| 1 |
tim |
1820 |
/* |
| 2 |
|
|
* Copyright (C) 2000-2004 Object Oriented Parallel Simulation Engine (OOPSE) project |
| 3 |
|
|
* |
| 4 |
|
|
* Contact: oopse@oopse.org |
| 5 |
|
|
* |
| 6 |
|
|
* This program is free software; you can redistribute it and/or |
| 7 |
|
|
* modify it under the terms of the GNU Lesser General Public License |
| 8 |
|
|
* as published by the Free Software Foundation; either version 2.1 |
| 9 |
|
|
* of the License, or (at your option) any later version. |
| 10 |
|
|
* All we ask is that proper credit is given for our work, which includes |
| 11 |
|
|
* - but is not limited to - adding the above copyright notice to the beginning |
| 12 |
|
|
* of your source code files, and to any copyright notice that you may distribute |
| 13 |
|
|
* with programs based on this work. |
| 14 |
|
|
* |
| 15 |
|
|
* This program is distributed in the hope that it will be useful, |
| 16 |
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 17 |
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 18 |
|
|
* GNU Lesser General Public License for more details. |
| 19 |
|
|
* |
| 20 |
|
|
* You should have received a copy of the GNU Lesser General Public License |
| 21 |
|
|
* along with this program; if not, write to the Free Software |
| 22 |
|
|
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. |
| 23 |
|
|
* |
| 24 |
|
|
*/ |
| 25 |
|
|
|
| 26 |
|
|
#include "DLM.hpp" |
| 27 |
|
|
|
| 28 |
|
|
namespace oopse { |
| 29 |
|
|
|
| 30 |
|
|
void DLM::doRotate(StuntDouble* sd, Vector3d& ji, double dt) { |
| 31 |
|
|
double dt2 = 0.5 * dt; |
| 32 |
|
|
double angle; |
| 33 |
|
|
|
| 34 |
|
|
RotMat3x3d A = sd->getA(); |
| 35 |
|
|
Mat3x3d I = sd->getI(); |
| 36 |
|
|
|
| 37 |
|
|
// use the angular velocities to propagate the rotation matrix a full time step |
| 38 |
|
|
if (sd->isLinear()) { |
| 39 |
|
|
|
| 40 |
|
|
int i = sd->linearAxis(); |
| 41 |
|
|
int j = (i+1)%3; |
| 42 |
|
|
int k = (i+2)%3; |
| 43 |
|
|
|
| 44 |
|
|
angle = dt2 * ji[j] / I(j, j); |
| 45 |
|
|
rotateStep( k, i, angle, ji, A ); |
| 46 |
|
|
|
| 47 |
|
|
angle = dt * ji[k] / I(k, k); |
| 48 |
|
|
rotateStep( i, j, angle, ji, A); |
| 49 |
|
|
|
| 50 |
|
|
angle = dt2 * ji[j] / I(j, j); |
| 51 |
|
|
rotateStep( k, i, angle, ji, A ); |
| 52 |
|
|
|
| 53 |
|
|
} else { |
| 54 |
|
|
// rotate about the x-axis |
| 55 |
|
|
angle = dt2 * ji[0] / I(0, 0); |
| 56 |
|
|
rotateStep( 1, 2, angle, ji, A ); |
| 57 |
|
|
|
| 58 |
|
|
// rotate about the y-axis |
| 59 |
|
|
angle = dt2 * ji[1] / I(1, 1); |
| 60 |
|
|
rotateStep( 2, 0, angle, ji, A ); |
| 61 |
|
|
|
| 62 |
|
|
// rotate about the z-axis |
| 63 |
|
|
angle = dt * ji[2] / I(2, 2); |
| 64 |
|
|
sd->addZangle(angle); |
| 65 |
|
|
rotateStep( 0, 1, angle, ji, A); |
| 66 |
|
|
|
| 67 |
|
|
// rotate about the y-axis |
| 68 |
|
|
angle = dt2 * ji[1] / I(1, 1); |
| 69 |
|
|
rotateStep( 2, 0, angle, ji, A ); |
| 70 |
|
|
|
| 71 |
|
|
// rotate about the x-axis |
| 72 |
|
|
angle = dt2 * ji[0] / I(0, 0); |
| 73 |
|
|
rotateStep( 1, 2, angle, ji, A ); |
| 74 |
|
|
|
| 75 |
|
|
} |
| 76 |
|
|
|
| 77 |
|
|
sd->setA( A ); |
| 78 |
|
|
} |
| 79 |
|
|
|
| 80 |
|
|
|
| 81 |
|
|
void DLM::rotateStep(int axes1, int axes2, double angle, Vector3d& ji, RotMat3x3d& A) { |
| 82 |
|
|
|
| 83 |
|
|
int i, j, k; |
| 84 |
|
|
double sinAngle; |
| 85 |
|
|
double cosAngle; |
| 86 |
|
|
double angleSqr; |
| 87 |
|
|
double angleSqrOver4; |
| 88 |
|
|
double top, bottom; |
| 89 |
|
|
|
| 90 |
|
|
RotMat3x3d tempA(A); // initialize the tempA |
| 91 |
|
|
Vector3d tempJ(0.0); |
| 92 |
|
|
|
| 93 |
|
|
RotMat3x3d rot = RotMat3x3d::identity(); // initalize rot as a unit matrix |
| 94 |
|
|
|
| 95 |
|
|
// use a small angle aproximation for sin and cosine |
| 96 |
|
|
|
| 97 |
|
|
angleSqr = angle * angle; |
| 98 |
|
|
angleSqrOver4 = angleSqr / 4.0; |
| 99 |
|
|
top = 1.0 - angleSqrOver4; |
| 100 |
|
|
bottom = 1.0 + angleSqrOver4; |
| 101 |
|
|
|
| 102 |
|
|
cosAngle = top / bottom; |
| 103 |
|
|
sinAngle = angle / bottom; |
| 104 |
|
|
|
| 105 |
|
|
rot(axes1, axes1) = cosAngle; |
| 106 |
|
|
rot(axes2, axes2) = cosAngle; |
| 107 |
|
|
|
| 108 |
|
|
rot(axes1, axes2) = sinAngle; |
| 109 |
|
|
rot(axes2, axes1) = -sinAngle; |
| 110 |
|
|
|
| 111 |
|
|
// rotate the momentum acoording to: ji[] = rot[][] * ji[] |
| 112 |
|
|
ji = rot * ji; |
| 113 |
|
|
|
| 114 |
|
|
// rotate the Rotation matrix acording to: |
| 115 |
|
|
// A[][] = A[][] * transpose(rot[][]) |
| 116 |
|
|
// transpose(A[][]) = transpose(A[][]) * transpose(rot[][]) |
| 117 |
|
|
|
| 118 |
|
|
A = rot * A; //? A = A* rot.transpose(); |
| 119 |
|
|
|
| 120 |
|
|
} |
| 121 |
|
|
|
| 122 |
|
|
|
| 123 |
|
|
} |