140 |
|
Pechukas.\cite{Berne72} The potential is constructed in the familiar |
141 |
|
form of the Lennard-Jones function using orientation-dependent |
142 |
|
$\sigma$ and $\epsilon$ parameters, |
143 |
< |
\begin{equation} |
144 |
< |
\begin{split} |
143 |
> |
\begin{multline} |
144 |
|
V_{ij}({\mathbf{\hat u}_i}, {\mathbf{\hat u}_j}, {\mathbf{\hat |
145 |
< |
r}_{ij}}) = & 4\epsilon ({\mathbf{\hat u}_i}, {\mathbf{\hat u}_j}, |
145 |
> |
r}_{ij}}) = 4\epsilon ({\mathbf{\hat u}_i}, {\mathbf{\hat u}_j}, |
146 |
|
{\mathbf{\hat r}_{ij}})\left[ \left(\frac{\sigma_0}{r_{ij}-\sigma({\mathbf{\hat u}_i}, |
147 |
< |
{\mathbf{\hat u}_j}, {\mathbf{\hat r}_{ij}})+\sigma_0}\right)^{12} \right.\\ |
148 |
< |
&\left. -\left(\frac{\sigma_0}{r_{ij}-\sigma({\mathbf{\hat u}_i}, |
147 |
> |
{\mathbf{\hat u}_j}, {\mathbf{\hat r}_{ij}})+\sigma_0}\right)^{12} |
148 |
> |
\right. \\ |
149 |
> |
\left. - \left(\frac{\sigma_0}{r_{ij}-\sigma({\mathbf{\hat u}_i}, |
150 |
|
{\mathbf{\hat u}_j}, {\mathbf{\hat |
151 |
|
r}_{ij}})+\sigma_0}\right)^6\right] |
152 |
– |
\end{split} |
152 |
|
\label{mdeq:gb} |
153 |
< |
\end{equation} |
153 |
> |
\end{multline} |
154 |
|
|
155 |
|
The range $(\sigma({\bf \hat{u}}_{i},{\bf \hat{u}}_{j},{\bf |
156 |
|
\hat{r}}_{ij}))$, and strength $(\epsilon({\bf \hat{u}}_{i},{\bf |
171 |
|
where $l$ and $d$ describe the length and width of each uniaxial |
172 |
|
ellipsoid. These shape anisotropy parameters can then be used to |
173 |
|
calculate the range function, |
174 |
< |
\begin{equation} |
175 |
< |
\begin{split} |
176 |
< |
& \sigma({\bf \hat{u}}_{i},{\bf \hat{u}}_{j},{\bf \hat{r}}_{ij}) = |
178 |
< |
\sigma_{0} \times \\ |
179 |
< |
& \left[ 1- \left\{ \frac{ \chi \alpha^2 ({\bf \hat{u}}_i \cdot {\bf |
174 |
> |
\begin{multline} |
175 |
> |
\sigma({\bf \hat{u}}_{i},{\bf \hat{u}}_{j},{\bf \hat{r}}_{ij}) = \\ |
176 |
> |
\sigma_0 \left[ 1 - \left\{ \frac{ \chi \alpha^2 ({\bf \hat{u}}_i \cdot {\bf |
177 |
|
\hat{r}}_{ij} ) + \chi \alpha^{-2} ({\bf \hat{u}}_j \cdot {\bf |
178 |
|
\hat{r}}_{ij} ) - 2 \chi^2 ({\bf \hat{u}}_i \cdot {\bf |
179 |
|
\hat{r}}_{ij} )({\bf \hat{u}}_j \cdot {\bf |
180 |
|
\hat{r}}_{ij} ) ({\bf \hat{u}}_i \cdot {\bf \hat{u}}_j)}{1 - \chi^2 |
181 |
|
\left({\bf \hat{u}}_i \cdot {\bf \hat{u}}_j\right)^2} \right\} |
182 |
< |
\right]^{-1/2} |
183 |
< |
\end{split} |
187 |
< |
\end{equation} |
182 |
> |
\right]^{-1/2} |
183 |
> |
\end{multline} |
184 |
|
|
185 |
|
Gay-Berne ellipsoids also have an energy scaling parameter, |
186 |
|
$\epsilon^s$, which describes the well depth for two identical |
207 |
|
\left[1-\chi^{2}({\bf \hat{u}}_{i}.{\bf |
