| 1 |
gezelter |
1918 |
#! /usr/bin/env python |
| 2 |
|
|
|
| 3 |
|
|
from __future__ import division,print_function |
| 4 |
|
|
|
| 5 |
|
|
__doc__ = """Luttinger and Tisza Field values |
| 6 |
|
|
|
| 7 |
|
|
Computes the sums for the field values (and also the energy constants |
| 8 |
|
|
for the low energy lattices) from the paper by Luttinger and Tisza |
| 9 |
|
|
paper: |
| 10 |
|
|
|
| 11 |
|
|
J. M. Luttinger and L. Tisza, "Theory of Dipole Interaction in |
| 12 |
|
|
Crystals," Phys. Rev. 70, 954-964 (1946) doi: 10.1103/PhysRev.70.954 |
| 13 |
|
|
|
| 14 |
|
|
Also note the errata: Phys. Rev. 72 257 (1947) doi: 10.1103/PhysRev.72.257 |
| 15 |
|
|
|
| 16 |
|
|
This script can obtain a much higher degree of accuracy than the |
| 17 |
|
|
original paper (simply by going to many more terms). Using the option |
| 18 |
|
|
-c 350 appears to converge the energy constants to approximately 1 |
| 19 |
|
|
part in 10^9 (but takes a long time). |
| 20 |
|
|
|
| 21 |
|
|
Usage: fieldValues |
| 22 |
|
|
|
| 23 |
|
|
Options: |
| 24 |
|
|
|
| 25 |
|
|
-h, --help show this help |
| 26 |
|
|
-c use the specified cutoff in inverse space |
| 27 |
|
|
|
| 28 |
|
|
Example: |
| 29 |
|
|
fieldValues -c 100 |
| 30 |
|
|
""" |
| 31 |
|
|
|
| 32 |
|
|
__author__ = "Dan Gezelter (gezelter@nd.edu) and Kathie Newman (newman@nd.edu)" |
| 33 |
|
|
__version__ = "$Rev: 1917 $" |
| 34 |
|
|
__date__ = "$LastChangedDate: 2013-07-31 08:58:35 -0400 (Wed, 31 Jul 2013) $" |
| 35 |
|
|
__copyright__ = "Copyright (c) 2013 by the University of Notre Dame" |
| 36 |
|
|
__license__ = "OpenMD" |
| 37 |
|
|
|
| 38 |
|
|
import sys |
| 39 |
|
|
import getopt |
| 40 |
|
|
import string |
| 41 |
|
|
import math as m |
| 42 |
|
|
|
| 43 |
|
|
def usage(): |
| 44 |
|
|
print(__doc__) |
| 45 |
|
|
|
| 46 |
|
|
|
| 47 |
|
|
def doSums(r_c): |
| 48 |
|
|
|
| 49 |
|
|
sum1=0 # Sz( 0, 1/2, 1/2) |
| 50 |
|
|
sum2=0 # Sz(1/2, 0, 0) |
| 51 |
|
|
sum3=0 # Sz( 0, 1/4, 1/4) |
| 52 |
|
|
sum4=0 # Sy(1/4, 1/4, 1/4) |
| 53 |
|
|
sum5=0 # Sy( 0, 1/4, 1/4) |
| 54 |
|
|
sum6=0 # Sy(1/2, 1/4, 1/4) |
| 55 |
|
|
|
| 56 |
|
|
x = -r_c-1 |
| 57 |
|
|
|
| 58 |
|
|
while x <= r_c: |
| 59 |
|
|
x = x + 1 |
| 60 |
|
|
dx = x |
| 61 |
|
|
dx2 = 1/2 - x |
| 62 |
|
|
dx4 = 1/4 - x |
| 63 |
|
|
|
| 64 |
|
|
y = -r_c-1 |
| 65 |
|
|
while y <= r_c: |
| 66 |
|
|
y = y + 1 |
| 67 |
|
|
dy = y |
| 68 |
|
|
dy2 = 1/2 - y |
| 69 |
|
|
dy4 = 1/4 - y |
| 70 |
|
|
|
| 71 |
|
|
z = -r_c-1 |
| 72 |
|
|
while z <= r_c: |
| 73 |
|
|
z = z + 1 |
| 74 |
|
|
dz = z |
| 75 |
|
|
dz2 = 1/2 - z |
| 76 |
|
|
dz4 = 1/4 - z |
| 77 |
|
|
|
| 78 |
|
|
r = m.sqrt( dx*dx + dy*dy + dz*dz) |
| 79 |
|
|
r1 =m.sqrt( dx*dx + dy2*dy2 + dz2*dz2) |
| 80 |
|
|
r2 =m.sqrt( dx2*dx2 + dy*dy + dz*dz) |
| 81 |
|
|
r3 =m.sqrt( dx*dx + dy4*dy4 + dz4*dz4) |
| 82 |
|
|
r4 =m.sqrt( dx4*dx4 + dy4*dy4 + dz4*dz4) |
| 83 |
|
|
r5 =r3 |
| 84 |
|
|
r6 =m.sqrt( dx2*dx2 + dy4*dy4 + dz4*dz4) |
| 85 |
|
|
|
| 86 |
|
|
if r <= r_c: |
| 87 |
|
|
r15 = pow(r1,5) |
| 88 |
|
|
r25 = pow(r2,5) |
| 89 |
|
|
r35 = pow(r3,5) |
| 90 |
|
|
r45 = pow(r4,5) |
| 91 |
|
|
r55 = pow(r5,5) |
| 92 |
|
|
r65 = pow(r6,5) |
| 93 |
|
|
|
| 94 |
|
|
term1 = (2 * dz2 * dz2 - dx*dx - dy2*dy2)/r15 |
| 95 |
|
|
term2 = (2 * dz*dz - dx2*dx2 - dy*dy)/r25 |
| 96 |
|
|
term3 = (2 * dz4*dz4 - dx*dx - dy4*dy4)/r35 |
| 97 |
|
|
term4 = 3 * dy4 * dz4 / r45 |
| 98 |
|
|
term5 = 3 * dy4 * dz4 / r55 |
| 99 |
|
|
term6 = 3 * dy4 * dz4 / r65 |
| 100 |
|
|
|
| 101 |
|
|
sum1 += term1 |
| 102 |
|
|
sum2 += term2 |
| 103 |
|
|
sum3 += term3 |
| 104 |
|
|
sum4 += term4 |
| 105 |
|
|
sum5 += term5 |
| 106 |
|
|
sum6 += term6 |
| 107 |
|
|
|
| 108 |
|
|
f2 = -(sum1 - sum2) / 2 |
| 109 |
|
|
f3 = -(sum1 - sum2) / 4 |
| 110 |
|
|
f4 = -(sum1 - sum2) / 4 |
| 111 |
|
|
f5 = -(sum1 + sum2) / 2 |
| 112 |
|
|
f6 = (sum1 + sum2) / 4 |
| 113 |
|
|
f7 = (sum1 + sum2) / 4 |
| 114 |
|
|
g = sum4 |
| 115 |
|
|
h1 = sum1 |
| 116 |
|
|
h2 = sum3 - sum1 |
| 117 |
|
|
h3 = (sum5+sum6)/2 |
| 118 |
|
|
h4 = (sum5-sum6)/2 |
| 119 |
|
|
|
| 120 |
|
|
print ("Raw Sums:") |
| 121 |
|
|
print ("Sz( 0, 1/2, 1/2) = ", sum1) |
| 122 |
|
|
print ("Sz(1/2, 0, 0) = ", sum2) |
| 123 |
|
|
print ("Sz( 0, 1/4, 1/4) = ", sum3) |
| 124 |
|
|
print ("Sy(1/4, 1/4, 1/4) = ", sum4) |
| 125 |
|
|
print ("Sy( 0, 1/4, 1/4) = ", sum5) |
| 126 |
|
|
print ("Sy(1/2, 1/4, 1/4) = ", sum6) |
| 127 |
|
|
print ("") |
| 128 |
|
|
print ("Field Values:") |
| 129 |
|
|
print ("f2 = ", f2) |
| 130 |
|
|
print ("f3 = ", f3) |
| 131 |
|
|
print ("f4 = ", f4) |
| 132 |
|
|
print ("f5 = ", f5) |
| 133 |
|
|
print ("f6 = ", f6) |
| 134 |
|
|
print ("f7 = ", f7) |
| 135 |
|
|
print (" g = ", g) |
| 136 |
|
|
print ("h1 = ", h1) |
| 137 |
|
|
print ("h2 = ", h2) |
| 138 |
|
|
print ("h3 = ", h3) |
| 139 |
|
|
print ("h4 = ", h4) |
| 140 |
|
|
print ("") |
| 141 |
|
|
print ("Energy Constants for selected lattices:") |
| 142 |
|
|
print ("A_sc_001 :", -f5 / 2 ) |
| 143 |
|
|
print ("A_bcc_001 :", 0 ) |
| 144 |
|
|
print ("A_bcc_111 :", -g / 6 ) |
| 145 |
|
|
print ("A_bcc_min :", -(g+f6) / 4) |
| 146 |
|
|
print ("A_fcc_001 :", h1 / 2) |
| 147 |
|
|
print ("A_fcc_011 :", -h1 / 4) |
| 148 |
|
|
print ("B_sc_001 :", -f5 / 2) |
| 149 |
|
|
print ("B_bcc_001 :", -f5 / 4) |
| 150 |
|
|
print ("B_bcc_111 :", -g / 6 ) |
| 151 |
|
|
print ("B_fcc_001 :", -h1 / 4) |
| 152 |
|
|
print ("B_fcc_011 :", -h4 / 8) |
| 153 |
|
|
|
| 154 |
|
|
|
| 155 |
|
|
def main(argv): |
| 156 |
|
|
|
| 157 |
|
|
r_c = 100 |
| 158 |
|
|
try: |
| 159 |
|
|
opts, args = getopt.getopt(argv, "hc:", ["help","r_c="]) |
| 160 |
|
|
except getopt.GetoptError: |
| 161 |
|
|
usage() |
| 162 |
|
|
sys.exit(2) |
| 163 |
|
|
for opt, arg in opts: |
| 164 |
|
|
if opt in ("-h", "--help"): |
| 165 |
|
|
usage() |
| 166 |
|
|
sys.exit() |
| 167 |
|
|
elif opt in ("-c", "--r_c"): |
| 168 |
|
|
r_c = int(arg) |
| 169 |
|
|
|
| 170 |
|
|
doSums(r_c) |
| 171 |
|
|
|
| 172 |
|
|
if __name__ == "__main__": |
| 173 |
|
|
if len(sys.argv) == 1: |
| 174 |
|
|
usage() |
| 175 |
|
|
sys.exit() |
| 176 |
|
|
main(sys.argv[1:]) |
| 177 |
|
|
|