ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/xDissertation/mc.tex
(Generate patch)

Comparing trunk/xDissertation/mc.tex (file contents):
Revision 3354 by xsun, Sat Mar 1 22:11:41 2008 UTC vs.
Revision 3374 by xsun, Thu Mar 20 22:21:43 2008 UTC

# Line 1 | Line 1
1 < \chapter{\label{chap:mc}Spontaneous Corrugation of Dipolar Membranes}
1 > \chapter{\label{chap:mc}SPONTANEOUS CORRUGATION OF DIPOLAR MEMBRANES}
2  
3   \section{Introduction}
4   \label{mc:sec:Int}
# Line 26 | Line 26 | appears as an intermediate phase between the gel ($L_\
26   bilayers form a corrugated or ``rippled'' phase ($P_{\beta'}$) which
27   appears as an intermediate phase between the gel ($L_\beta$) and fluid
28   ($L_{\alpha}$) phases.  The $P_{\beta'}$ phase has attracted
29 < substantial experimental interest over the past 30 years. Most
30 < structural information of the ripple phase has been obtained by the
31 < X-ray diffraction~\cite{Sun96,Katsaras00} and freeze-fracture electron
32 < microscopy (FFEM).~\cite{Copeland80,Meyer96} Recently, Kaasgaard {\it
33 < et al.} used atomic force microscopy (AFM) to observe ripple phase
34 < morphology in bilayers supported on mica.~\cite{Kaasgaard03} The
35 < experimental results provide strong support for a 2-dimensional
36 < triangular packing lattice of the lipid molecules within the ripple
37 < phase.  This is a notable change from the observed lipid packing
38 < within the gel phase.~\cite{Cevc87} There have been a number of
39 < theoretical
40 < approaches~\cite{Marder84,Goldstein88,McCullough90,Lubensky93,Misbah98,Heimburg00,Kubica02,Bannerjee02}
29 > substantial experimental interest over the past 30
30 > years,~\cite{Sun96,Katsaras00,Copeland80,Meyer96,Kaasgaard03} and
31 > there have been a number of theoretical
32 > approaches~\cite{Marder84,Carlson87,Goldstein88,McCullough90,Lubensky93,Misbah98,Heimburg00,Kubica02,Bannerjee02}
33   (and some heroic
34   simulations~\cite{Ayton02,Jiang04,Brannigan04a,deVries05,deJoannis06})
35   undertaken to try to explain this phase, but to date, none have looked
# Line 114 | Line 106 | The potential energy of the system,
106   freedom along the z-axis.
107  
108   The potential energy of the system,
109 < \begin{eqnarray}
110 < V = \sum_i & & \left( \sum_{j>i} \frac{|\mu|^2}{4\pi \epsilon_0 r_{ij}^3} \left[
109 > \begin{equation}
110 > \begin{split}
111 > V = \sum_i  &\left( \sum_{j>i} \frac{|\mu|^2}{4\pi \epsilon_0 r_{ij}^3} \left[
112   {\mathbf{\hat u}_i} \cdot {\mathbf{\hat u}_j} -
113   3({\mathbf{\hat u}_i} \cdot {\mathbf{\hat
114 < r}_{ij}})({\mathbf{\hat u}_j} \cdot {\mathbf{\hat r}_{ij}})\right]
115 < \right. \nonumber \\
123 < & & \left. + \sum_{j \in NN_i}^6 \frac{k_r}{2}\left(
114 > r}_{ij}})({\mathbf{\hat u}_j} \cdot {\mathbf{\hat r}_{ij}})\right] \right. \\
115 >  & \left. + \sum_{j \in NN_i}^6 \frac{k_r}{2}\left(
116   r_{ij}-\sigma \right)^2 \right)
117 + \end{split}
118   \label{mceq:pot}
119 < \end{eqnarray}
119 > \end{equation}
120  
121   In this potential, $\mathbf{\hat u}_i$ is the unit vector pointing
122   along dipole $i$ and $\mathbf{\hat r}_{ij}$ is the unit vector
# Line 173 | Line 166 | The principal method for observing the orientational o
166  
167   \subsection{Dipolar Ordering and Coexistence Temperatures}
168   The principal method for observing the orientational ordering
169 < transition in dipolar systems is the $P_2$ order parameter (defined as
170 < $1.5 \times \lambda_{max}$, where $\lambda_{max}$ is the largest
171 < eigenvalue of the matrix,
169 > transition in dipolar or liquid crystalline systems is the $P_2$ order
170 > parameter (defined as $1.5 \times \lambda_{max}$, where
171 > $\lambda_{max}$ is the largest eigenvalue of the matrix,
172   \begin{equation}
173   {\mathsf{S}} = \frac{1}{N} \sum_i \left(
174   \begin{array}{ccc}
# Line 333 | Line 326 | can be written,
326   large mechanical surface tensions ($\gamma$), so a much simpler form
327   can be written,
328   \begin{equation}
329 < \langle | h(q) |^2 \rangle_{NVT} = \frac{k_B T}{\gamma q^2},
329 > \langle | h(q) |^2 \rangle_{NVT} = \frac{k_B T}{\gamma q^2}.
330   \label{mceq:fit2}
331   \end{equation}
332  

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines