as defined in Ref. \onlinecite{Smith98}:
243 gezelter 4404 \begin{equation}
244     \left[\mathsf{A} \times \mathsf{B}\right]_\alpha = \sum_\beta
245     \left[\mathsf{A}_{\alpha+1,\beta} \mathsf{B}_{\alpha+2,\beta}
246     -\mathsf{A}_{\alpha+2,\beta} \mathsf{B}_{\alpha+1,\beta}
247     \right]
248     \label{eq:matrixCross}
249     \end{equation}
250     where $\alpha+1$ and $\alpha+2$ are regarded as cyclic permuations of
251 mlamichh 4409 the matrix indices. Finally, the interaction energy $U^a$ of object $a$ with the external field is given by,
252     \begin{equation}
253     U^a = \sum_{k~in~a} q_k \phi_k (\mathrm{r}_k)
254     \end{equation}
255     Performing another Taylor series expansion about the local body origin,
256     \begin{equation}
257     \phi({\mathbf{r}_k}) = \phi|_{\mathbf{r}_k = 0 } + r_{k \alpha} \nabla_\alpha \phi_\alpha|_{\mathbf{r}_k = 0 } + \frac{1}{2} r_{k\alpha}r_{k\beta}\nabla_\alpha \nabla_\beta \phi|_{\mathbf{r}_k = 0} + ...
258     \end{equation}
259     Writing this in terms of the global origin $\mathrm{r}$, we find
260     \begin{equation}
261     U(\mathbf{r}) = \mathrm{C} \phi(\mathbf{r}) - \mathrm{D}_\alpha \mathrm{E}_\alpha - \mathrm{Q}_{\alpha\beta}\nabla_\alpha \mathrm{E}_\beta + ...
262     \end{equation}
263     The results has been summarized in Table I.
264 gezelter 4404
265     \begin{table}
266     \caption{Potential energy $(U)$, force $(\mathbf{F})$, and torque
267 mlamichh 4409 $(\mathbf{\tau})$ expressions for a multipolar site $\mathrm{r}$ in an
268     electric field, $\mathbf{E}(\mathbf{r})$.
269 gezelter 4404 \label{tab:UFT}}
270     \begin{tabular}{r|ccc}
271     & Charge & Dipole & Quadrupole \\ \hline
272 mlamichh 4409 $U(\mathbf{r})$ & $C \phi(\mathbf{r})$ & $-\mathbf{D} \cdot \mathbf{E}(\mathbf{r})$ & $- \mathsf{Q}:\nabla \mathbf{E}(\mathbf{r})$ \\
273     $\mathbf{F}(\mathbf{r})$ & $C \mathbf{E}(\mathbf{r})$ & $\mathbf{D} \cdot \nabla \mathbf{E}(\mathbf{r})$ & $\mathsf{Q} : \nabla\nabla\mathbf{E}(\mathbf{r})$ \\
274     $\mathbf{\tau}(\mathbf{r})$ & & $\mathbf{D} \times \mathbf{E}(\mathbf{r})$ & $2 \mathsf{Q} \times \nabla \mathbf{E}(\mathbf{r})$
275 gezelter 4404 \end{tabular}
276     \end{table}
277    
278     \section{Gradient of the field due to quadrupolar polarization}
279     \label{singularQuad}
280     In this section, we will discuss the gradient of the field produced by
281     quadrupolar polarization. For this purpose, we consider a distribution
282 mlamichh 4409 of charge ${\rho}(\mathbf r)$ which gives rise to an electric field
283     $\mathbf{E}(\mathbf r)$ and gradient of the field ${\nabla} \mathbf{E}(\mathbf r)$
284 gezelter 4404 throughout space. The total gradient of the electric field over volume
285     due to the all charges within the sphere of radius $R$ is given by
286     (cf. Jackson equation 4.14):
287     \begin{equation}
288 mlamichh 4409 \int_{r<R} {\nabla}\mathbf{E}\;d^3r = -\int_{r=R} R^2 \mathbf{E}\;\hat{n}\; d\Omega
289 gezelter 4404 \label{eq:8}
290     \end{equation}
291     where $d\Omega$ is the solid angle and $\hat{n}$ is the normal vector
292 mlamichh 4409 of the surface of the sphere,
293     $\hat{n} = sin[\theta]cos[\phi]\hat{x} + sin[\theta]sin[\phi]\hat{y} +
294 gezelter 4404 cos[\theta]\hat{z}$
295 mlamichh 4409 in spherical coordinates. For the charge density ${\rho}(\mathbf r')$, the
296     total gradient of the electric field can be written as, ~\cite{Jackson98}
297 gezelter 4404 \begin{equation}
298 mlamichh 4409 \int_{r<R} {\nabla}\mathbf {E}\; d^3r=-\int_{r=R} R^2\; {\nabla}\Phi\; \hat{n}\; d\Omega =-\frac{1}{4\pi\;\epsilon_o}\int_{r=R} R^2\; {\nabla}\;\left(\int \frac{\rho(\mathbf r')}{|\mathbf{r}-\mathbf{r}'|}\;d^3r'\right) \hat{n}\; d\Omega
299 gezelter 4404 \label{eq:9}
300     \end{equation}
301     The radial function in the equation (\ref{eq:9}) can be expressed in
302 mlamichh 4409 terms of spherical harmonics as,\cite{Jackson98}
303 gezelter 4404 \begin{equation}
304 mlamichh 4409 \frac{1}{|\mathbf{r} - \mathbf{r}'|} = 4\pi \sum_{l=0}^{\infty}\sum_{m=-l}^{m=l}\frac{1}{2l+1}\;\frac{{r^l_<}}{{r^{l+1}_>}}\;{Y^*}_{lm}(\theta', \phi')\;Y_{lm}(\theta, \phi)
305 gezelter 4404 \label{eq:10}
306     \end{equation}
307     If the sphere completely encloses the charge density then $ r_< = r'$ and $r_> = R$. Substituting equation (\ref{eq:10}) into (\ref{eq:9}) we get,
308     \begin{equation}
309     \begin{split}
310 mlamichh 4409 \int_{r<R} {\nabla}\mathbf{E}\;d^3r &=-\frac{R^2}{\epsilon_o}\int_{r=R} \; {\nabla}\;\left(\int \rho(\mathbf r')\sum_{l=0}^{\infty}\sum_{m=-l}^{m=l}\frac{1}{2l+1}\;\frac{{r'^l}}{{R^{l+1}}}\;{Y^*}_{lm}(\theta', \phi')\;Y_{lm}(\theta, \phi)\;d^3r'\right) \hat{n}\; d\Omega \\
311     &= -\frac{R^2}{\epsilon_o}\sum_{l=0}^{\infty}\sum_{m=-l}^{m=l}\frac{1}{2l+1}\;\int \rho(\mathbf r')\;{r'^l}\;{Y^*}_{lm}(\theta', \phi')\left(\int_{r=R}\vec{\nabla}\left({R^{-(l+1)}}\;Y_{lm}(\theta, \phi)\right)\hat{n}\; d\Omega \right)d^3r
312 gezelter 4404 '
313     \end{split}
314     \label{eq:11}
315     \end{equation}
316     The gradient of the product of radial function and spherical harmonics
317 mlamichh 4409 is given by:\cite{Arfkan}
318 gezelter 4404 \begin{equation}
319     \begin{split}
320 mlamichh 4409 {\nabla}\left[ f(r)\;Y_{lm}(\theta, \phi)\right] = &-\left(\frac{l+1}{2l+1}\right)^{1/2}\; \left[\frac{\partial}{\partial r}-\frac{l}{r} \right]f(r)\; Y_{l, l+1, m}(\theta, \phi)\\ &+ \left(\frac{l}{2l+1}\right)^{1/2}\left[\frac
321 gezelter 4404 {\partial}{\partial r}+\frac{l}{r} \right]f(r)\; Y_{l, l-1, m}(\theta, \phi).
322     \end{split}
323     \label{eq:12}
324     \end{equation}
325     Using equation (\ref{eq:12}) we get,
326     \begin{equation}
327 mlamichh 4409 {\nabla}\left({R^{-(l+1)}}\;Y_{lm}(\theta, \phi)\right) = [(l+1)(2l+1)]^{1/2}\; Y_{l,l+1,m}(\theta, \phi) \; \frac{1}{R^{l+2}},
328 gezelter 4404 \label{eq:13}
329     \end{equation}
330 mlamichh 4409 where $ Y_{l,l+1,m}(\theta, \phi)$ is a vector spherical harmonics \cite{Arfkan}. Using Clebsch-Gorden coefficients $C(l+1, 1, l|m_1,m_2,m) $, equation \ref{eq:14} can be written in spherical harmonics,
331 gezelter 4404 \begin{equation}
332 mlamichh 4409 Y_{l,l+1,m}(\theta, \phi) = \sum_{m_1, m_2} C(l+1,1,l|m_1,m_2,m)\; {Y_{l+1}}^{m_1}(\theta,\phi)\; \hat{e}_{m_2}.
333 gezelter 4404 \label{eq:14}
334     \end{equation}
335 mlamichh 4409 Here $\hat{e}_{m_2}$ is a spherical tensor of rank 1 which can be expressed
336 gezelter 4404 in terms of Cartesian coordinates,
337     \begin{equation}
338 mlamichh 4409 {\hat{e}}_{+1} = - \frac{\hat{x}+i\hat{y}}{\sqrt{2}},\quad {\hat{e}}_{0} = \hat{z},\quad and \quad {\hat{e}}_{-1} = \frac{\hat{x}-i\hat{y}}{\sqrt{2}}.
339 gezelter 4404 \label{eq:15}
340     \end{equation}
341 mlamichh 4409 The normal vector $\hat{n} $ is then expressed in terms of spherical tensor of rank 1 as shown in below,
342 gezelter 4404 \begin{equation}
343 mlamichh 4409 \hat{n} = \sqrt{\frac{4\pi}{3}}\left(-{Y_1}^{-1}{\hat{e}}_1 -{Y_1}^{1}{\hat{e}}_{-1} + {Y_1}^{0}{\hat{e}}_0 \right).
344 gezelter 4404 \label{eq:16}
345     \end{equation}
346     The surface integral of the product of $\hat{n}$ and
347     ${Y_{l+1}}^{m_1}(\theta, \phi)$ gives,
348     \begin{equation}
349     \begin{split}
350     \int \hat{n}\;{Y_{l+1}}^{m_1}\;d\Omega &= \int \sqrt{\frac{4\pi}{3}}\left(-{Y_1}^{-1}{\hat{e}}_1 -{Y_1}^{1}{\hat{e}}_{-1} + {Y_1}^{0}{\hat{e}}_0 \right)\;{Y_{l+1}}^{m_1}\; d\Omega \\
351     &= \int \sqrt{\frac{4\pi}{3}}\left({{Y_1}^{1}}^* {\hat{e}}_1 +{{Y_1}^{-1}}^* {\hat{e}}_{-1} + {{Y_1}^{0}}^* {\hat{e}}_0 \right)\;{Y_{l+1}}^{m_1}\; d\Omega \\
352     &= \sqrt{\frac{4\pi}{3}}\left({\delta}_{l+1, 1}\;{\delta}_{1, m_1}\;{\hat{e}}_1 + {\delta}_{l+1, 1}\;{\delta}_{-1, m_1}\;{\hat{e}}_{-1}+ {\delta}_{l+1, 1}\;{\delta}_{0, m_1} \;{\hat{e}}_0\right),
353     \end{split}
354     \label{eq:17}
355     \end{equation}
356     where ${Y_{l}}^{-m} = (-1)^m\;{{Y_{l}}^{m}}^* $ and
357     $ \int {{Y_{l}}^{m}}^*\;{Y_{l'}}^{m'}\;d\Omega =
358     \delta_{ll'}\delta_{mm'} $.
359     Non-vanishing values of equation \ref{eq:17} require $l = 0$,
360     therefore the value of $ m = 0 $. Since the values of $ m_1$ are -1,
361     1, and 0 then $m_2$ takes the values 1, -1, and 0, respectively
362     provided that $m = m_1 + m_2$. Equation \ref{eq:11} can therefore be
363     modified,
364     \begin{equation}
365     \begin{split}
366 mlamichh 4409 \int_{r<R} {\nabla}\mathbf{E}\;d^3r = &- \sqrt{\frac{4\pi}{{3}}}\;\frac{1}{\epsilon_o}\int \rho(r')\;{Y^*}_{00}(\theta', \phi')[ C(1, 1, 0|-1,1,0)\;{\hat{e}_{-1}}{\hat{e}_{1}}\\ &+ C(1, 1, 0|-1,1,0)\;{\hat{e}_{1}}{\hat{e}_{-1}}+C(
367     1, 1, 0|0,0,0)\;{\hat{e}_{0}}{\hat{e}_{0}} ]\; d^3r' \\
368     &= -\sqrt{\frac{4\pi}{{3}}}\;\frac{1}{\epsilon_o}\int \rho(r')\;d^3r'\left({\hat{e}_{-1}}{\hat{e}_{1}}+{\hat{e}_{1}}{\hat{e}_{-1}}-{\hat{e}_{0}}{\hat{e}_{0}}\right)\\
369 gezelter 4404 &= - \sqrt{\frac{4\pi}{{3}}}\;\frac{1}{\epsilon_o}\;C_{total}\;\left({\hat{e}_{-1}}{\hat{e}_{1}}+{\hat{e}_{1}}{\hat{e}_{-1}}-{\hat{e}_{0}}{\hat{e}_{0}}\right).
370     \end{split}
371     \label{eq:19}
372     \end{equation}
373 mlamichh 4409 In the last step, the charge density was integrated over the sphere, yielding a total charge $\mathrm{C_total}$.Equation (\ref{eq:19}) gives the total gradient of the field over a sphere due to the distribution of the charges.
374     For quadrupolar fluids the total charge within a sphere is zero, therefore
375     $ \int_{r<R} {\nabla}\mathbf{E}\;d^3r = 0 $. Hence the quadrupolar
376 gezelter 4404 polarization produces zero net gradient of the field inside the
377     sphere.
378    
379    
380 gezelter 4399 \bibliography{dielectric_new}
381     \end{document}
382     %
383     % ****** End of file multipole.tex ******