208 |
|
\hat{u}}_{j})^{2}\right]^{-1/2} |
209 |
|
\end{eqnarray*} |
210 |
< |
\begin{equation*} |
211 |
< |
\begin{split} |
212 |
< |
& \epsilon_{2}({\bf \hat{u}}_{i},{\bf \hat{u}}_{j},{\bf \hat{r}}_{ij}) |
213 |
< |
= 1 - \\ |
218 |
< |
& \left\{ \frac{ \chi' \alpha'^2 ({\bf \hat{u}}_i \cdot {\bf |
210 |
> |
\begin{multline*} |
211 |
> |
\epsilon_{2}({\bf \hat{u}}_{i},{\bf \hat{u}}_{j},{\bf \hat{r}}_{ij}) |
212 |
> |
= \\ |
213 |
> |
1 - \left\{ \frac{ \chi' \alpha'^2 ({\bf \hat{u}}_i \cdot {\bf |
214 |
|
\hat{r}}_{ij} ) + \chi' \alpha'^{-2} ({\bf \hat{u}}_j \cdot {\bf |
215 |
|
\hat{r}}_{ij} ) - 2 \chi'^2 ({\bf \hat{u}}_i \cdot {\bf |
216 |
|
\hat{r}}_{ij} )({\bf \hat{u}}_j \cdot {\bf |
217 |
|
\hat{r}}_{ij} ) ({\bf \hat{u}}_i \cdot {\bf \hat{u}}_j)}{1 - \chi'^2 |
218 |
|
\left({\bf \hat{u}}_i \cdot {\bf \hat{u}}_j\right)^2} \right\}, |
219 |
< |
\end{split} |
225 |
< |
\end{equation*} |
219 |
> |
\end{multline*} |
220 |
|
although many of the quantities and derivatives are identical with |
221 |
|
those obtained for the range parameter. Ref. \citen{Luckhurst90} |
222 |
|
has a particularly good explanation of the choice of the Gay-Berne |
696 |
|
We have computed translational diffusion constants for lipid molecules |
697 |
|
from the mean-square displacement, |
698 |
|
\begin{equation} |
699 |
< |
D = \lim_{t \rightarrow \infty} \frac{1}{6 t} \langle {|\left({\bf r}_{i}(t) - {\bf r}_{i}(0) \right)|}^2 \rangle, |
699 |
> |
D = \lim_{t \rightarrow \infty} \frac{1}{6 t} \langle {|\left({\bf |
700 |
> |
r}_{i}(t) - {\bf r}_{i}(0) \right)|}^2 \rangle, |
701 |
> |
\label{mdeq:msdisplacement} |
702 |
|
\end{equation} |
703 |
|
of the lipid bodies. Translational diffusion constants for the |
704 |
|
different head-to-tail size ratios (all at 300 K) are shown in table |
839 |
|
orientations of the membrane dipoles may be available from |
840 |
|
fluorescence detected linear dichroism (LD). Benninger {\it et al.} |
841 |
|
have recently used axially-specific chromophores |
842 |
< |
2-(4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacene-3-pentanoyl)-1-hexadecanoyl-sn-glycero-3-phospocholine |
843 |
< |
($\beta$-BODIPY FL C5-HPC or BODIPY-PC) and 3,3' |
842 |
> |
2-(4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacene-3-pentanoyl)-1-hexadecanoyl-sn-glycero-3-\\ |
843 |
> |
phospocholine ($\beta$-BODIPY FL C5-HPC or BODIPY-PC) and 3,3' |
844 |
|
dioctadecyloxacarbocyanine perchlorate (DiO) in their |
845 |
|
fluorescence-detected linear dichroism (LD) studies of plasma |
846 |
|
membranes of living cells.\cite{Benninger:2005qy} The DiO dye aligns |