1 |
gezelter |
4399 |
% ****** Start of file aipsamp.tex ****** |
2 |
|
|
% |
3 |
|
|
% This file is part of the AIP files in the AIP distribution for REVTeX 4. |
4 |
|
|
% Version 4.1 of REVTeX, October 2009 |
5 |
|
|
% |
6 |
|
|
% Copyright (c) 2009 American Institute of Physics. |
7 |
|
|
% |
8 |
|
|
% See the AIP README file for restrictions and more information. |
9 |
|
|
% |
10 |
|
|
% TeX'ing this file requires that you have AMS-LaTeX 2.0 installed |
11 |
|
|
% as well as the rest of the prerequisites for REVTeX 4.1 |
12 |
|
|
% |
13 |
|
|
% It also requires running BibTeX. The commands are as follows: |
14 |
|
|
% |
15 |
|
|
% 1) latex aipsamp |
16 |
|
|
% 2) bibtex aipsamp |
17 |
|
|
% 3) latex aipsamp |
18 |
|
|
% 4) latex aipsamp |
19 |
|
|
% |
20 |
|
|
% Use this file as a source of example code for your aip document. |
21 |
|
|
% Use the file aiptemplate.tex as a template for your document. |
22 |
|
|
\documentclass[% |
23 |
|
|
aip,jcp, |
24 |
|
|
amsmath,amssymb, |
25 |
|
|
preprint,% |
26 |
|
|
% reprint,% |
27 |
|
|
%author-year,% |
28 |
|
|
%author-numerical,% |
29 |
|
|
jcp]{revtex4-1} |
30 |
|
|
|
31 |
|
|
\usepackage{graphicx}% Include figure files |
32 |
|
|
\usepackage{dcolumn}% Align table columns on decimal point |
33 |
|
|
%\usepackage{bm}% bold math |
34 |
|
|
\usepackage{times} |
35 |
|
|
\usepackage[version=3]{mhchem} % this is a great package for formatting chemical reactions |
36 |
|
|
\usepackage{url} |
37 |
|
|
\usepackage{rotating} |
38 |
gezelter |
4404 |
\usepackage{braket} |
39 |
gezelter |
4399 |
|
40 |
gezelter |
4404 |
|
41 |
gezelter |
4399 |
%\usepackage[mathlines]{lineno}% Enable numbering of text and display math |
42 |
|
|
%\linenumbers\relax % Commence numbering lines |
43 |
|
|
|
44 |
|
|
\begin{document} |
45 |
|
|
|
46 |
|
|
\title[Real space electrostatics for multipoles. III. Dielectric Properties] |
47 |
|
|
{Supplemental Material for: Real space electrostatics for multipoles. III. Dielectric Properties} |
48 |
|
|
|
49 |
|
|
\author{Madan Lamichhane} |
50 |
|
|
\affiliation{Department of Physics, University |
51 |
|
|
of Notre Dame, Notre Dame, IN 46556} |
52 |
|
|
\author{Thomas Parsons} |
53 |
|
|
\affiliation{Department of Chemistry and Biochemistry, University |
54 |
|
|
of Notre Dame, Notre Dame, IN 46556} |
55 |
|
|
\author{Kathie E. Newman} |
56 |
|
|
\affiliation{Department of Physics, University |
57 |
|
|
of Notre Dame, Notre Dame, IN 46556} |
58 |
|
|
\author{J. Daniel Gezelter} |
59 |
|
|
\email{gezelter@nd.edu.} |
60 |
|
|
\affiliation{Department of Chemistry and Biochemistry, University |
61 |
|
|
of Notre Dame, Notre Dame, IN 46556} |
62 |
|
|
|
63 |
|
|
\date{\today}% It is always \today, today, |
64 |
|
|
% but any date may be explicitly specified |
65 |
|
|
|
66 |
|
|
\maketitle |
67 |
|
|
|
68 |
|
|
\newpage |
69 |
|
|
|
70 |
gezelter |
4404 |
|
71 |
gezelter |
4399 |
\section{Boltzmann averages for orientational polarization} |
72 |
|
|
The dielectric properties of the system is mainly arise from two |
73 |
|
|
different ways: i) the applied field distort the charge distributions |
74 |
|
|
so it produces an induced multipolar moment in each molecule; and ii) |
75 |
|
|
the applied field tends to line up originally randomly oriented |
76 |
|
|
molecular moment towards the direction of the applied field. In this |
77 |
|
|
