ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/xDissertation/Introduction.tex
(Generate patch)

Comparing trunk/xDissertation/Introduction.tex (file contents):
Revision 3353 by xsun, Fri Feb 29 15:20:55 2008 UTC vs.
Revision 3354 by xsun, Sat Mar 1 22:11:41 2008 UTC

# Line 41 | Line 41 | hexagonal~\cite{Cevc87}. The popular $2$ dimensional l
41   {\it frustration} on triangular lattice.
42   \begin{figure}
43   \centering
44 < \includegraphics[width=\linewidth]{./figures/frustration.pdf}
44 > \includegraphics[width=\linewidth]{./figures/inFrustration.pdf}
45   \caption{Sketch to illustrate the frustration on triangular
46   lattice. Spins are represented by arrows, no matter which direction
47   the spin on the top of triangle points to, the Hamiltonian of the
48   system is the same, hence there are infinite possibilities for the
49   packing of the spins.}
50 < \label{fig:frustration}
50 > \label{Infig:frustration}
51   \end{figure}
52 < Figure~\ref{fig:frustration} shows an illustration of the frustration
52 > Figure~\ref{Infig:frustration} shows an illustration of the frustration
53   on a triangular lattice. The direction of the spin on top of the
54   triangle has no effects on the Hamiltonian of the system, therefore
55   infinite possibilities for the packing of spins induce the frustration
# Line 95 | Line 95 | normalize $\rho$ to unity,
95   normalize $\rho$ to unity,
96   \begin{equation}
97   1 = \int d \vec q~^N \int d \vec p~^N \rho,
98 < \label{normalized}
98 > \label{Ineq:normalized}
99   \end{equation}
100   then the value of $\rho$ gives the probability of finding the system
101   in a unit volume in the phase space.
# Line 104 | Line 104 | space at any instant can be written as:
104   time. The number of representive points at a given volume in the phase
105   space at any instant can be written as:
106   \begin{equation}
107 < \label{eq:deltaN}
107 > \label{Ineq:deltaN}
108   \delta N = \rho~\delta q_1 \delta q_2 \ldots \delta q_N \delta p_1 \delta p_2 \ldots \delta p_N.
109   \end{equation}
110   To calculate the change in the number of representive points in this
# Line 112 | Line 112 | representive points entering the volume at $q_1$ per u
112   of representive points in $q_1$ axis. The rate of the number of the
113   representive points entering the volume at $q_1$ per unit time is:
114   \begin{equation}
115 < \label{eq:deltaNatq1}
115 > \label{Ineq:deltaNatq1}
116   \rho~\dot q_1 \delta q_2 \ldots \delta q_N \delta p_1 \delta p_2 \ldots \delta p_N,
117   \end{equation}
118   and the rate of the number of representive points leaving the volume
119   at another position $q_1 + \delta q_1$ is:
120   \begin{equation}
121 < \label{eq:deltaNatq1plusdeltaq1}
121 > \label{Ineq:deltaNatq1plusdeltaq1}
122   \left( \rho + \frac{\partial \rho}{\partial q_1} \delta q_1 \right)\left(\dot q_1 +
123   \frac{\partial \dot q_1}{\partial q_1} \delta q_1 \right)\delta q_2 \ldots \delta q_N \delta p_1 \delta p_2 \ldots \delta p_N.
124   \end{equation}
125   Here the higher order differentials are neglected. So the change of
126   the number of the representive points is the difference of
127 < eq.~\ref{eq:deltaNatq1} and eq.~\ref{eq:deltaNatq1plusdeltaq1}, which
127 > eq.~\ref{Ineq:deltaNatq1} and eq.~\ref{Ineq:deltaNatq1plusdeltaq1}, which
128   gives us:
129   \begin{equation}
130 < \label{eq:deltaNatq1axis}
130 > \label{Ineq:deltaNatq1axis}
131   -\left(\rho \frac{\partial {\dot q_1}}{\partial q_1} + \frac{\partial {\rho}}{\partial q_1} \dot q_1 \right)\delta q_1 \delta q_2 \ldots \delta q_N \delta p_1 \delta p_2 \ldots \delta p_N,
132   \end{equation}
133   where, higher order differetials are neglected. If we sum over all the
134   axes in the phase space, we can get the change of the number of
135   representive points in a given volume with time:
136   \begin{equation}
137 < \label{eq:deltaNatGivenVolume}
137 > \label{Ineq:deltaNatGivenVolume}
138   \frac{d(\delta N)}{dt} = -\sum_{i=1}^N \left[\rho \left(\frac{\partial
139   {\dot q_i}}{\partial q_i} + \frac{\partial
140   {\dot p_i}}{\partial p_i}\right) + \left( \frac{\partial {\rho}}{\partial
# Line 144 | Line 144 | From Hamilton's equation of motion,
144   \begin{equation}
145   \frac{\partial {\dot q_i}}{\partial q_i} = - \frac{\partial
146   {\dot p_i}}{\partial p_i},
147 < \label{eq:canonicalFormOfEquationOfMotion}
147 > \label{Ineq:canonicalFormOfEquationOfMotion}
148   \end{equation}
149   this cancels out the first term on the right side of
150 < eq.~\ref{eq:deltaNatGivenVolume}. If both sides of
151 < eq.~\ref{eq:deltaNatGivenVolume} are divided by $\delta q_1 \delta q_2
150 > eq.~\ref{Ineq:deltaNatGivenVolume}. If both sides of
151 > eq.~\ref{Ineq:deltaNatGivenVolume} are divided by $\delta q_1 \delta q_2
152   \ldots \delta q_N \delta p_1 \delta p_2 \ldots \delta p_N$, then we
153   can derive Liouville's theorem:
154   \begin{equation}
155   \left( \frac{\partial \rho}{\partial t} \right)_{q, p} = -\sum_{i} \left(
156   \frac{\partial {\rho}}{\partial
157   q_i} \dot q_i + \frac{\partial {\rho}}{\partial p_i} \dot p_i \right).
158 < \label{eq:simpleFormofLiouville}
158 > \label{Ineq:simpleFormofLiouville}
159   \end{equation}
160   This is the basis of statistical mechanics. If we move the right
161 < side of equation~\ref{eq:simpleFormofLiouville} to the left, we
161 > side of equation~\ref{Ineq:simpleFormofLiouville} to the left, we
162   will obtain
163   \begin{equation}
164   \left( \frac{\partial \rho}{\partial t} \right)_{q, p} + \sum_{i} \left(
165   \frac{\partial {\rho}}{\partial
166   q_i} \dot q_i + \frac{\partial {\rho}}{\partial p_i} \dot p_i \right)
167   = 0.
168 < \label{eq:anotherFormofLiouville}
168 > \label{Ineq:anotherFormofLiouville}
169   \end{equation}
170   It is easy to note that the left side of
171 < equation~\ref{eq:anotherFormofLiouville} is the total derivative of
171 > equation~\ref{Ineq:anotherFormofLiouville} is the total derivative of
172   $\rho$ with respect of $t$, which means
173   \begin{equation}
174   \frac{d \rho}{dt} = 0,
175 < \label{eq:conservationofRho}
175 > \label{Ineq:conservationofRho}
176   \end{equation}
177   and the rate of density change is zero in the neighborhood of any
178   selected moving representive points in the phase space.
# Line 184 | Line 184 | phase space is zero,
184   phase space is zero,
185   \begin{equation}
186   \left( \frac{\partial \rho}{\partial t} \right)_{q, p} = 0.
187 < \label{eq:statEquilibrium}
187 > \label{Ineq:statEquilibrium}
188   \end{equation}
189   We may conclude the ensemble is in {\it statistical equilibrium}. An
190   ensemble in statistical equilibrium often means the system is also in
# Line 195 | Line 195 | q_i} \dot q_i + \frac{\partial {\rho}}{\partial p_i} \
195   \frac{\partial {\rho}}{\partial
196   q_i} \dot q_i + \frac{\partial {\rho}}{\partial p_i} \dot p_i \right)
197   = 0.
198 < \label{constantofMotion}
198 > \label{Ineq:constantofMotion}
199   \end{equation}
200   If $\rho$ is a function only of some constant of the motion, $\rho$ is
201   independent of time. For a conservative system, the energy of the
# Line 204 | Line 204 | phase space,
204   phase space,
205   \begin{equation}
206   \rho = \mathrm{const.}
207 < \label{eq:uniformEnsemble}
207 > \label{Ineq:uniformEnsemble}
208   \end{equation}
209   the ensemble is called {\it uniform ensemble}.  Another useful
210   ensemble is called {\it microcanonical ensemble}, for which:
211   \begin{equation}
212   \rho = \delta \left( H(q^N, p^N) - E \right) \frac{1}{\Sigma (N, V, E)}
213 < \label{eq:microcanonicalEnsemble}
213 > \label{Ineq:microcanonicalEnsemble}
214   \end{equation}
215   where $\Sigma(N, V, E)$ is a normalization constant parameterized by
216   $N$, the total number of particles, $V$, the total physical volume and
# Line 220 | Line 220 | S = - k_B \int d \vec q~^N \int d \vec p~^N \rho \ln [
220   Hamiltonian of the system. The Gibbs entropy is defined as
221   \begin{equation}
222   S = - k_B \int d \vec q~^N \int d \vec p~^N \rho \ln [C^N \rho],
223 < \label{eq:gibbsEntropy}
223 > \label{Ineq:gibbsEntropy}
224   \end{equation}
225   where $k_B$ is the Boltzmann constant and $C^N$ is a number which
226   makes the argument of $\ln$ dimensionless, in this case, it is the
# Line 228 | Line 228 | S = k_B \ln \left(\frac{\Sigma(N, V, E)}{C^N}\right).
228   ensemble is given by
229   \begin{equation}
230   S = k_B \ln \left(\frac{\Sigma(N, V, E)}{C^N}\right).
231 < \label{eq:entropy}
231 > \label{Ineq:entropy}
232   \end{equation}
233   If the density distribution $\rho$ is given by
234   \begin{equation}
235   \rho = \frac{1}{Z_N}e^{-H(q^N, p^N) / k_B T},
236 < \label{eq:canonicalEnsemble}
236 > \label{Ineq:canonicalEnsemble}
237   \end{equation}
238   the ensemble is known as the {\it canonical ensemble}. Here,
239   \begin{equation}
240   Z_N = \int d \vec q~^N \int_\Gamma d \vec p~^N  e^{-H(q^N, p^N) / k_B T},
241 < \label{eq:partitionFunction}
241 > \label{Ineq:partitionFunction}
242   \end{equation}
243   which is also known as {\it partition function}. $\Gamma$ indicates
244   that the integral is over all the phase space. In the canonical
# Line 250 | Line 250 | the thermodynamics maximizes the entropy $S$,
250   \begin{array}{ccc}
251   \delta S = 0 & \mathrm{and} & \delta^2 S < 0.
252   \end{array}
253 < \label{eq:maximumPrinciple}
253 > \label{Ineq:maximumPrinciple}
254   \end{equation}
255 < From Eq.~\ref{eq:maximumPrinciple} and two constrains of the canonical
255 > From Eq.~\ref{Ineq:maximumPrinciple} and two constrains of the canonical
256   ensemble, {\it i.e.}, total probability and average energy conserved,
257   the partition function is calculated as
258   \begin{equation}
259   Z_N = e^{-A/k_B T},
260 < \label{eq:partitionFunctionWithFreeEnergy}
260 > \label{Ineq:partitionFunctionWithFreeEnergy}
261   \end{equation}
262   where $A$ is the Helmholtz free energy. The significance of
263 < Eq.~\ref{eq:entropy} and~\ref{eq:partitionFunctionWithFreeEnergy} is
263 > Eq.~\ref{Ineq:entropy} and~\ref{Ineq:partitionFunctionWithFreeEnergy} is
264   that they serve as a connection between macroscopic properties of the
265   system and the distribution of the microscopic states.
266  
# Line 276 | Line 276 | can be calculated based on the definition shown by
276   of any quantity ($F(q^N, p^N$)) which depends on the coordinates
277   ($q^N$) and the momenta ($p^N$) for all the systems in the ensemble
278   can be calculated based on the definition shown by
279 < Eq.~\ref{eq:statAverage1}
279 > Eq.~\ref{Ineq:statAverage1}
280   \begin{equation}
281   \langle F(q^N, p^N, t) \rangle = \frac{\int d \vec q~^N \int d \vec p~^N
282   F(q^N, p^N, t) \rho}{\int d \vec q~^N \int d \vec p~^N \rho}.
283 < \label{eq:statAverage1}
283 > \label{Ineq:statAverage1}
284   \end{equation}
285   Since the density distribution $\rho$ is normalized to unity, the mean
286   value of $F(q^N, p^N)$ is simplified to
287   \begin{equation}
288   \langle F(q^N, p^N, t) \rangle = \int d \vec q~^N \int d \vec p~^N F(q^N,
289   p^N, t) \rho,
290 < \label{eq:statAverage2}
290 > \label{Ineq:statAverage2}
291   \end{equation}
292   called {\it ensemble average}. However, the quantity is often averaged
293   for a finite time in real experiments,
294   \begin{equation}
295   \langle F(q^N, p^N) \rangle_t = \lim_{T \rightarrow \infty}
296   \frac{1}{T} \int_{t_0}^{t_0+T} F(q^N, p^N, t) dt.
297 < \label{eq:timeAverage1}
297 > \label{Ineq:timeAverage1}
298   \end{equation}
299   Usually this time average is independent of $t_0$ in statistical
300 < mechanics, so Eq.~\ref{eq:timeAverage1} becomes
300 > mechanics, so Eq.~\ref{Ineq:timeAverage1} becomes
301   \begin{equation}
302   \langle F(q^N, p^N) \rangle_t = \lim_{T \rightarrow \infty}
303   \frac{1}{T} \int_{0}^{T} F(q^N, p^N, t) dt
304 < \label{eq:timeAverage2}
304 > \label{Ineq:timeAverage2}
305   \end{equation}
306   for an infinite time interval.
307  
# Line 311 | Line 311 | phase space. Mathematically, this leads to
311   phase space. Mathematically, this leads to
312   \begin{equation}
313   \langle F(q^N, p^N, t) \rangle = \langle F(q^N, p^N) \rangle_t.
314 < \label{eq:ergodicity}
314 > \label{Ineq:ergodicity}
315   \end{equation}
316 < Eq.~\ref{eq:ergodicity} validates the Monte Carlo method which we will
316 > Eq.~\ref{Ineq:ergodicity} validates the Monte Carlo method which we will
317   discuss in section~\ref{In:ssec:mc}. An ensemble average of a quantity
318   can be related to the time average measured in the experiments.
319  
# Line 332 | Line 332 | C(t) = \langle A(0)A(\tau) \rangle = \lim_{T \rightarr
332   \begin{equation}
333   C(t) = \langle A(0)A(\tau) \rangle = \lim_{T \rightarrow \infty}
334   \frac{1}{T} \int_{0}^{T} dt A(t) A(t + \tau).
335 < \label{eq:autocorrelationFunction}
335 > \label{Ineq:autocorrelationFunction}
336   \end{equation}
337 < Eq.~\ref{eq:autocorrelationFunction} is the correlation function of a
337 > Eq.~\ref{Ineq:autocorrelationFunction} is the correlation function of a
338   single variable, called {\it autocorrelation function}. The defination
339   of the correlation function for two different variables is similar to
340   that of autocorrelation function, which is
341   \begin{equation}
342   C(t) = \langle A(0)B(\tau) \rangle = \lim_{T \rightarrow \infty}
343   \frac{1}{T} \int_{0}^{T} dt A(t) B(t + \tau),
344 < \label{eq:crosscorrelationFunction}
344 > \label{Ineq:crosscorrelationFunction}
345   \end{equation}
346   and called {\it cross correlation function}.
347  
348 < In section~\ref{In:ssec:average} we know from Eq.~\ref{eq:ergodicity}
348 > In section~\ref{In:ssec:average} we know from Eq.~\ref{Ineq:ergodicity}
349   the relationship between time average and ensemble average. We can put
350   the correlation function in a classical mechanics form,
351   \begin{equation}
352   C(t) = \langle A(0)A(\tau) \rangle = \int d \vec q~^N \int d \vec p~^N A(t) A(t + \tau) \rho(q, p)
353 < \label{eq:autocorrelationFunctionCM}
353 > \label{Ineq:autocorrelationFunctionCM}
354   \end{equation}
355   and
356   \begin{equation}
357   C(t) = \langle A(0)B(\tau) \rangle = \int d \vec q~^N \int d \vec p~^N A(t) B(t + \tau)
358   \rho(q, p)
359 < \label{eq:crosscorrelationFunctionCM}
359 > \label{Ineq:crosscorrelationFunctionCM}
360   \end{equation}
361   as autocorrelation function and cross correlation function
362   respectively. $\rho(q, p)$ is the density distribution at equillibrium
# Line 364 | Line 364 | C(t) \sim e^{-t / \tau_r},
364   single exponential
365   \begin{equation}
366   C(t) \sim e^{-t / \tau_r},
367 < \label{eq:relaxation}
367 > \label{Ineq:relaxation}
368   \end{equation}
369   where $\tau_r$ is known as relaxation time which discribes the rate of
370   the decay.
# Line 390 | Line 390 | temperature are constants. The average energy is given
390   applied to the canonical ensemble, a Boltzmann-weighted ensemble, in
391   which the $N$, the total number of particles, $V$, total volume, $T$,
392   temperature are constants. The average energy is given by substituding
393 < Eq.~\ref{eq:canonicalEnsemble} into Eq.~\ref{eq:statAverage2},
393 > Eq.~\ref{Ineq:canonicalEnsemble} into Eq.~\ref{Ineq:statAverage2},
394   \begin{equation}
395   \langle E \rangle = \frac{1}{Z_N} \int d \vec q~^N \int d \vec p~^N E e^{-H(q^N, p^N) / k_B T}.
396 < \label{eq:energyofCanonicalEnsemble}
396 > \label{Ineq:energyofCanonicalEnsemble}
397   \end{equation}
398   So are the other properties of the system. The Hamiltonian is the
399   summation of Kinetic energy $K(p^N)$ as a function of momenta and
400   Potential energy $U(q^N)$ as a function of positions,
401   \begin{equation}
402   H(q^N, p^N) = K(p^N) + U(q^N).
403 < \label{eq:hamiltonian}
403 > \label{Ineq:hamiltonian}
404   \end{equation}
405   If the property $A$ is only a function of position ($ A = A(q^N)$),
406   the mean value of $A$ is reduced to
407   \begin{equation}
408   \langle A \rangle = \frac{\int d \vec q~^N \int d \vec p~^N A e^{-U(q^N) / k_B T}}{\int d \vec q~^N \int d \vec p~^N e^{-U(q^N) / k_B T}},
409 < \label{eq:configurationIntegral}
409 > \label{Ineq:configurationIntegral}
410   \end{equation}
411   The kinetic energy $K(p^N)$ is factored out in
412 < Eq.~\ref{eq:configurationIntegral}. $\langle A
412 > Eq.~\ref{Ineq:configurationIntegral}. $\langle A
413   \rangle$ is a configuration integral now, and the
414 < Eq.~\ref{eq:configurationIntegral} is equivalent to
414 > Eq.~\ref{Ineq:configurationIntegral} is equivalent to
415   \begin{equation}
416   \langle A \rangle = \int d \vec q~^N A \rho(q^N).
417 < \label{eq:configurationAve}
417 > \label{Ineq:configurationAve}
418   \end{equation}
419  
420   In a Monte Carlo simulation of canonical ensemble, the probability of
# Line 422 | Line 422 | probability with time is given by
422   probability with time is given by
423   \begin{equation}
424   \frac{d \rho_s}{dt} = \sum_{s'} [ -w_{ss'}\rho_s + w_{s's}\rho_{s'} ],
425 < \label{eq:timeChangeofProb}
425 > \label{Ineq:timeChangeofProb}
426   \end{equation}
427   where $w_{ss'}$ is the tansition probability of going from state $s$
428   to state $s'$. Since $\rho_s$ is independent of time at equilibrium,
429   \begin{equation}
430   \frac{d \rho_{s}^{equilibrium}}{dt} = 0,
431 < \label{eq:equiProb}
431 > \label{Ineq:equiProb}
432   \end{equation}
433   which means $\sum_{s'} [ -w_{ss'}\rho_s + w_{s's}\rho_{s'} ]$ is $0$
434   for all $s'$. So
435   \begin{equation}
436   \frac{\rho_s^{equilibrium}}{\rho_{s'}^{equilibrium}} = \frac{w_{s's}}{w_{ss'}}.
437 < \label{eq:timeChangeofProb}
437 > \label{Ineq:relationshipofRhoandW}
438   \end{equation}
439   If
440   \begin{equation}
441   \frac{w_{s's}}{w_{ss'}} = e^{-(U_s - U_{s'}) / k_B T},
442 < \label{eq:conditionforBoltzmannStatistics}
442 > \label{Ineq:conditionforBoltzmannStatistics}
443   \end{equation}
444   then
445   \begin{equation}
446   \frac{\rho_s^{equilibrium}}{\rho_{s'}^{equilibrium}} = e^{-(U_s - U_{s'}) / k_B T}.
447 < \label{eq:satisfyofBoltzmannStatistics}
447 > \label{Ineq:satisfyofBoltzmannStatistics}
448   \end{equation}
449 < Eq.~\ref{eq:satisfyofBoltzmannStatistics} implies that
449 > Eq.~\ref{Ineq:satisfyofBoltzmannStatistics} implies that
450   $\rho^{equilibrium}$ satisfies Boltzmann statistics. An algorithm,
451   shows how Monte Carlo simulation generates a transition probability
452 < governed by \ref{eq:conditionforBoltzmannStatistics}, is schemed as
452 > governed by \ref{Ineq:conditionforBoltzmannStatistics}, is schemed as
453   \begin{enumerate}
454 < \item\label{itm:oldEnergy} Choose an particle randomly, calculate the energy.
455 < \item\label{itm:newEnergy} Make a random displacement for particle,
454 > \item\label{Initm:oldEnergy} Choose an particle randomly, calculate the energy.
455 > \item\label{Initm:newEnergy} Make a random displacement for particle,
456   calculate the new energy.
457    \begin{itemize}
458 <     \item Keep the new configuration and return to step~\ref{itm:oldEnergy} if energy
458 >     \item Keep the new configuration and return to step~\ref{Initm:oldEnergy} if energy
459   goes down.
460       \item Pick a random number between $[0,1]$ if energy goes up.
461          \begin{itemize}
462             \item Keep the new configuration and return to
463 < step~\ref{itm:oldEnergy} if the random number smaller than
463 > step~\ref{Initm:oldEnergy} if the random number smaller than
464   $e^{-(U_{new} - U_{old})} / k_B T$.
465             \item Keep the old configuration and return to
466 < step~\ref{itm:oldEnergy} if the random number larger than
466 > step~\ref{Initm:oldEnergy} if the random number larger than
467   $e^{-(U_{new} - U_{old})} / k_B T$.
468          \end{itemize}
469    \end{itemize}
470 < \item\label{itm:accumulateAvg} Accumulate the average after it converges.
470 > \item\label{Initm:accumulateAvg} Accumulate the average after it converges.
471   \end{enumerate}
472   It is important to notice that the old configuration has to be sampled
473   again if it is kept.
# Line 489 | Line 489 | defined by
489   defined by
490   \begin{equation}
491   \frac{1}{2} k_B T = \langle \frac{1}{2} m v_\alpha \rangle,
492 < \label{eq:temperature}
492 > \label{Ineq:temperature}
493   \end{equation}
494   here $m$ is the mass of the particle and $v_\alpha$ is the $\alpha$
495   component of the velocity of the particle. The right side of
496 < Eq.~\ref{eq:temperature} is the average kinetic energy of the
496 > Eq.~\ref{Ineq:temperature} is the average kinetic energy of the
497   system. A simple Molecular Dynamics simulation scheme
498   is:~\cite{Frenkel1996}
499   \begin{enumerate}
500 < \item\label{itm:initialize} Assign the initial positions and momenta
500 > \item\label{Initm:initialize} Assign the initial positions and momenta
501   for the particles in the system.
502 < \item\label{itm:calcForce} Calculate the forces.
503 < \item\label{itm:equationofMotion} Integrate the equation of motion.
502 > \item\label{Initm:calcForce} Calculate the forces.
503 > \item\label{Initm:equationofMotion} Integrate the equation of motion.
504    \begin{itemize}
505 <     \item Return to step~\ref{itm:calcForce} if the equillibrium is
505 >     \item Return to step~\ref{Initm:calcForce} if the equillibrium is
506   not achieved.
507 <     \item Go to step~\ref{itm:calcAvg} if the equillibrium is
507 >     \item Go to step~\ref{Initm:calcAvg} if the equillibrium is
508   achieved.
509    \end{itemize}
510 < \item\label{itm:calcAvg} Compute the quantities we are interested in.
510 > \item\label{Initm:calcAvg} Compute the quantities we are interested in.
511   \end{enumerate}
512   The initial positions of the particles are chosen as that there is no
513   overlap for the particles. The initial velocities at first are
514   distributed randomly to the particles, and then shifted to make the
515   momentum of the system $0$, at last scaled to the desired temperature
516 < of the simulation according Eq.~\ref{eq:temperature}.
516 > of the simulation according Eq.~\ref{Ineq:temperature}.
517  
518 < The core of Molecular Dynamics simulations is step~\ref{itm:calcForce}
519 < and~\ref{itm:equationofMotion}. The calculation of the forces are
518 > The core of Molecular Dynamics simulations is step~\ref{Initm:calcForce}
519 > and~\ref{Initm:equationofMotion}. The calculation of the forces are
520   often involved numerous effort, this is the most time consuming step
521   in the Molecular Dynamics scheme. The evaluation of the forces is
522   followed by
523   \begin{equation}
524   f(q) = - \frac{\partial U(q)}{\partial q},
525 < \label{eq:force}
525 > \label{Ineq:force}
526   \end{equation}
527   $U(q)$ is the potential of the system. Once the forces computed, are
528   the positions and velocities updated by integrating Newton's equation
529   of motion,
530   \begin{equation}
531   f(q) = \frac{dp}{dt} = \frac{m dv}{dt}.
532 < \label{eq:newton}
532 > \label{Ineq:newton}
533   \end{equation}
534   Here is an example of integrating algorithms, Verlet algorithm, which
535   is one of the best algorithms to integrate Newton's equation of
# Line 538 | Line 538 | q(t+\Delta t)= q(t) + v(t) \Delta t + \frac{f(t)}{2m}\
538   q(t+\Delta t)= q(t) + v(t) \Delta t + \frac{f(t)}{2m}\Delta t^2 +
539          \frac{\Delta t^3}{3!}\frac{\partial^3 q(t)}{\partial t^3} +
540          \mathcal{O}(\Delta t^4)
541 < \label{eq:verletFuture}
541 > \label{Ineq:verletFuture}
542   \end{equation}
543   for a later time $t+\Delta t$, and
544   \begin{equation}
545   q(t-\Delta t)= q(t) - v(t) \Delta t + \frac{f(t)}{2m}\Delta t^2 -
546          \frac{\Delta t^3}{3!}\frac{\partial^3 q(t)}{\partial t^3} +
547          \mathcal{O}(\Delta t^4) ,
548 < \label{eq:verletPrevious}
548 > \label{Ineq:verletPrevious}
549   \end{equation}
550   for a previous time $t-\Delta t$. The summation of the
551 < Eq.~\ref{eq:verletFuture} and~\ref{eq:verletPrevious} gives
551 > Eq.~\ref{Ineq:verletFuture} and~\ref{Ineq:verletPrevious} gives
552   \begin{equation}
553   q(t+\Delta t)+q(t-\Delta t) =
554          2q(t) + \frac{f(t)}{m}\Delta t^2 + \mathcal{O}(\Delta t^4),
555 < \label{eq:verletSum}
555 > \label{Ineq:verletSum}
556   \end{equation}
557   so, the new position can be expressed as
558   \begin{equation}
559   q(t+\Delta t) \approx
560          2q(t) - q(t-\Delta t) + \frac{f(t)}{m}\Delta t^2.
