41 |
|
{\it frustration} on triangular lattice. |
42 |
|
\begin{figure} |
43 |
|
\centering |
44 |
< |
\includegraphics[width=\linewidth]{./figures/frustration.pdf} |
44 |
> |
\includegraphics[width=\linewidth]{./figures/inFrustration.pdf} |
45 |
|
\caption{Sketch to illustrate the frustration on triangular |
46 |
|
lattice. Spins are represented by arrows, no matter which direction |
47 |
|
the spin on the top of triangle points to, the Hamiltonian of the |
48 |
|
system is the same, hence there are infinite possibilities for the |
49 |
|
packing of the spins.} |
50 |
< |
\label{fig:frustration} |
50 |
> |
\label{Infig:frustration} |
51 |
|
\end{figure} |
52 |
< |
Figure~\ref{fig:frustration} shows an illustration of the frustration |
52 |
> |
Figure~\ref{Infig:frustration} shows an illustration of the frustration |
53 |
|
on a triangular lattice. The direction of the spin on top of the |
54 |
|
triangle has no effects on the Hamiltonian of the system, therefore |
55 |
|
infinite possibilities for the packing of spins induce the frustration |
95 |
|
normalize $\rho$ to unity, |
96 |
|
\begin{equation} |
97 |
|
1 = \int d \vec q~^N \int d \vec p~^N \rho, |
98 |
< |
\label{normalized} |
98 |
> |
\label{Ineq:normalized} |
99 |
|
\end{equation} |
100 |
|
then the value of $\rho$ gives the probability of finding the system |
101 |
|
in a unit volume in the phase space. |
104 |
|
time. The number of representive points at a given volume in the phase |
105 |
|
space at any instant can be written as: |
106 |
|
\begin{equation} |
107 |
< |
\label{eq:deltaN} |
107 |
> |
\label{Ineq:deltaN} |
108 |
|
\delta N = \rho~\delta q_1 \delta q_2 \ldots \delta q_N \delta p_1 \delta p_2 \ldots \delta p_N. |
109 |
|
\end{equation} |
110 |
|
To calculate the change in the number of representive points in this |
112 |
|
of representive points in $q_1$ axis. The rate of the number of the |
113 |
|
representive points entering the volume at $q_1$ per unit time is: |
114 |
|
\begin{equation} |
115 |
< |
\label{eq:deltaNatq1} |
115 |
> |
\label{Ineq:deltaNatq1} |
116 |
|
\rho~\dot q_1 \delta q_2 \ldots \delta q_N \delta p_1 \delta p_2 \ldots \delta p_N, |
117 |
|
\end{equation} |
118 |
|
and the rate of the number of representive points leaving the volume |
119 |
|
at another position $q_1 + \delta q_1$ is: |
120 |
|
\begin{equation} |
121 |
< |
\label{eq:deltaNatq1plusdeltaq1} |
121 |
> |
\label{Ineq:deltaNatq1plusdeltaq1} |
122 |
|
\left( \rho + \frac{\partial \rho}{\partial q_1} \delta q_1 \right)\left(\dot q_1 + |
123 |
|
\frac{\partial \dot q_1}{\partial q_1} \delta q_1 \right)\delta q_2 \ldots \delta q_N \delta p_1 \delta p_2 \ldots \delta p_N. |
124 |
|
\end{equation} |
125 |
|
Here the higher order differentials are neglected. So the change of |
126 |
|
the number of the representive points is the difference of |
127 |
< |
eq.~\ref{eq:deltaNatq1} and eq.~\ref{eq:deltaNatq1plusdeltaq1}, which |
127 |
> |
eq.~\ref{Ineq:deltaNatq1} and eq.~\ref{Ineq:deltaNatq1plusdeltaq1}, which |
128 |
|
gives us: |
129 |
|
\begin{equation} |
130 |
< |
\label{eq:deltaNatq1axis} |
130 |
> |
\label{Ineq:deltaNatq1axis} |
131 |
|
-\left(\rho \frac{\partial {\dot q_1}}{\partial q_1} + \frac{\partial {\rho}}{\partial q_1} \dot q_1 \right)\delta q_1 \delta q_2 \ldots \delta q_N \delta p_1 \delta p_2 \ldots \delta p_N, |
132 |
|
\end{equation} |
133 |
|
where, higher order differetials are neglected. If we sum over all the |
134 |
|
axes in the phase space, we can get the change of the number of |
135 |
|
representive points in a given volume with time: |
136 |
|
\begin{equation} |
137 |
< |
\label{eq:deltaNatGivenVolume} |
137 |
> |
\label{Ineq:deltaNatGivenVolume} |
138 |
|
\frac{d(\delta N)}{dt} = -\sum_{i=1}^N \left[\rho \left(\frac{\partial |
139 |
|
{\dot q_i}}{\partial q_i} + \frac{\partial |
140 |
|
{\dot p_i}}{\partial p_i}\right) + \left( \frac{\partial {\rho}}{\partial |
144 |
|
\begin{equation} |
145 |
|
\frac{\partial {\dot q_i}}{\partial q_i} = - \frac{\partial |
146 |
|
{\dot p_i}}{\partial p_i}, |
147 |
< |
\label{eq:canonicalFormOfEquationOfMotion} |
147 |
> |
\label{Ineq:canonicalFormOfEquationOfMotion} |
148 |
|
\end{equation} |
149 |
|
this cancels out the first term on the right side of |
150 |
< |
eq.~\ref{eq:deltaNatGivenVolume}. If both sides of |
151 |
< |
eq.~\ref{eq:deltaNatGivenVolume} are divided by $\delta q_1 \delta q_2 |
150 |
> |
eq.~\ref{Ineq:deltaNatGivenVolume}. If both sides of |
151 |
> |
eq.~\ref{Ineq:deltaNatGivenVolume} are divided by $\delta q_1 \delta q_2 |
152 |
|
\ldots \delta q_N \delta p_1 \delta p_2 \ldots \delta p_N$, then we |
153 |
|
can derive Liouville's theorem: |
154 |
|
\begin{equation} |
155 |
|
\left( \frac{\partial \rho}{\partial t} \right)_{q, p} = -\sum_{i} \left( |
156 |
|
\frac{\partial {\rho}}{\partial |
157 |
|
q_i} \dot q_i + \frac{\partial {\rho}}{\partial p_i} \dot p_i \right). |
158 |
< |
\label{eq:simpleFormofLiouville} |
158 |
> |
\label{Ineq:simpleFormofLiouville} |
159 |
|
\end{equation} |
160 |
|
This is the basis of statistical mechanics. If we move the right |
161 |
< |
side of equation~\ref{eq:simpleFormofLiouville} to the left, we |
161 |
> |
side of equation~\ref{Ineq:simpleFormofLiouville} to the left, we |
162 |
|
will obtain |
163 |
|
\begin{equation} |
164 |
|
\left( \frac{\partial \rho}{\partial t} \right)_{q, p} + \sum_{i} \left( |
165 |
|
\frac{\partial {\rho}}{\partial |
166 |
|
q_i} \dot q_i + \frac{\partial {\rho}}{\partial p_i} \dot p_i \right) |
167 |
|
= 0. |
168 |
< |
\label{eq:anotherFormofLiouville} |
168 |
> |
\label{Ineq:anotherFormofLiouville} |
169 |
|
\end{equation} |
170 |
|
It is easy to note that the left side of |
171 |
< |
equation~\ref{eq:anotherFormofLiouville} is the total derivative of |
171 |
> |
equation~\ref{Ineq:anotherFormofLiouville} is the total derivative of |
172 |
|
$\rho$ with respect of $t$, which means |
173 |
|
\begin{equation} |
174 |
|
\frac{d \rho}{dt} = 0, |
175 |
< |
\label{eq:conservationofRho} |
175 |
> |
\label{Ineq:conservationofRho} |
176 |
|
\end{equation} |
177 |
|
and the rate of density change is zero in the neighborhood of any |
178 |
|
selected moving representive points in the phase space. |
184 |
|
phase space is zero, |
185 |
|
\begin{equation} |
186 |
|
\left( \frac{\partial \rho}{\partial t} \right)_{q, p} = 0. |
187 |
< |
\label{eq:statEquilibrium} |
187 |
> |
\label{Ineq:statEquilibrium} |
188 |
|
\end{equation} |
189 |
|
We may conclude the ensemble is in {\it statistical equilibrium}. An |
190 |
|
ensemble in statistical equilibrium often means the system is also in |
195 |
|
\frac{\partial {\rho}}{\partial |
196 |
|
q_i} \dot q_i + \frac{\partial {\rho}}{\partial p_i} \dot p_i \right) |
197 |
|
= 0. |
198 |
< |
\label{constantofMotion} |
198 |
> |
\label{Ineq:constantofMotion} |
199 |
|
\end{equation} |
200 |
|
If $\rho$ is a function only of some constant of the motion, $\rho$ is |
201 |
|
independent of time. For a conservative system, the energy of the |
204 |
|
phase space, |
205 |
|
\begin{equation} |
206 |
|
\rho = \mathrm{const.} |
207 |
< |
\label{eq:uniformEnsemble} |
207 |
> |
\label{Ineq:uniformEnsemble} |
208 |
|
\end{equation} |
209 |
|
the ensemble is called {\it uniform ensemble}. Another useful |
210 |
|
ensemble is called {\it microcanonical ensemble}, for which: |
211 |
|
\begin{equation} |
212 |
|
\rho = \delta \left( H(q^N, p^N) - E \right) \frac{1}{\Sigma (N, V, E)} |
213 |
< |
\label{eq:microcanonicalEnsemble} |
213 |
> |
\label{Ineq:microcanonicalEnsemble} |
214 |
|
\end{equation} |
215 |
|
where $\Sigma(N, V, E)$ is a normalization constant parameterized by |
216 |
|
$N$, the total number of particles, $V$, the total physical volume and |
220 |
|
Hamiltonian of the system. The Gibbs entropy is defined as |
221 |
|
\begin{equation} |
222 |
|
S = - k_B \int d \vec q~^N \int d \vec p~^N \rho \ln [C^N \rho], |
223 |
< |
\label{eq:gibbsEntropy} |
223 |
> |
\label{Ineq:gibbsEntropy} |
224 |
|
\end{equation} |
225 |
|
where $k_B$ is the Boltzmann constant and $C^N$ is a number which |
226 |
|
makes the argument of $\ln$ dimensionless, in this case, it is the |
228 |
|
ensemble is given by |
229 |
|
\begin{equation} |
230 |
|
S = k_B \ln \left(\frac{\Sigma(N, V, E)}{C^N}\right). |
231 |
< |
\label{eq:entropy} |
231 |
> |
\label{Ineq:entropy} |
232 |
|
\end{equation} |
233 |
|
If the density distribution $\rho$ is given by |
234 |
|
\begin{equation} |
235 |
|
\rho = \frac{1}{Z_N}e^{-H(q^N, p^N) / k_B T}, |
236 |
< |
\label{eq:canonicalEnsemble} |
236 |
> |
\label{Ineq:canonicalEnsemble} |
237 |
|
\end{equation} |
238 |
|
the ensemble is known as the {\it canonical ensemble}. Here, |
239 |
|
\begin{equation} |
240 |
|
Z_N = \int d \vec q~^N \int_\Gamma d \vec p~^N e^{-H(q^N, p^N) / k_B T}, |
241 |
< |
\label{eq:partitionFunction} |
241 |
> |
\label{Ineq:partitionFunction} |
242 |
|
\end{equation} |
243 |
|
which is also known as {\it partition function}. $\Gamma$ indicates |
244 |
|
that the integral is over all the phase space. In the canonical |
250 |
|
\begin{array}{ccc} |
251 |
|
\delta S = 0 & \mathrm{and} & \delta^2 S < 0. |
252 |
|
\end{array} |
253 |
< |
\label{eq:maximumPrinciple} |
253 |
> |
\label{Ineq:maximumPrinciple} |
254 |
|
\end{equation} |
255 |
< |
From Eq.~\ref{eq:maximumPrinciple} and two constrains of the canonical |
255 |
> |
From Eq.~\ref{Ineq:maximumPrinciple} and two constrains of the canonical |
256 |
|
ensemble, {\it i.e.}, total probability and average energy conserved, |
257 |
|
the partition function is calculated as |
258 |
|
\begin{equation} |
259 |
|
Z_N = e^{-A/k_B T}, |
260 |
< |
\label{eq:partitionFunctionWithFreeEnergy} |
260 |
> |
\label{Ineq:partitionFunctionWithFreeEnergy} |
261 |
|
\end{equation} |
262 |
|
where $A$ is the Helmholtz free energy. The significance of |
263 |
< |
Eq.~\ref{eq:entropy} and~\ref{eq:partitionFunctionWithFreeEnergy} is |
263 |
> |
Eq.~\ref{Ineq:entropy} and~\ref{Ineq:partitionFunctionWithFreeEnergy} is |
264 |
|
that they serve as a connection between macroscopic properties of the |
265 |
|
system and the distribution of the microscopic states. |
266 |
|
|
276 |
|
of any quantity ($F(q^N, p^N$)) which depends on the coordinates |
277 |
|
($q^N$) and the momenta ($p^N$) for all the systems in the ensemble |
278 |
|
can be calculated based on the definition shown by |
279 |
< |
Eq.~\ref{eq:statAverage1} |
279 |
> |
Eq.~\ref{Ineq:statAverage1} |
280 |
|
\begin{equation} |
281 |
|
\langle F(q^N, p^N, t) \rangle = \frac{\int d \vec q~^N \int d \vec p~^N |
282 |
|
F(q^N, p^N, t) \rho}{\int d \vec q~^N \int d \vec p~^N \rho}. |
283 |
< |
\label{eq:statAverage1} |
283 |
> |
\label{Ineq:statAverage1} |
284 |
|
\end{equation} |
285 |
|
Since the density distribution $\rho$ is normalized to unity, the mean |
286 |
|
value of $F(q^N, p^N)$ is simplified to |
287 |
|
\begin{equation} |
288 |
|
\langle F(q^N, p^N, t) \rangle = \int d \vec q~^N \int d \vec p~^N F(q^N, |
289 |
|
p^N, t) \rho, |
290 |
< |
\label{eq:statAverage2} |
290 |
> |
\label{Ineq:statAverage2} |
291 |
|
\end{equation} |
292 |
|
called {\it ensemble average}. However, the quantity is often averaged |
293 |
|
for a finite time in real experiments, |
294 |
|
\begin{equation} |
295 |
|
\langle F(q^N, p^N) \rangle_t = \lim_{T \rightarrow \infty} |
296 |
|
\frac{1}{T} \int_{t_0}^{t_0+T} F(q^N, p^N, t) dt. |
297 |
< |
\label{eq:timeAverage1} |
297 |
> |
\label{Ineq:timeAverage1} |
298 |
|
\end{equation} |
299 |
|
Usually this time average is independent of $t_0$ in statistical |
300 |
< |
mechanics, so Eq.~\ref{eq:timeAverage1} becomes |
300 |
> |
mechanics, so Eq.~\ref{Ineq:timeAverage1} becomes |
301 |
|
\begin{equation} |
302 |
|
\langle F(q^N, p^N) \rangle_t = \lim_{T \rightarrow \infty} |
303 |
|
\frac{1}{T} \int_{0}^{T} F(q^N, p^N, t) dt |
304 |
< |
\label{eq:timeAverage2} |
304 |
> |
\label{Ineq:timeAverage2} |
305 |
|
\end{equation} |
306 |
|
for an infinite time interval. |
307 |
|
|
311 |
|
phase space. Mathematically, this leads to |
312 |
|
\begin{equation} |
313 |
|
\langle F(q^N, p^N, t) \rangle = \langle F(q^N, p^N) \rangle_t. |
314 |
< |
\label{eq:ergodicity} |
314 |
> |
\label{Ineq:ergodicity} |
315 |
|
\end{equation} |
316 |
< |
Eq.~\ref{eq:ergodicity} validates the Monte Carlo method which we will |
316 |
> |
Eq.~\ref{Ineq:ergodicity} validates the Monte Carlo method which we will |
317 |
|
discuss in section~\ref{In:ssec:mc}. An ensemble average of a quantity |
318 |
|
can be related to the time average measured in the experiments. |
319 |
|
|
332 |
|
\begin{equation} |
333 |
|
C(t) = \langle A(0)A(\tau) \rangle = \lim_{T \rightarrow \infty} |
334 |
|
\frac{1}{T} \int_{0}^{T} dt A(t) A(t + \tau). |
335 |
< |
\label{eq:autocorrelationFunction} |
335 |
> |
\label{Ineq:autocorrelationFunction} |
336 |
|
\end{equation} |
337 |
< |
Eq.~\ref{eq:autocorrelationFunction} is the correlation function of a |
337 |
> |
Eq.~\ref{Ineq:autocorrelationFunction} is the correlation function of a |
338 |
|
single variable, called {\it autocorrelation function}. The defination |
339 |
|
of the correlation function for two different variables is similar to |
340 |
|
that of autocorrelation function, which is |
341 |
|
\begin{equation} |
342 |
|
C(t) = \langle A(0)B(\tau) \rangle = \lim_{T \rightarrow \infty} |
343 |
|
\frac{1}{T} \int_{0}^{T} dt A(t) B(t + \tau), |
344 |
< |
\label{eq:crosscorrelationFunction} |
344 |
> |
\label{Ineq:crosscorrelationFunction} |
345 |
|
\end{equation} |
346 |
|
and called {\it cross correlation function}. |
347 |
|
|
348 |
< |
In section~\ref{In:ssec:average} we know from Eq.~\ref{eq:ergodicity} |
348 |
> |
In section~\ref{In:ssec:average} we know from Eq.~\ref{Ineq:ergodicity} |
349 |
|
the relationship between time average and ensemble average. We can put |
350 |
|
the correlation function in a classical mechanics form, |
351 |
|
\begin{equation} |
352 |
|
C(t) = \langle A(0)A(\tau) \rangle = \int d \vec q~^N \int d \vec p~^N A(t) A(t + \tau) \rho(q, p) |
353 |
< |
\label{eq:autocorrelationFunctionCM} |
353 |
> |
\label{Ineq:autocorrelationFunctionCM} |
354 |
|
\end{equation} |
355 |
|
and |
356 |
|
\begin{equation} |
357 |
|
C(t) = \langle A(0)B(\tau) \rangle = \int d \vec q~^N \int d \vec p~^N A(t) B(t + \tau) |
358 |
|
\rho(q, p) |
359 |
< |
\label{eq:crosscorrelationFunctionCM} |
359 |
> |
\label{Ineq:crosscorrelationFunctionCM} |
360 |
|
\end{equation} |
361 |
|
as autocorrelation function and cross correlation function |
362 |
|
respectively. $\rho(q, p)$ is the density distribution at equillibrium |
364 |
|
single exponential |
365 |
|
\begin{equation} |
366 |
|
C(t) \sim e^{-t / \tau_r}, |
367 |
< |
\label{eq:relaxation} |
367 |
> |
\label{Ineq:relaxation} |
368 |
|
\end{equation} |
369 |
|
where $\tau_r$ is known as relaxation time which discribes the rate of |
370 |
|
the decay. |
390 |
|
applied to the canonical ensemble, a Boltzmann-weighted ensemble, in |
391 |
|
which the $N$, the total number of particles, $V$, total volume, $T$, |
392 |
|
temperature are constants. The average energy is given by substituding |
393 |
< |
Eq.~\ref{eq:canonicalEnsemble} into Eq.~\ref{eq:statAverage2}, |
393 |
> |
Eq.~\ref{Ineq:canonicalEnsemble} into Eq.~\ref{Ineq:statAverage2}, |
394 |
|
\begin{equation} |
395 |
|
\langle E \rangle = \frac{1}{Z_N} \int d \vec q~^N \int d \vec p~^N E e^{-H(q^N, p^N) / k_B T}. |
396 |
< |
\label{eq:energyofCanonicalEnsemble} |
396 |
> |
\label{Ineq:energyofCanonicalEnsemble} |
397 |
|
\end{equation} |
398 |
|
So are the other properties of the system. The Hamiltonian is the |
399 |
|
summation of Kinetic energy $K(p^N)$ as a function of momenta and |
400 |
|
Potential energy $U(q^N)$ as a function of positions, |
401 |
|
\begin{equation} |
402 |
|
H(q^N, p^N) = K(p^N) + U(q^N). |
403 |
< |
\label{eq:hamiltonian} |
403 |
> |
\label{Ineq:hamiltonian} |
404 |
|
\end{equation} |
405 |
|
If the property $A$ is only a function of position ($ A = A(q^N)$), |
406 |
|
the mean value of $A$ is reduced to |
407 |
|
\begin{equation} |
408 |
|
\langle A \rangle = \frac{\int d \vec q~^N \int d \vec p~^N A e^{-U(q^N) / k_B T}}{\int d \vec q~^N \int d \vec p~^N e^{-U(q^N) / k_B T}}, |
409 |
< |
\label{eq:configurationIntegral} |
409 |
> |
\label{Ineq:configurationIntegral} |
410 |
|
\end{equation} |
411 |
|
The kinetic energy $K(p^N)$ is factored out in |
412 |
< |
Eq.~\ref{eq:configurationIntegral}. $\langle A |
412 |
> |
Eq.~\ref{Ineq:configurationIntegral}. $\langle A |
413 |
|
\rangle$ is a configuration integral now, and the |
414 |
< |
Eq.~\ref{eq:configurationIntegral} is equivalent to |
414 |
> |
Eq.~\ref{Ineq:configurationIntegral} is equivalent to |
415 |
|
\begin{equation} |
416 |
|
\langle A \rangle = \int d \vec q~^N A \rho(q^N). |
417 |
< |
\label{eq:configurationAve} |
417 |
> |
\label{Ineq:configurationAve} |
418 |
|
\end{equation} |
419 |
|
|
420 |
|
In a Monte Carlo simulation of canonical ensemble, the probability of |
422 |
|
probability with time is given by |
423 |
|
\begin{equation} |
424 |
|
\frac{d \rho_s}{dt} = \sum_{s'} [ -w_{ss'}\rho_s + w_{s's}\rho_{s'} ], |
425 |
< |
\label{eq:timeChangeofProb} |
425 |
> |
\label{Ineq:timeChangeofProb} |
426 |
|
\end{equation} |
427 |
|
where $w_{ss'}$ is the tansition probability of going from state $s$ |
428 |
|
to state $s'$. Since $\rho_s$ is independent of time at equilibrium, |
429 |
|
\begin{equation} |
430 |
|
\frac{d \rho_{s}^{equilibrium}}{dt} = 0, |
431 |
< |
\label{eq:equiProb} |
431 |
> |
\label{Ineq:equiProb} |
432 |
|
\end{equation} |
433 |
|
which means $\sum_{s'} [ -w_{ss'}\rho_s + w_{s's}\rho_{s'} ]$ is $0$ |
434 |
|
for all $s'$. So |
435 |
|
\begin{equation} |
436 |
|
\frac{\rho_s^{equilibrium}}{\rho_{s'}^{equilibrium}} = \frac{w_{s's}}{w_{ss'}}. |
437 |
< |
\label{eq:timeChangeofProb} |
437 |
> |
\label{Ineq:relationshipofRhoandW} |
438 |
|
\end{equation} |
439 |
|
If |
440 |
|
\begin{equation} |
441 |
|
\frac{w_{s's}}{w_{ss'}} = e^{-(U_s - U_{s'}) / k_B T}, |
442 |
< |
\label{eq:conditionforBoltzmannStatistics} |
442 |
> |
\label{Ineq:conditionforBoltzmannStatistics} |
443 |
|
\end{equation} |
444 |
|
then |
445 |
|
\begin{equation} |
446 |
|
\frac{\rho_s^{equilibrium}}{\rho_{s'}^{equilibrium}} = e^{-(U_s - U_{s'}) / k_B T}. |
447 |
< |
\label{eq:satisfyofBoltzmannStatistics} |
447 |
> |
\label{Ineq:satisfyofBoltzmannStatistics} |
448 |
|
\end{equation} |
449 |
< |
Eq.~\ref{eq:satisfyofBoltzmannStatistics} implies that |
449 |
> |
Eq.~\ref{Ineq:satisfyofBoltzmannStatistics} implies that |
450 |
|
$\rho^{equilibrium}$ satisfies Boltzmann statistics. An algorithm, |
451 |
|
shows how Monte Carlo simulation generates a transition probability |
452 |
< |
governed by \ref{eq:conditionforBoltzmannStatistics}, is schemed as |
452 |
> |
governed by \ref{Ineq:conditionforBoltzmannStatistics}, is schemed as |
453 |
|
\begin{enumerate} |
454 |
< |
\item\label{itm:oldEnergy} Choose an particle randomly, calculate the energy. |
455 |
< |
\item\label{itm:newEnergy} Make a random displacement for particle, |
454 |
> |
\item\label{Initm:oldEnergy} Choose an particle randomly, calculate the energy. |
455 |
> |
\item\label{Initm:newEnergy} Make a random displacement for particle, |
456 |
|
calculate the new energy. |
457 |
|
\begin{itemize} |
458 |
< |
\item Keep the new configuration and return to step~\ref{itm:oldEnergy} if energy |
458 |
> |
\item Keep the new configuration and return to step~\ref{Initm:oldEnergy} if energy |
459 |
|
goes down. |
460 |
|
\item Pick a random number between $[0,1]$ if energy goes up. |
461 |
|
\begin{itemize} |
462 |
|
\item Keep the new configuration and return to |
463 |
< |
step~\ref{itm:oldEnergy} if the random number smaller than |
463 |
> |
step~\ref{Initm:oldEnergy} if the random number smaller than |
464 |
|
$e^{-(U_{new} - U_{old})} / k_B T$. |
465 |
|
\item Keep the old configuration and return to |
466 |
< |
step~\ref{itm:oldEnergy} if the random number larger than |
466 |
> |
step~\ref{Initm:oldEnergy} if the random number larger than |
467 |
|
$e^{-(U_{new} - U_{old})} / k_B T$. |
468 |
|
\end{itemize} |
469 |
|
\end{itemize} |
470 |
< |
\item\label{itm:accumulateAvg} Accumulate the average after it converges. |
470 |
> |
\item\label{Initm:accumulateAvg} Accumulate the average after it converges. |
471 |
|
\end{enumerate} |
472 |
|
It is important to notice that the old configuration has to be sampled |
473 |
|
again if it is kept. |
489 |
|
defined by |
490 |
|
\begin{equation} |
491 |
|
\frac{1}{2} k_B T = \langle \frac{1}{2} m v_\alpha \rangle, |
492 |
< |
\label{eq:temperature} |
492 |
> |
\label{Ineq:temperature} |
493 |
|
\end{equation} |
494 |
|
here $m$ is the mass of the particle and $v_\alpha$ is the $\alpha$ |
495 |
|
component of the velocity of the particle. The right side of |
496 |
< |
Eq.~\ref{eq:temperature} is the average kinetic energy of the |
496 |
> |
Eq.~\ref{Ineq:temperature} is the average kinetic energy of the |
497 |
|
system. A simple Molecular Dynamics simulation scheme |
498 |
|
is:~\cite{Frenkel1996} |
499 |
|
\begin{enumerate} |
500 |
< |
\item\label{itm:initialize} Assign the initial positions and momenta |
500 |
> |
\item\label{Initm:initialize} Assign the initial positions and momenta |
501 |
|
for the particles in the system. |
502 |
< |
\item\label{itm:calcForce} Calculate the forces. |
503 |
< |
\item\label{itm:equationofMotion} Integrate the equation of motion. |
502 |
> |
\item\label{Initm:calcForce} Calculate the forces. |
503 |
> |
\item\label{Initm:equationofMotion} Integrate the equation of motion. |
504 |
|
\begin{itemize} |
505 |
< |
\item Return to step~\ref{itm:calcForce} if the equillibrium is |
505 |
> |
\item Return to step~\ref{Initm:calcForce} if the equillibrium is |
506 |
|
not achieved. |
507 |
< |
\item Go to step~\ref{itm:calcAvg} if the equillibrium is |
507 |
> |
\item Go to step~\ref{Initm:calcAvg} if the equillibrium is |
508 |
|
achieved. |
509 |
|
\end{itemize} |
510 |
< |
\item\label{itm:calcAvg} Compute the quantities we are interested in. |
510 |
> |
\item\label{Initm:calcAvg} Compute the quantities we are interested in. |
511 |
|
\end{enumerate} |
512 |
|
The initial positions of the particles are chosen as that there is no |
513 |
|
overlap for the particles. The initial velocities at first are |
514 |
|
distributed randomly to the particles, and then shifted to make the |
515 |
|
momentum of the system $0$, at last scaled to the desired temperature |
516 |
< |
of the simulation according Eq.~\ref{eq:temperature}. |
516 |
> |
of the simulation according Eq.~\ref{Ineq:temperature}. |
517 |
|
|
518 |
< |
The core of Molecular Dynamics simulations is step~\ref{itm:calcForce} |
519 |
< |
and~\ref{itm:equationofMotion}. The calculation of the forces are |
518 |
> |
The core of Molecular Dynamics simulations is step~\ref{Initm:calcForce} |
519 |
> |
and~\ref{Initm:equationofMotion}. The calculation of the forces are |
520 |
|
often involved numerous effort, this is the most time consuming step |
521 |
|
in the Molecular Dynamics scheme. The evaluation of the forces is |
522 |
|
followed by |
523 |
|
\begin{equation} |
524 |
|
f(q) = - \frac{\partial U(q)}{\partial q}, |
525 |
< |
\label{eq:force} |
525 |
> |
\label{Ineq:force} |
526 |
|
\end{equation} |
527 |
|
$U(q)$ is the potential of the system. Once the forces computed, are |
528 |
|
the positions and velocities updated by integrating Newton's equation |
529 |
|
of motion, |
530 |
|
\begin{equation} |
531 |
|
f(q) = \frac{dp}{dt} = \frac{m dv}{dt}. |
532 |
< |
\label{eq:newton} |
532 |
> |
\label{Ineq:newton} |
533 |
|
\end{equation} |
534 |
|
Here is an example of integrating algorithms, Verlet algorithm, which |
535 |
|
is one of the best algorithms to integrate Newton's equation of |
538 |
|
q(t+\Delta t)= q(t) + v(t) \Delta t + \frac{f(t)}{2m}\Delta t^2 + |
539 |
|
\frac{\Delta t^3}{3!}\frac{\partial^3 q(t)}{\partial t^3} + |
540 |
|
\mathcal{O}(\Delta t^4) |
541 |
< |
\label{eq:verletFuture} |
541 |
> |
\label{Ineq:verletFuture} |
542 |
|
\end{equation} |
543 |
|
for a later time $t+\Delta t$, and |
544 |
|
\begin{equation} |
545 |
|
q(t-\Delta t)= q(t) - v(t) \Delta t + \frac{f(t)}{2m}\Delta t^2 - |
546 |
|
\frac{\Delta t^3}{3!}\frac{\partial^3 q(t)}{\partial t^3} + |
547 |
|
\mathcal{O}(\Delta t^4) , |
548 |
< |
\label{eq:verletPrevious} |
548 |
> |
\label{Ineq:verletPrevious} |
549 |
|
\end{equation} |
550 |
|
for a previous time $t-\Delta t$. The summation of the |
551 |
< |
Eq.~\ref{eq:verletFuture} and~\ref{eq:verletPrevious} gives |
551 |
> |
Eq.~\ref{Ineq:verletFuture} and~\ref{Ineq:verletPrevious} gives |
552 |
|
\begin{equation} |
553 |
|
q(t+\Delta t)+q(t-\Delta t) = |
554 |
|
2q(t) + \frac{f(t)}{m}\Delta t^2 + \mathcal{O}(\Delta t^4), |
555 |
< |
\label{eq:verletSum} |
555 |
> |
\label{Ineq:verletSum} |
556 |
|
\end{equation} |
557 |
|
so, the new position can be expressed as |
558 |
|
\begin{equation} |
559 |
|
q(t+\Delta t) \approx |
560 |
|
2q(t) - q(t-\Delta t) + \frac{f(t)}{m}\Delta t^2. |
561 |
< |
\label{eq:newPosition} |
561 |
> |
\label{Ineq:newPosition} |
562 |
|
\end{equation} |
563 |
|
The higher order of the $\Delta t$ is omitted. |
564 |
|
|
586 |
|
Hamiltonian of such a system is written as |
587 |
|
\begin{equation} |
588 |
|
H = \frac{p^2}{2m} + U(q) + H_B + \Delta U(q), |
589 |
< |
\label{eq:hamiltonianofCoupling} |
589 |
> |
\label{Ineq:hamiltonianofCoupling} |
590 |
|
\end{equation} |
591 |
|
where $H_B$ is the Hamiltonian of the bath which equals to |
592 |
|
\begin{equation} |
593 |
|
H_B = \sum_{\alpha = 1}^{N} \left\{ \frac{p_\alpha^2}{2m_\alpha} + |
594 |
|
\frac{1}{2} m_\alpha \omega_\alpha^2 q_\alpha^2\right\}, |
595 |
< |
\label{eq:hamiltonianofBath} |
595 |
> |
\label{Ineq:hamiltonianofBath} |
596 |
|
\end{equation} |
597 |
|
$\alpha$ is all the degree of freedoms of the bath, $\omega$ is the |
598 |
|
bath frequency, and $\Delta U(q)$ is the bilinear coupling given by |
599 |
|
\begin{equation} |
600 |
|
\Delta U = -\sum_{\alpha = 1}^{N} g_\alpha q_\alpha q, |
601 |
< |
\label{eq:systemBathCoupling} |
601 |
> |
\label{Ineq:systemBathCoupling} |
602 |
|
\end{equation} |
603 |
|
where $g$ is the coupling constant. By solving the Hamilton's equation |
604 |
|
of motion, the {\it Generalized Langevin Equation} for this system is |
605 |
|
derived to |
606 |
|
\begin{equation} |
607 |
|
m \ddot q = -\frac{\partial W(q)}{\partial q} - \int_0^t \xi(t) \dot q(t-t')dt' + R(t), |
608 |
< |
\label{eq:gle} |
608 |
> |
\label{Ineq:gle} |
609 |
|
\end{equation} |
610 |
|
with mean force, |
611 |
|
\begin{equation} |
612 |
|
W(q) = U(q) - \sum_{\alpha = 1}^N \frac{g_\alpha^2}{2m_\alpha |
613 |
|
\omega_\alpha^2}q^2, |
614 |
< |
\label{eq:meanForce} |
614 |
> |
\label{Ineq:meanForce} |
615 |
|
\end{equation} |
616 |
|
being only a dependence of coordinates of the solute particles, {\it |
617 |
|
friction kernel}, |
618 |
|
\begin{equation} |
619 |
|
\xi(t) = \sum_{\alpha = 1}^N \frac{-g_\alpha}{m_\alpha |
620 |
|
\omega_\alpha} \cos(\omega_\alpha t), |
621 |
< |
\label{eq:xiforGLE} |
621 |
> |
\label{Ineq:xiforGLE} |
622 |
|
\end{equation} |
623 |
|
and the random force, |
624 |
|
\begin{equation} |
625 |
|
R(t) = \sum_{\alpha = 1}^N \left( g_\alpha q_\alpha(0)-\frac{g_\alpha}{m_\alpha |
626 |
|
\omega_\alpha^2}q(0)\right) \cos(\omega_\alpha t) + \frac{\dot |
627 |
|
q_\alpha(0)}{\omega_\alpha} \sin(\omega_\alpha t), |
628 |
< |
\label{eq:randomForceforGLE} |
628 |
> |
\label{Ineq:randomForceforGLE} |
629 |
|
\end{equation} |
630 |
|
as only a dependence of the initial conditions. The relationship of |
631 |
|
friction kernel $\xi(t)$ and random force $R(t)$ is given by |
632 |
|
\begin{equation} |
633 |
|
\xi(t) = \frac{1}{k_B T} \langle R(t)R(0) \rangle |
634 |
< |
\label{eq:relationshipofXiandR} |
634 |
> |
\label{Ineq:relationshipofXiandR} |
635 |
|
\end{equation} |
636 |
|
from their definitions. In Langevin limit, the friction is treated |
637 |
|
static, which means |
638 |
|
\begin{equation} |
639 |
|
\xi(t) = 2 \xi_0 \delta(t). |
640 |
< |
\label{eq:xiofStaticFriction} |
640 |
> |
\label{Ineq:xiofStaticFriction} |
641 |
|
\end{equation} |
642 |
< |
After substitude $\xi(t)$ into Eq.~\ref{eq:gle} with |
643 |
< |
Eq.~\ref{eq:xiofStaticFriction}, {\it Langevin Equation} is extracted |
642 |
> |
After substitude $\xi(t)$ into Eq.~\ref{Ineq:gle} with |
643 |
> |
Eq.~\ref{Ineq:xiofStaticFriction}, {\it Langevin Equation} is extracted |
644 |
|
to |
645 |
|
\begin{equation} |
646 |
|
m \ddot q = -\frac{\partial U(q)}{\partial q} - \xi \dot q(t) + R(t). |
647 |
< |
\label{eq:langevinEquation} |
647 |
> |
\label{Ineq:langevinEquation} |
648 |
|
\end{equation} |
649 |
|
The applying of Langevin Equation to dynamic simulations is discussed |
650 |
|
in Ch.~\ref{chap:ld}. |