study, we basically focus on the orientational contribution in the |
78 |
|
|
dielectric properties. If we consider a system of molecules in the |
79 |
|
|
presence of external field perturbation, the perturbation experienced |
80 |
|
|
by any molecule will not be only due to external field or field |
81 |
|
|
gradient but also due to the field or field gradient produced by the |
82 |
|
|
all other molecules in the system. In the following subsections |
83 |
|
|
\ref{subsec:boltzAverage-Dipole} and \ref{subsec:boltzAverage-Quad}, |
84 |
|
|
we will discuss about the molecular polarization only due to external |
85 |
|
|
field perturbation. The contribution of the field or field gradient |
86 |
|
|
due to all other molecules will be taken into account while |
87 |
mlamichh |
4409 |
calculating correction factor in the paper. |
88 |
gezelter |
4399 |
|
89 |
|
|
\subsection{Dipoles} |
90 |
|
|
\label{subsec:boltzAverage-Dipole} |
91 |
|
|
Consider a system of molecules, each with permanent dipole moment |
92 |
|
|
$p_o$. In the absense of external field, thermal agitation orients the |
93 |
|
|
dipoles randomly, reducing the system moment to zero. External fields |
94 |
|
|
will tend to line up the dipoles in the direction of applied field. |
95 |
|
|
Here we have considered net field from all other molecules is |
96 |
|
|
considered to be zero. Therefore the total Hamiltonian of each |
97 |
|
|
molecule is,\cite{Jackson98} |
98 |
|
|
\begin{equation} |
99 |
mlamichh |
4409 |
H = H_o - \bf{p_o}\cdot \mathbf{E}, |
100 |
gezelter |
4399 |
\end{equation} |
101 |
|
|
where $H_o$ is a function of the internal coordinates of the molecule. |
102 |
|
|
The Boltzmann average of the dipole moment is given by, |
103 |
|
|
\begin{equation} |
104 |
|
|
\braket{p_{mol}} = \frac{\displaystyle\int d\Omega\; p_o\; cos\theta\; e^{\frac{p_oE\; cos\theta}{k_B T}}}{\displaystyle\int d\Omega\; e^{\frac{p_oE\;cos\theta}{k_B T}}}, |
105 |
|
|
\end{equation} |
106 |
|
|
where $\bf{E}$ is selected along z-axis. If we consider that the |
107 |
|
|
applied field is small, \textit{i.e.} $\frac{p_oE\; cos\theta}{k_B T} << 1$, |
108 |
|
|
\begin{equation} |
109 |
|
|
\braket{p_{mol}} \approx \frac{1}{3}\frac{{p_o}^2}{k_B T}E, |
110 |
|
|
\end{equation} |
111 |
|
|
where $ \alpha_p = \frac{1}{3}\frac{{p_o}^2}{k_B T}$ is a molecular |
112 |
|
|
polarizability. The orientational polarization depends inversely on |
113 |
|
|
the temperature and applied field must overcome the thermal agitation. |
114 |
|
|
|
115 |
|
|
\subsection{Quadrupoles} |
116 |
|
|
\label{subsec:boltzAverage-Quad} |
117 |
|
|
Consider a system of molecules with permanent quadrupole moment |
118 |
mlamichh |
4409 |
$q_{\alpha\beta}$. The average quadrupole moment at temperature T in |
119 |
gezelter |
4399 |
the presence of uniform applied field gradient is given |
120 |
|
|
by,\cite{AduGyamfi78, AduGyamfi81} |
121 |
|
|
\begin{equation} |
122 |
|
|
\braket{q_{\alpha\beta}} \;=\; \frac{\displaystyle\int d\Omega\; e^{-\frac{H}{k_B T}}q_{\alpha\beta}}{\displaystyle\int d\Omega\; e^{-\frac{H}{k_B T}}} \;=\; \frac{\displaystyle\int d\Omega\; e^{\frac{q_{\mu\nu}\;\partial_\nu E_\mu}{k_B T}}q_{\alpha\beta}}{\displaystyle\int d\Omega\; e^{\frac{q_{\mu\nu}\;\partial_\nu E_\mu}{k_B T}}}, |
123 |
|
|
\label{boltzQuad} |
124 |
|
|
\end{equation} |
125 |
|
|
where $\int d\Omega = \int_0^{2\pi} \int_0^\pi \int_0^{2\pi} |
126 |
|
|
sin\theta\; d\theta\ d\phi\ d\psi$ is the integration over Euler |
127 |
|
|
angles, $ H = H_o -q_{\mu\nu}\;\partial_\nu E_\mu $ is the energy of |
128 |
|
|
a quadrupole in the gradient of the |
129 |
|
|
applied field and $ H_o$ is a function of internal coordinates of the molecule. The energy and quadrupole moment can be transformed into body frame using following relation, |
130 |
|
|
\begin{equation} |
131 |
|
|
\begin{split} |
132 |
|
|
&q_{\alpha\beta} = \eta_{\alpha\alpha'}\;\eta_{\beta\beta'}\;{q}^* _{\alpha'\beta'} \\ |
133 |
mlamichh |
4409 |
&H = H_o - q:{\nabla}\mathbf{E} = H_o - q_{\mu\nu}\;\partial_\nu E_\mu = H_o -\eta_{\mu\mu'}\;\eta_{\nu\nu'}\;{q}^*_{\mu'\nu'}\;\partial_\nu E_\mu. |
134 |
gezelter |
4399 |
\end{split} |
135 |
|
|
\label{energyQuad} |
136 |
|
|
\end{equation} |
137 |
|
|
Here the starred tensors are the components in the body fixed |
138 |
|
|
frame. Substituting equation (\ref{energyQuad}) in the equation (\ref{boltzQuad}) |
139 |
|
|
and taking linear terms in the expansion we get, |
140 |
|
|
\begin{equation} |
141 |
|
|
\braket{q_{\alpha\beta}} = \frac{ \int d\Omega \left(1 + \frac{\eta_{\mu\mu'}\;\eta_{\nu\nu'}\;{q}^*_{\mu'\nu'}\;\partial_\nu E_\mu }{k_B T}\right)q_{\alpha\beta}}{ \int d\Omega \left(1 + \frac{\eta_{\mu\mu'}\;\eta_{\nu\nu'}\;{q}^*_{\mu'\nu'}\;\partial_\nu E_\mu }{k_B T}\right)}, |
142 |
|
|
\end{equation} |
143 |
|
|
where $\eta_{\alpha\alpha'}$ is the inverse of the rotation matrix that transforms |
144 |
|
|
the body fixed co-ordinates to the space co-ordinates, |
145 |
|
|
\[\eta_{\alpha\alpha'} |
146 |
|
|
= \left(\begin{array}{ccc} |
147 |
|
|
cos\phi\; cos\psi - cos\theta\; sin\phi\; sin\psi & -cos\theta\; cos\psi\; sin\phi - cos\phi\; sin\psi & sin\theta\; sin\phi \\ |
148 |
|
|
cos\psi\; sin\phi + cos\theta\; cos\phi \; sin\psi & cos\theta\; cos\phi\; cos\psi - sin\phi\; sin\psi & -cos\phi\; sin\theta \\ |
149 |
|
|
sin\theta\; sin\psi & -cos\psi\; sin\theta & cos\theta |
150 |
|
|
\end{array} \right).\] |
151 |
|
|
Integration of 1st and 2nd terms in the denominator gives $8 \pi^2$ |
152 |
mlamichh |
4409 |
and $8 \pi^2 /3\;{\nabla}.\mathbf{E}\; Tr(q^*) $ respectively. The |
153 |
|
|
second term vanishes for charge free space, ${\nabla}.\mathbf{E} \; = \; 0$. Similarly integration of the |
154 |
gezelter |
4399 |
1st term in the numerator produces |
155 |
|
|
$8 \pi^2 /3\; Tr(q^*)\delta_{\alpha\beta}$ and the 2nd term produces |
156 |
|
|
$8 \pi^2 /15k_B T (3{q}^*_{\alpha'\beta'}{q}^*_{\beta'\alpha'} - |
157 |
|
|
{q}^*_{\alpha'\alpha'}{q}^*_{\beta'\beta'})\partial_\alpha E_\beta$, |
158 |
mlamichh |
4409 |
if ${\nabla}.\mathbf{E} \; = \; 0$, |
159 |
gezelter |
4399 |
$ \partial_\alpha E_\beta = \partial_\beta E_\alpha$ and |
160 |
|
|
${q}^*_{\alpha'\beta'}= {q}^*_{\beta'\alpha'}$. Therefore the |
161 |
|
|
Boltzmann average of a quadrupole moment can be written as, |
162 |
|
|
|
163 |
|
|
\begin{equation} |
164 |
|
|
\braket{q_{\alpha\beta}}\; = \; \frac{1}{3} Tr(q^*)\;\delta_{\alpha\beta} + \frac{{\bar{q_o}}^2}{15k_BT}\;\partial_\alpha E_\beta, |
165 |
|
|
\end{equation} |
166 |
mlamichh |
4409 |
where $ \alpha_q = \frac{{\bar{q_o}}^2}{15k_BT} $ is a molecular quadrupole polarizablity and ${\bar{q_o}}^2= |
167 |
gezelter |
4399 |
3{q}^*_{\alpha'\beta'}{q}^*_{\beta'\alpha'}-{q}^*_{\alpha'\alpha'}{q}^*_{\beta'\beta'}$ is a square of the net quadrupole moment of a molecule. |
168 |
|
|
|
169 |
gezelter |
4404 |
\section{External application of a uniform field gradient} |
170 |
|
|
\label{Ap:fieldOrGradient} |
171 |
gezelter |
4399 |
|
172 |
mlamichh |
4409 |
To satisfy the condition $ \nabla \cdot \mathbf{E} = 0 $, within the box of molecules we have taken electrostatic potential in the following form |
173 |
gezelter |
4404 |
\begin{equation} |
174 |
|
|
\begin{split} |
175 |
|
|
\phi(x, y, z) =\; &-g_o \left(\frac{1}{2}(a_1\;b_1 - \frac{cos\psi}{3})\;x^2+\frac{1}{2}(a_2\;b_2 - \frac{cos\psi}{3})\;y^2 + \frac{1}{2}(a_3\;b_3 - \frac{cos\psi}{3})\;z^2 \right. \\ |
176 |
|
|
& \left. + \frac{(a_1\;b_2 + a_2\;b_1)}{2} x\;y + \frac{(a_1\;b_3 + a_3\;b_1)}{2} x\;z + \frac{(a_2\;b_3 + a_3\;b_2)}{2} y\;z \right), |
177 |
|
|
\end{split} |
178 |
|
|
\label{eq:appliedPotential} |
179 |
|
|
\end{equation} |
180 |
|
|
where $a = (a_1, a_2, a_3)$ and $b = (b_1, b_2, b_3)$ are basis vectors determine coefficients in x, y, and z direction. And $g_o$ and $\psi$ are overall strength of the potential and angle between basis vectors respectively. The electric field derived from the above potential is, |
181 |
mlamichh |
4409 |
\[\mathbf{E} |
182 |
|
|
= \frac{g_o}{2} \left(\begin{array}{ccc} |
183 |
gezelter |
4404 |
2(a_1\; b_1 - \frac{cos\psi}{3})\;x \;+ (a_1\; b_2 \;+ a_2\; b_1)\;y + (a_1\; b_3 \;+ a_3\; b_1)\;z \\ |
184 |
mlamichh |
4409 |
(a_2\; b_1 \;+ a_1\; b_2)\;x + 2(a_2\; b_2 \;- \frac{cos\psi}{3})\;y + (a_2\; b_3 \;+ a_3\; b_2)\;z \\ |
185 |
gezelter |
4404 |
(a_3\; b_1 \;+ a_3\; b_2)\;x + (a_3\; b_2 \;+ a_2\; b_3)y + 2(a_3\; b_3 \;- \frac{cos\psi}{3})\;z |
186 |
|
|
\end{array} \right).\] |
187 |
|
|
The gradient of the applied field derived from the potential can be written in the following form, |
188 |
mlamichh |
4409 |
\[\nabla\mathbf{E} |
189 |
gezelter |
4404 |
= \frac{g_o}{2}\left(\begin{array}{ccc} |
190 |
mlamichh |
4409 |
2(a_1\; b_1 - \frac{cos\psi}{3}) & (a_1\; b_2 \;+ a_2\; b_1) & (a_1\; b_3 \;+ a_3\; b_1) \\ |
191 |
|
|
(a_2\; b_1 \;+ a_1\; b_2) & 2(a_2\; b_2 \;- \frac{cos\psi}{3}) & (a_2\; b_3 \;+ a_3\; b_2) \\ |
192 |
|
|
(a_3\; b_1 \;+ a_3\; b_2) & (a_3\; b_2 \;+ a_2\; b_3) & 2(a_3\; b_3 \;- \frac{cos\psi}{3}) |
193 |
gezelter |
4404 |
\end{array} \right).\] |
194 |
|
|
|
195 |
|
|
|
196 |
|
|
\section{Point-multipolar interactions with a spatially-varying electric field} |
197 |
|
|
|
198 |
mlamichh |
4409 |
We want to derive formulas for the force and torque exerted by an external electric field $\mathbf{E}(\mathbf{r})$ on object $a$. Object a has an embedded collection of charges and in simulations will normally represent a molecule or ion. We describe the charge distributions using primitive monopoles defined in paper I by |
199 |
|
|
|
200 |
gezelter |
4404 |
\begin{align} |
201 |
|
|
C_a =&\sum_{k \, \text{in }a} q_k , \label{eq:charge} \\ |
202 |
|
|
D_{a\alpha} =&\sum_{k \, \text{in }a} q_k r_{k\alpha}, \label{eq:dipole}\\ |
203 |
|
|
Q_{a\alpha\beta} =& \frac{1}{2} \sum_{k \, \text{in } a} q_k |
204 |
mlamichh |
4409 |
r_{k\alpha} r_{k\beta}, |
205 |
|
|
\label{eq:quadrupole} |
206 |
gezelter |
4404 |
\end{align} |
207 |
mlamichh |
4409 |
where $\mathbf{r}_k$ is the local coordinate system for the object (for convenience, the real origin is at the "center" of object $a$). Components of vectors and tensors are given using Green indices, using the Einstein repeated summation notation.Note that the definition of the primitive quadrupole here differs from the standard traceless form, and contains an additional Taylor-series based factor of $1/2$. In Paper I \cite{PaperI}, we derived the forces and torques each object exerts on the other objects in the system. |
208 |
gezelter |
4404 |
|
209 |
|
|
Here we must also consider an external electric field that varies in |
210 |
|
|
space: $\mathbf E(\mathbf r)$. Each of the local charges $q_k$ in |
211 |
|
|
object $a$ will then experience a slightly different field. This |
212 |
|
|
electric field can be expanded in a Taylor series around the local |
213 |
mlamichh |
4409 |
origin of each object. |
214 |
gezelter |
4404 |
For a particular charge $q_k$, the electric field at that site's |
215 |
|
|
position is given by: |
216 |
|
|
\begin{equation} |
217 |
mlamichh |
4409 |
\mathbf{E}(\mathbf{r}_k) = E_\gamma|_{\mathbf{r}_k = 0} + \nabla_\delta E_\gamma |_{\mathbf{r}_k = 0} r_{k \delta} |
218 |
|
|
+ \frac {1}{2} \nabla_\delta \nabla_\varepsilon E_\gamma|_{\mathbf{r}_k = 0} r_{k \delta} |
219 |
gezelter |
4404 |
r_{k \varepsilon} + ... |
220 |
|
|
\end{equation} |
221 |
mlamichh |
4409 |
Note that once one shrinks object $a$ to point size, the ${E}_\gamma$ terms are all evaluated at the center of the object (now a point). Thus later the ${E}_\gamma$ terms can be written using the same global origin for all objects $a, b, c, ...$ in the system. The force exerted on object $a$ by the electric field is given by, |
222 |
gezelter |
4404 |
|
223 |
|
|
\begin{align} |
224 |
mlamichh |
4409 |
F^a_\gamma = \sum_{k \textrm{~in~} a} E_\gamma(\mathbf{r}_k) &= \sum_{k \textrm{~in~} a} q_k \lbrace E_\gamma + \nabla_\delta E_\gamma r_{k \delta} |
225 |
gezelter |
4404 |
+ \frac {1}{2} \nabla_\delta \nabla_\varepsilon E_\gamma r_{k \delta} |
226 |
|
|
r_{k \varepsilon} + ... \rbrace \\ |
227 |
|
|
&= C_a E_\gamma + D_{a \delta} \nabla_\delta E_\gamma |
228 |
|
|
+ Q_{a \delta \varepsilon} \nabla_\delta \nabla_\varepsilon E_\gamma + |
229 |
|
|
... |
230 |
|
|
\end{align} |
231 |
mlamichh |
4409 |
Thus in terms of the global origin $\mathbf{r}$, ${F}_\gamma(\mathbf{r}) = C {E}_\gamma(\mathbf{r})$ etc. |
232 |
|
|
|
233 |
gezelter |
4404 |
Similarly, the torque exerted by the field on $a$ can be expressed as |
234 |
|
|
\begin{align} |
235 |
mlamichh |
4409 |
\tau^a_\alpha &= \sum_{k \textrm{~in~} a} (\mathbf r_k \times q_k \mathbf E)_\alpha \\ |
236 |
gezelter |
4404 |
& = \sum_{k \textrm{~in~} a} \epsilon_{\alpha \beta \gamma} q_k |
237 |
|
|
r_{k\beta} E_\gamma(\mathbf r_k) \\ |
238 |
|
|
& = \epsilon_{\alpha \beta \gamma} D_\beta E_\gamma |
239 |
|
|
+ 2 \epsilon_{\alpha \beta \gamma} Q_{\beta \delta} \nabla_\delta |
240 |
|
|
E_\gamma + ... |
241 |
|
|
\end{align} |
242 |
mlamichh |
4409 |
We note that the Levi-Civita symbol can be eliminated by utilizing the matrix cross product as defined in Ref. \onlinecite{Smith98}: |
243 |
gezelter |
4404 |
\begin{equation} |
244 |
|
|
\left[\mathsf{A} \times \mathsf{B}\right]_\alpha = \sum_\beta |
245 |
|
|
\left[\mathsf{A}_{\alpha+1,\beta} \mathsf{B}_{\alpha+2,\beta} |
246 |
|
|
-\mathsf{A}_{\alpha+2,\beta} \mathsf{B}_{\alpha+1,\beta} |
247 |
|
|
\right] |
248 |
|
|
\label{eq:matrixCross} |
249 |
|
|
\end{equation} |
250 |
|
|
where $\alpha+1$ and $\alpha+2$ are regarded as cyclic permuations of |
251 |
mlamichh |
4409 |
the matrix indices. Finally, the interaction energy $U^a$ of object $a$ with the external field is given by, |
252 |
|
|
\begin{equation} |
253 |
|
|
U^a = \sum_{k~in~a} q_k \phi_k (\mathrm{r}_k) |
254 |
|
|
\end{equation} |
255 |
|
|
Performing another Taylor series expansion about the local body origin, |
256 |
|
|
\begin{equation} |
257 |
|
|
\phi({\mathbf{r}_k}) = \phi|_{\mathbf{r}_k = 0 } + r_{k \alpha} \nabla_\alpha \phi_\alpha|_{\mathbf{r}_k = 0 } + \frac{1}{2} r_{k\alpha}r_{k\beta}\nabla_\alpha \nabla_\beta \phi|_{\mathbf{r}_k = 0} + ... |
258 |
|
|
\end{equation} |
259 |
|
|
Writing this in terms of the global origin $\mathrm{r}$, we find |
260 |
|
|
\begin{equation} |
261 |
|
|
U(\mathbf{r}) = \mathrm{C} \phi(\mathbf{r}) - \mathrm{D}_\alpha \mathrm{E}_\alpha - \mathrm{Q}_{\alpha\beta}\nabla_\alpha \mathrm{E}_\beta + ... |
262 |
|
|
\end{equation} |
263 |
|
|
The results has been summarized in Table I. |
264 |
gezelter |
4404 |
|
265 |
|
|
\begin{table} |
266 |
|
|
\caption{Potential energy $(U)$, force $(\mathbf{F})$, and torque |
267 |
mlamichh |
4409 |
$(\mathbf{\tau})$ expressions for a multipolar site $\mathrm{r}$ in an |
268 |
|
|
electric field, $\mathbf{E}(\mathbf{r})$. |
269 |
gezelter |
4404 |
\label{tab:UFT}} |
270 |
|
|
\begin{tabular}{r|ccc} |
271 |
|
|
& Charge & Dipole & Quadrupole \\ \hline |
272 |
mlamichh |
4409 |
$U(\mathbf{r})$ & $C \phi(\mathbf{r})$ & $-\mathbf{D} \cdot \mathbf{E}(\mathbf{r})$ & $- \mathsf{Q}:\nabla \mathbf{E}(\mathbf{r})$ \\ |
273 |
|
|
$\mathbf{F}(\mathbf{r})$ & $C \mathbf{E}(\mathbf{r})$ & $\mathbf{D} \cdot \nabla \mathbf{E}(\mathbf{r})$ & $\mathsf{Q} : \nabla\nabla\mathbf{E}(\mathbf{r})$ \\ |
274 |
|
|
$\mathbf{\tau}(\mathbf{r})$ & & $\mathbf{D} \times \mathbf{E}(\mathbf{r})$ & $2 \mathsf{Q} \times \nabla \mathbf{E}(\mathbf{r})$ |
275 |
gezelter |
4404 |
\end{tabular} |
276 |
|
|
\end{table} |
277 |
|
|
|
278 |
|
|
\section{Gradient of the field due to quadrupolar polarization} |
279 |
|
|
\label{singularQuad} |
280 |
|
|
In this section, we will discuss the gradient of the field produced by |
281 |
|
|
quadrupolar polarization. For this purpose, we consider a distribution |
282 |
mlamichh |
4409 |
of charge ${\rho}(\mathbf r)$ which gives rise to an electric field |
283 |
|
|
$\mathbf{E}(\mathbf r)$ and gradient of the field ${\nabla} \mathbf{E}(\mathbf r)$ |
284 |
gezelter |
4404 |
throughout space. The total gradient of the electric field over volume |
285 |
|
|
due to the all charges within the sphere of radius $R$ is given by |
286 |
|
|
(cf. Jackson equation 4.14): |
287 |
|
|
\begin{equation} |
288 |
mlamichh |
4409 |
\int_{r<R} {\nabla}\mathbf{E}\;d^3r = -\int_{r=R} R^2 \mathbf{E}\;\hat{n}\; d\Omega |
289 |
gezelter |
4404 |
\label{eq:8} |
290 |
|
|
\end{equation} |
291 |
|
|
where $d\Omega$ is the solid angle and $\hat{n}$ is the normal vector |
292 |
mlamichh |
4409 |
of the surface of the sphere, |
293 |
|
|
$\hat{n} = sin[\theta]cos[\phi]\hat{x} + sin[\theta]sin[\phi]\hat{y} + |
294 |
gezelter |
4404 |
cos[\theta]\hat{z}$ |
295 |
mlamichh |
4409 |
in spherical coordinates. For the charge density ${\rho}(\mathbf r')$, the |
296 |
|
|
total gradient of the electric field can be written as, ~\cite{Jackson98} |
297 |
gezelter |
4404 |
\begin{equation} |
298 |
mlamichh |
4409 |
\int_{r<R} {\nabla}\mathbf {E}\; d^3r=-\int_{r=R} R^2\; {\nabla}\Phi\; \hat{n}\; d\Omega =-\frac{1}{4\pi\;\epsilon_o}\int_{r=R} R^2\; {\nabla}\;\left(\int \frac{\rho(\mathbf r')}{|\mathbf{r}-\mathbf{r}'|}\;d^3r'\right) \hat{n}\; d\Omega |
299 |
gezelter |
4404 |
\label{eq:9} |
300 |
|
|
\end{equation} |
301 |
|
|
The radial function in the equation (\ref{eq:9}) can be expressed in |
302 |
mlamichh |
4409 |
terms of spherical harmonics as,\cite{Jackson98} |
303 |
gezelter |
4404 |
\begin{equation} |
304 |
mlamichh |
4409 |
\frac{1}{|\mathbf{r} - \mathbf{r}'|} = 4\pi \sum_{l=0}^{\infty}\sum_{m=-l}^{m=l}\frac{1}{2l+1}\;\frac{{r^l_<}}{{r^{l+1}_>}}\;{Y^*}_{lm}(\theta', \phi')\;Y_{lm}(\theta, \phi) |
305 |
gezelter |
4404 |
\label{eq:10} |
306 |
|
|
\end{equation} |
307 |
|
|
If the sphere completely encloses the charge density then $ r_< = r'$ and $r_> = R$. Substituting equation (\ref{eq:10}) into (\ref{eq:9}) we get, |
308 |
|
|
\begin{equation} |
309 |
|
|
\begin{split} |
310 |
mlamichh |
4409 |
\int_{r<R} {\nabla}\mathbf{E}\;d^3r &=-\frac{R^2}{\epsilon_o}\int_{r=R} \; {\nabla}\;\left(\int \rho(\mathbf r')\sum_{l=0}^{\infty}\sum_{m=-l}^{m=l}\frac{1}{2l+1}\;\frac{{r'^l}}{{R^{l+1}}}\;{Y^*}_{lm}(\theta', \phi')\;Y_{lm}(\theta, \phi)\;d^3r'\right) \hat{n}\; d\Omega \\ |
311 |
|
|
&= -\frac{R^2}{\epsilon_o}\sum_{l=0}^{\infty}\sum_{m=-l}^{m=l}\frac{1}{2l+1}\;\int \rho(\mathbf r')\;{r'^l}\;{Y^*}_{lm}(\theta', \phi')\left(\int_{r=R}\vec{\nabla}\left({R^{-(l+1)}}\;Y_{lm}(\theta, \phi)\right)\hat{n}\; d\Omega \right)d^3r |
312 |
gezelter |
4404 |
' |
313 |
|
|
\end{split} |
314 |
|
|
\label{eq:11} |
315 |
|
|
\end{equation} |
316 |
|
|
The gradient of the product of radial function and spherical harmonics |
317 |
mlamichh |
4409 |
is given by:\cite{Arfkan} |
318 |
gezelter |
4404 |
\begin{equation} |
319 |
|
|
\begin{split} |
320 |
mlamichh |
4409 |
{\nabla}\left[ f(r)\;Y_{lm}(\theta, \phi)\right] = &-\left(\frac{l+1}{2l+1}\right)^{1/2}\; \left[\frac{\partial}{\partial r}-\frac{l}{r} \right]f(r)\; Y_{l, l+1, m}(\theta, \phi)\\ &+ \left(\frac{l}{2l+1}\right)^{1/2}\left[\frac |
321 |
gezelter |
4404 |
{\partial}{\partial r}+\frac{l}{r} \right]f(r)\; Y_{l, l-1, m}(\theta, \phi). |
322 |
|
|
\end{split} |
323 |
|
|
\label{eq:12} |
324 |
|
|
\end{equation} |
325 |
|
|
Using equation (\ref{eq:12}) we get, |
326 |
|
|
\begin{equation} |
327 |
mlamichh |
4409 |
{\nabla}\left({R^{-(l+1)}}\;Y_{lm}(\theta, \phi)\right) = [(l+1)(2l+1)]^{1/2}\; Y_{l,l+1,m}(\theta, \phi) \; \frac{1}{R^{l+2}}, |
328 |
gezelter |
4404 |
\label{eq:13} |
329 |
|
|
\end{equation} |
330 |
mlamichh |
4409 |
where $ Y_{l,l+1,m}(\theta, \phi)$ is a vector spherical harmonics \cite{Arfkan}. Using Clebsch-Gorden coefficients $C(l+1, 1, l|m_1,m_2,m) $, equation \ref{eq:14} can be written in spherical harmonics, |
331 |
gezelter |
4404 |
\begin{equation} |
332 |
mlamichh |
4409 |
Y_{l,l+1,m}(\theta, \phi) = \sum_{m_1, m_2} C(l+1,1,l|m_1,m_2,m)\; {Y_{l+1}}^{m_1}(\theta,\phi)\; \hat{e}_{m_2}. |
333 |
gezelter |
4404 |
\label{eq:14} |
334 |
|
|
\end{equation} |
335 |
mlamichh |
4409 |
Here $\hat{e}_{m_2}$ is a spherical tensor of rank 1 which can be expressed |
336 |
gezelter |
4404 |
in terms of Cartesian coordinates, |
337 |
|
|
\begin{equation} |
338 |
mlamichh |
4409 |
{\hat{e}}_{+1} = - \frac{\hat{x}+i\hat{y}}{\sqrt{2}},\quad {\hat{e}}_{0} = \hat{z},\quad and \quad {\hat{e}}_{-1} = \frac{\hat{x}-i\hat{y}}{\sqrt{2}}. |
339 |
gezelter |
4404 |
\label{eq:15} |
340 |
|
|
\end{equation} |
341 |
mlamichh |
4409 |
The normal vector $\hat{n} $ is then expressed in terms of spherical tensor of rank 1 as shown in below, |
342 |
gezelter |
4404 |
\begin{equation} |
343 |
mlamichh |
4409 |
\hat{n} = \sqrt{\frac{4\pi}{3}}\left(-{Y_1}^{-1}{\hat{e}}_1 -{Y_1}^{1}{\hat{e}}_{-1} + {Y_1}^{0}{\hat{e}}_0 \right). |
344 |
gezelter |
4404 |
\label{eq:16} |
345 |
|
|
\end{equation} |
346 |
|
|
The surface integral of the product of $\hat{n}$ and |
347 |
|
|
${Y_{l+1}}^{m_1}(\theta, \phi)$ gives, |
348 |
|
|
\begin{equation} |
349 |
|
|
\begin{split} |
350 |
|
|
\int \hat{n}\;{Y_{l+1}}^{m_1}\;d\Omega &= \int \sqrt{\frac{4\pi}{3}}\left(-{Y_1}^{-1}{\hat{e}}_1 -{Y_1}^{1}{\hat{e}}_{-1} + {Y_1}^{0}{\hat{e}}_0 \right)\;{Y_{l+1}}^{m_1}\; d\Omega \\ |
351 |
|
|
&= \int \sqrt{\frac{4\pi}{3}}\left({{Y_1}^{1}}^* {\hat{e}}_1 +{{Y_1}^{-1}}^* {\hat{e}}_{-1} + {{Y_1}^{0}}^* {\hat{e}}_0 \right)\;{Y_{l+1}}^{m_1}\; d\Omega \\ |
352 |
|
|
&= \sqrt{\frac{4\pi}{3}}\left({\delta}_{l+1, 1}\;{\delta}_{1, m_1}\;{\hat{e}}_1 + {\delta}_{l+1, 1}\;{\delta}_{-1, m_1}\;{\hat{e}}_{-1}+ {\delta}_{l+1, 1}\;{\delta}_{0, m_1} \;{\hat{e}}_0\right), |
353 |
|
|
\end{split} |
354 |
|
|
\label{eq:17} |
355 |
|
|
\end{equation} |
356 |
|
|
where ${Y_{l}}^{-m} = (-1)^m\;{{Y_{l}}^{m}}^* $ and |
357 |
|
|
$ \int {{Y_{l}}^{m}}^*\;{Y_{l'}}^{m'}\;d\Omega = |
358 |
|
|
\delta_{ll'}\delta_{mm'} $. |
359 |
|
|
Non-vanishing values of equation \ref{eq:17} require $l = 0$, |
360 |
|
|
therefore the value of $ m = 0 $. Since the values of $ m_1$ are -1, |
361 |
|
|
1, and 0 then $m_2$ takes the values 1, -1, and 0, respectively |
362 |
|
|
provided that $m = m_1 + m_2$. Equation \ref{eq:11} can therefore be |
363 |
|
|
modified, |
364 |
|
|
\begin{equation} |
365 |
|
|
\begin{split} |
366 |
mlamichh |
4409 |
\int_{r<R} {\nabla}\mathbf{E}\;d^3r = &- \sqrt{\frac{4\pi}{{3}}}\;\frac{1}{\epsilon_o}\int \rho(r')\;{Y^*}_{00}(\theta', \phi')[ C(1, 1, 0|-1,1,0)\;{\hat{e}_{-1}}{\hat{e}_{1}}\\ &+ C(1, 1, 0|-1,1,0)\;{\hat{e}_{1}}{\hat{e}_{-1}}+C( |
367 |
|
|
1, 1, 0|0,0,0)\;{\hat{e}_{0}}{\hat{e}_{0}} ]\; d^3r' \\ |
368 |
|
|
&= -\sqrt{\frac{4\pi}{{3}}}\;\frac{1}{\epsilon_o}\int \rho(r')\;d^3r'\left({\hat{e}_{-1}}{\hat{e}_{1}}+{\hat{e}_{1}}{\hat{e}_{-1}}-{\hat{e}_{0}}{\hat{e}_{0}}\right)\\ |
369 |
gezelter |
4404 |
&= - \sqrt{\frac{4\pi}{{3}}}\;\frac{1}{\epsilon_o}\;C_{total}\;\left({\hat{e}_{-1}}{\hat{e}_{1}}+{\hat{e}_{1}}{\hat{e}_{-1}}-{\hat{e}_{0}}{\hat{e}_{0}}\right). |
370 |
|
|
\end{split} |
371 |
|
|
\label{eq:19} |
372 |
|
|
\end{equation} |
373 |
mlamichh |
4409 |
In the last step, the charge density was integrated over the sphere, yielding a total charge $\mathrm{C_total}$.Equation (\ref{eq:19}) gives the total gradient of the field over a sphere due to the distribution of the charges. |
374 |
|
|
For quadrupolar fluids the total charge within a sphere is zero, therefore |
375 |
|
|
$ \int_{r<R} {\nabla}\mathbf{E}\;d^3r = 0 $. Hence the quadrupolar |
376 |
gezelter |
4404 |
polarization produces zero net gradient of the field inside the |
377 |
|
|
sphere. |
378 |
|
|
|
379 |
|
|
|
380 |
gezelter |
4399 |
\bibliography{dielectric_new} |
381 |
|
|
\end{document} |
382 |
|
|
% |
383 |
|
|
% ****** End of file multipole.tex ****** |