561 < \label{eq:newPosition}
561 > \label{Ineq:newPosition}
562   \end{equation}
563   The higher order of the $\Delta t$ is omitted.
564  
# Line 586 | Line 586 | H = \frac{p^2}{2m} + U(q) + H_B + \Delta U(q),
586   Hamiltonian of such a system is written as
587   \begin{equation}
588   H = \frac{p^2}{2m} + U(q) + H_B + \Delta U(q),
589 < \label{eq:hamiltonianofCoupling}
589 > \label{Ineq:hamiltonianofCoupling}
590   \end{equation}
591   where $H_B$ is the Hamiltonian of the bath which equals to
592   \begin{equation}
593   H_B = \sum_{\alpha = 1}^{N} \left\{ \frac{p_\alpha^2}{2m_\alpha} +
594   \frac{1}{2} m_\alpha \omega_\alpha^2 q_\alpha^2\right\},
595 < \label{eq:hamiltonianofBath}
595 > \label{Ineq:hamiltonianofBath}
596   \end{equation}
597   $\alpha$ is all the degree of freedoms of the bath, $\omega$ is the
598   bath frequency, and $\Delta U(q)$ is the bilinear coupling given by
599   \begin{equation}
600   \Delta U = -\sum_{\alpha = 1}^{N} g_\alpha q_\alpha q,
601 < \label{eq:systemBathCoupling}
601 > \label{Ineq:systemBathCoupling}
602   \end{equation}
603   where $g$ is the coupling constant. By solving the Hamilton's equation
604   of motion, the {\it Generalized Langevin Equation} for this system is
605   derived to
606   \begin{equation}
607   m \ddot q = -\frac{\partial W(q)}{\partial q} - \int_0^t \xi(t) \dot q(t-t')dt' + R(t),
608 < \label{eq:gle}
608 > \label{Ineq:gle}
609   \end{equation}
610   with mean force,
611   \begin{equation}
612   W(q) = U(q) - \sum_{\alpha = 1}^N \frac{g_\alpha^2}{2m_\alpha
613   \omega_\alpha^2}q^2,
614 < \label{eq:meanForce}
614 > \label{Ineq:meanForce}
615   \end{equation}
616   being only a dependence of coordinates of the solute particles, {\it
617   friction kernel},
618   \begin{equation}
619   \xi(t) = \sum_{\alpha = 1}^N \frac{-g_\alpha}{m_\alpha
620   \omega_\alpha} \cos(\omega_\alpha t),
621 < \label{eq:xiforGLE}
621 > \label{Ineq:xiforGLE}
622   \end{equation}
623   and the random force,
624   \begin{equation}
625   R(t) = \sum_{\alpha = 1}^N \left( g_\alpha q_\alpha(0)-\frac{g_\alpha}{m_\alpha
626   \omega_\alpha^2}q(0)\right) \cos(\omega_\alpha t) + \frac{\dot
627   q_\alpha(0)}{\omega_\alpha} \sin(\omega_\alpha t),
628 < \label{eq:randomForceforGLE}
628 > \label{Ineq:randomForceforGLE}
629   \end{equation}
630   as only a dependence of the initial conditions. The relationship of
631   friction kernel $\xi(t)$ and random force $R(t)$ is given by
632   \begin{equation}
633   \xi(t) = \frac{1}{k_B T} \langle R(t)R(0) \rangle
634 < \label{eq:relationshipofXiandR}
634 > \label{Ineq:relationshipofXiandR}
635   \end{equation}
636   from their definitions. In Langevin limit, the friction is treated
637   static, which means
638   \begin{equation}
639   \xi(t) = 2 \xi_0 \delta(t).
640 < \label{eq:xiofStaticFriction}
640 > \label{Ineq:xiofStaticFriction}
641   \end{equation}
642 < After substitude $\xi(t)$ into Eq.~\ref{eq:gle} with
643 < Eq.~\ref{eq:xiofStaticFriction}, {\it Langevin Equation} is extracted
642 > After substitude $\xi(t)$ into Eq.~\ref{Ineq:gle} with
643 > Eq.~\ref{Ineq:xiofStaticFriction}, {\it Langevin Equation} is extracted
644   to
645   \begin{equation}
646   m \ddot q = -\frac{\partial U(q)}{\partial q} - \xi \dot q(t) + R(t).
647 < \label{eq:langevinEquation}
647 > \label{Ineq:langevinEquation}
648   \end{equation}
649   The applying of Langevin Equation to dynamic simulations is discussed
650   in Ch.~\ref{chap:ld}.

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines