179 |
|
|
180 |
|
\subsection{Dipolar Ordering and Coexistence Temperatures} |
181 |
|
The principal method for observing the orientational ordering |
182 |
< |
transition in dipolar systems is the $P_2$ order parameter (defined as |
183 |
< |
$1.5 \times \lambda_{max}$, where $\lambda_{max}$ is the largest |
184 |
< |
eigenvalue of the matrix, |
182 |
> |
transition in dipolar or liquid crystalline systems is the $P_2$ order |
183 |
> |
parameter (defined as $1.5 \times \lambda_{max}$, where |
184 |
> |
$\lambda_{max}$ is the largest eigenvalue of the matrix, |
185 |
|
\begin{equation} |
186 |
|
{\mathsf{S}} = \frac{1}{N} \sum_i \left( |
187 |
|
\begin{array}{ccc} |