ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/xDissertation/md.tex
(Generate patch)

Comparing trunk/xDissertation/md.tex (file contents):
Revision 3361 by xsun, Thu Mar 6 23:22:15 2008 UTC vs.
Revision 3376 by xsun, Mon Mar 24 21:32:11 2008 UTC

# Line 140 | Line 140 | $\sigma$ and $\epsilon$ parameters,
140   Pechukas.\cite{Berne72} The potential is constructed in the familiar
141   form of the Lennard-Jones function using orientation-dependent
142   $\sigma$ and $\epsilon$ parameters,
143 < \begin{equation}
144 < \begin{split}
143 > \begin{multline}
144   V_{ij}({\mathbf{\hat u}_i}, {\mathbf{\hat u}_j}, {\mathbf{\hat
145 < r}_{ij}}) = & 4\epsilon ({\mathbf{\hat u}_i}, {\mathbf{\hat u}_j},
145 > r}_{ij}}) = 4\epsilon ({\mathbf{\hat u}_i}, {\mathbf{\hat u}_j},
146   {\mathbf{\hat r}_{ij}})\left[ \left(\frac{\sigma_0}{r_{ij}-\sigma({\mathbf{\hat u}_i},
147 < {\mathbf{\hat u}_j}, {\mathbf{\hat r}_{ij}})+\sigma_0}\right)^{12} \right.\\
148 < &\left. -\left(\frac{\sigma_0}{r_{ij}-\sigma({\mathbf{\hat u}_i},
147 > {\mathbf{\hat u}_j}, {\mathbf{\hat r}_{ij}})+\sigma_0}\right)^{12}
148 > \right. \\
149 > \left. - \left(\frac{\sigma_0}{r_{ij}-\sigma({\mathbf{\hat u}_i},
150   {\mathbf{\hat u}_j}, {\mathbf{\hat
151   r}_{ij}})+\sigma_0}\right)^6\right]
152 \end{split}
152   \label{mdeq:gb}
153 < \end{equation}
153 > \end{multline}
154  
155   The range $(\sigma({\bf \hat{u}}_{i},{\bf \hat{u}}_{j},{\bf
156   \hat{r}}_{ij}))$, and strength $(\epsilon({\bf \hat{u}}_{i},{\bf
# Line 172 | Line 171 | calculate the range function,
171   where $l$ and $d$ describe the length and width of each uniaxial
172   ellipsoid.  These shape anisotropy parameters can then be used to
173   calculate the range function,
174 < \begin{equation}
175 < \begin{split}
176 < & \sigma({\bf \hat{u}}_{i},{\bf \hat{u}}_{j},{\bf \hat{r}}_{ij}) =
178 < \sigma_{0} \times  \\
179 < & \left[ 1- \left\{ \frac{ \chi \alpha^2 ({\bf \hat{u}}_i \cdot {\bf
174 > \begin{multline}
175 > \sigma({\bf \hat{u}}_{i},{\bf \hat{u}}_{j},{\bf \hat{r}}_{ij}) = \\
176 > \sigma_0 \left[ 1 - \left\{ \frac{ \chi \alpha^2 ({\bf \hat{u}}_i \cdot {\bf
177   \hat{r}}_{ij} ) + \chi \alpha^{-2} ({\bf \hat{u}}_j \cdot {\bf
178   \hat{r}}_{ij} ) - 2 \chi^2 ({\bf \hat{u}}_i \cdot {\bf
179   \hat{r}}_{ij} )({\bf \hat{u}}_j \cdot {\bf
180   \hat{r}}_{ij} ) ({\bf \hat{u}}_i \cdot {\bf \hat{u}}_j)}{1 - \chi^2
181   \left({\bf \hat{u}}_i \cdot {\bf \hat{u}}_j\right)^2} \right\}
182 < \right]^{-1/2}
183 < \end{split}
187 < \end{equation}
182 > \right]^{-1/2}
183 > \end{multline}
184  
185   Gay-Berne ellipsoids also have an energy scaling parameter,
186   $\epsilon^s$, which describes the well depth for two identical
# Line 211 | Line 207 | The form of the strength function is somewhat complica
207   \left[1-\chi^{2}({\bf \hat{u}}_{i}.{\bf
208   \hat{u}}_{j})^{2}\right]^{-1/2}
209   \end{eqnarray*}
210 < \begin{equation*}
211 < \begin{split}
212 < & \epsilon_{2}({\bf \hat{u}}_{i},{\bf \hat{u}}_{j},{\bf \hat{r}}_{ij})
213 < = 1 - \\
218 < & \left\{ \frac{ \chi' \alpha'^2 ({\bf \hat{u}}_i \cdot {\bf
210 > \begin{multline*}
211 > \epsilon_{2}({\bf \hat{u}}_{i},{\bf \hat{u}}_{j},{\bf \hat{r}}_{ij})
212 > =  \\
213 > 1 - \left\{ \frac{ \chi' \alpha'^2 ({\bf \hat{u}}_i \cdot {\bf
214   \hat{r}}_{ij} ) + \chi' \alpha'^{-2} ({\bf \hat{u}}_j \cdot {\bf
215   \hat{r}}_{ij} ) - 2 \chi'^2 ({\bf \hat{u}}_i \cdot {\bf
216   \hat{r}}_{ij} )({\bf \hat{u}}_j \cdot {\bf
217   \hat{r}}_{ij} ) ({\bf \hat{u}}_i \cdot {\bf \hat{u}}_j)}{1 - \chi'^2
218   \left({\bf \hat{u}}_i \cdot {\bf \hat{u}}_j\right)^2} \right\},
219 < \end{split}
225 < \end{equation*}
219 > \end{multline*}
220   although many of the quantities and derivatives are identical with
221   those obtained for the range parameter. Ref. \citen{Luckhurst90}
222   has a particularly good explanation of the choice of the Gay-Berne
# Line 465 | Line 459 | bilayer properties that match experimentally known val
459  
460   It is reasonable to ask how well the parameters we used can produce
461   bilayer properties that match experimentally known values for real
462 < lipid bilayers.  Using a value of $l = 13.8$ \AA for the ellipsoidal
462 > lipid bilayers.  Using a value of $l = 13.8$ \AA~for the ellipsoidal
463   tails and the fixed ellipsoidal aspect ratio of 3, our values for the
464   area per lipid ($A$) and inter-layer spacing ($D_{HH}$) depend
465   entirely on the size of the head bead relative to the molecular body.
# Line 526 | Line 520 | different direction from the upper leaf.\label{mdfig:t
520   different direction from the upper leaf.\label{mdfig:topView}}
521   \end{figure}
522  
523 < The principal method for observing orientational ordering in dipolar
524 < or liquid crystalline systems is the $P_2$ order parameter (defined
525 < as $1.5 \times \lambda_{max}$, where $\lambda_{max}$ is the largest
532 < eigenvalue of the matrix,
533 < \begin{equation}
534 < {\mathsf{S}} = \frac{1}{N} \sum_i \left(
535 < \begin{array}{ccc}
536 <        u^{x}_i u^{x}_i-\frac{1}{3} & u^{x}_i u^{y}_i & u^{x}_i u^{z}_i \\
537 <        u^{y}_i u^{x}_i  & u^{y}_i u^{y}_i -\frac{1}{3} & u^{y}_i u^{z}_i \\
538 <        u^{z}_i u^{x}_i & u^{z}_i u^{y}_i  & u^{z}_i u^{z}_i -\frac{1}{3}
539 < \end{array} \right).
540 < \label{mdeq:opmatrix}
541 < \end{equation}
542 < Here $u^{\alpha}_i$ is the $\alpha=x,y,z$ component of the unit vector
543 < for molecule $i$.  (Here, $\hat{\bf u}_i$ can refer either to the
523 > The orientational ordering in the system is observed by $P_2$ order
524 > parameter, which is calculated from Eq.~\ref{mceq:opmatrix}
525 > in Ch.~\ref{chap:mc}. Here, $\hat{\bf u}_i$ can refer either to the
526   principal axis of the molecular body or to the dipole on the head
527 < group of the molecule.)  $P_2$ will be $1.0$ for a perfectly-ordered
528 < system and near $0$ for a randomized system.  Note that this order
529 < parameter is {\em not} equal to the polarization of the system.  For
530 < example, the polarization of a perfect anti-ferroelectric arrangement
549 < of point dipoles is $0$, but $P_2$ for the same system is $1$.  The
550 < eigenvector of $\mathsf{S}$ corresponding to the largest eigenvalue is
551 < familiar as the director axis, which can be used to determine a
552 < privileged axis for an orientationally-ordered system.  Since the
553 < molecular bodies are perpendicular to the head group dipoles, it is
554 < possible for the director axes for the molecular bodies and the head
555 < groups to be completely decoupled from each other.
527 > group of the molecule. Since the molecular bodies are perpendicular to
528 > the head group dipoles, it is possible for the director axes for the
529 > molecular bodies and the head groups to be completely decoupled from
530 > each other.
531  
532   Figure \ref{mdfig:topView} shows snapshots of bird's-eye views of the
533   flat ($\sigma_h = 1.20 d$) and rippled ($\sigma_h = 1.35, 1.41 d$)
# Line 721 | Line 696 | from the mean-square displacement,
696   We have computed translational diffusion constants for lipid molecules
697   from the mean-square displacement,
698   \begin{equation}
699 < D = \lim_{t \rightarrow \infty} \frac{1}{6 t} \langle {|\left({\bf r}_{i}(t) - {\bf r}_{i}(0) \right)|}^2 \rangle,
699 > D = \lim_{t \rightarrow \infty} \frac{1}{6 t} \langle {|\left({\bf
700 > r}_{i}(t) - {\bf r}_{i}(0) \right)|}^2 \rangle,
701 > \label{mdeq:msdisplacement}
702   \end{equation}
703   of the lipid bodies. Translational diffusion constants for the
704   different head-to-tail size ratios (all at 300 K) are shown in table
# Line 862 | Line 839 | have recently used axially-specific chromophores
839   orientations of the membrane dipoles may be available from
840   fluorescence detected linear dichroism (LD).  Benninger {\it et al.}
841   have recently used axially-specific chromophores
842 < 2-(4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacene-3-pentanoyl)-1-hexadecanoyl-sn-glycero-3-phospocholine
843 < ($\beta$-BODIPY FL C5-HPC or BODIPY-PC) and 3,3'
842 > 2-(4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacene-3-pentanoyl)-1-hexadecanoyl-sn-glycero-3-\\
843 > phospocholine ($\beta$-BODIPY FL C5-HPC or BODIPY-PC) and 3,3'
844   dioctadecyloxacarbocyanine perchlorate (DiO) in their
845   fluorescence-detected linear dichroism (LD) studies of plasma
846   membranes of living cells.\cite{Benninger:2005qy} The DiO dye aligns

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines