ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/tengDissertation/dissertation.bib
(Generate patch)

Comparing trunk/tengDissertation/dissertation.bib (file contents):
Revision 2786 by tim, Sun Jun 4 20:18:07 2006 UTC vs.
Revision 2839 by tim, Fri Jun 9 02:41:58 2006 UTC

# Line 88 | Line 88 | Encoding: GBK
88    uri = {<Go to ISI>://000232532000064},
89   }
90  
91 @BOOK{Allen1987,
92  title = {Computer Simulations of Liquids},
93  publisher = {Oxford University Press},
94  year = {1987},
95  author = {M.~P. Allen and D.~J. Tildesley},
96  address = {New York},
97 }
98
91   @ARTICLE{Allison1991,
92    author = {S. A. Allison},
93    title = {A Brownian Dynamics Algorithm for Arbitrary Rigid Bodies - Application
# Line 125 | Line 117 | Encoding: GBK
117    uri = {<Go to ISI>://A1991EU81400029},
118   }
119  
120 + @ARTICLE{Andersen1983,
121 +  author = {H. C. Andersen},
122 +  title = {Rattle - a Velocity Version of the Shake Algorithm for Molecular-Dynamics
123 +        Calculations},
124 +  journal = {Journal of Computational Physics},
125 +  year = {1983},
126 +  volume = {52},
127 +  pages = {24-34},
128 +  number = {1},
129 +  annote = {Rq238 Times Cited:559 Cited References Count:14},
130 +  issn = {0021-9991},
131 +  uri = {<Go to ISI>://A1983RQ23800002},
132 + }
133 +
134   @ARTICLE{Auerbach2005,
135    author = {A. Auerbach},
136    title = {Gating of acetylcholine receptor channels: Brownian motion across
# Line 509 | Line 515 | Encoding: GBK
515    annote = {Sm173 Times Cited:143 Cited References Count:22},
516    issn = {0009-2614},
517    uri = {<Go to ISI>://A1984SM17300007},
518 + }
519 +
520 + @ARTICLE{Budd1999,
521 +  author = {C. J. Budd and G. J. Collins and W. Z. Huang and R. D. Russell},
522 +  title = {Self-similar numerical solutions of the porous-medium equation using
523 +        moving mesh methods},
524 +  journal = {Philosophical Transactions of the Royal Society of London Series
525 +        a-Mathematical Physical and Engineering Sciences},
526 +  year = {1999},
527 +  volume = {357},
528 +  pages = {1047-1077},
529 +  number = {1754},
530 +  month = {Apr 15},
531 +  abstract = {This paper examines a synthesis of adaptive mesh methods with the
532 +        use of symmetry to study a partial differential equation. In particular,
533 +        it considers methods which admit discrete self-similar solutions,
534 +        examining the convergence of these to the true self-similar solution
535 +        as well as their stability. Special attention is given to the nonlinear
536 +        diffusion equation describing flow in a porous medium.},
537 +  annote = {199EE Times Cited:4 Cited References Count:14},
538 +  issn = {1364-503X},
539 +  uri = {<Go to ISI>://000080466800005},
540   }
541  
542   @ARTICLE{Camp1999,
# Line 642 | Line 670 | Encoding: GBK
670    uri = {<Go to ISI>://000081711200038},
671   }
672  
673 + @ARTICLE{Channell1990,
674 +  author = {P. J. Channell and C. Scovel},
675 +  title = {Symplectic Integration of Hamiltonian-Systems},
676 +  journal = {Nonlinearity},
677 +  year = {1990},
678 +  volume = {3},
679 +  pages = {231-259},
680 +  number = {2},
681 +  month = {may},
682 +  annote = {Dk631 Times Cited:152 Cited References Count:34},
683 +  issn = {0951-7715},
684 +  uri = {<Go to ISI>://A1990DK63100001},
685 + }
686 +
687 + @ARTICLE{Chen2003,
688 +  author = {B. Chen and F. Solis},
689 +  title = {Explicit mixed finite order Runge-Kutta methods},
690 +  journal = {Applied Numerical Mathematics},
691 +  year = {2003},
692 +  volume = {44},
693 +  pages = {21-30},
694 +  number = {1-2},
695 +  month = {Jan},
696 +  abstract = {We investigate the asymptotic behavior of systems of nonlinear differential
697 +        equations and introduce a family of mixed methods from combinations
698 +        of explicit Runge-Kutta methods. These methods have better stability
699 +        behavior than traditional Runge-Kutta methods and generally extend
700 +        the range of validity of the calculated solutions. These methods
701 +        also give a way of determining if the numerical solutions are real
702 +        or spurious. Emphasis is put on examples coming from mathematical
703 +        models in ecology. (C) 2002 IMACS. Published by Elsevier Science
704 +        B.V. All rights reserved.},
705 +  annote = {633ZD Times Cited:0 Cited References Count:9},
706 +  issn = {0168-9274},
707 +  uri = {<Go to ISI>://000180314200002},
708 + }
709 +
710   @ARTICLE{Cheung2004,
711    author = {D. L. Cheung and S. J. Clark and M. R. Wilson},
712    title = {Calculation of flexoelectric coefficients for a nematic liquid crystal
# Line 933 | Line 998 | Encoding: GBK
998    annote = {Fp216 Times Cited:785 Cited References Count:42},
999    issn = {0021-9606},
1000    uri = {<Go to ISI>://A1978FP21600004},
1001 + }
1002 +
1003 + @ARTICLE{Evans1977,
1004 +  author = {D. J. Evans},
1005 +  title = {Representation of Orientation Space},
1006 +  journal = {Molecular Physics},
1007 +  year = {1977},
1008 +  volume = {34},
1009 +  pages = {317-325},
1010 +  number = {2},
1011 +  annote = {Ds757 Times Cited:271 Cited References Count:18},
1012 +  issn = {0026-8976},
1013 +  uri = {<Go to ISI>://A1977DS75700002},
1014   }
1015  
1016   @ARTICLE{Fennell2004,
# Line 1045 | Line 1123 | Encoding: GBK
1123    uri = {<Go to ISI>://000083785700002},
1124   }
1125  
1048 @BOOK{Goldstein2001,
1049  title = {Classical Mechanics},
1050  publisher = {Addison Wesley},
1051  year = {2001},
1052  author = {H. Goldstein and C. Poole and J. Safko},
1053  address = {San Francisco},
1054  edition = {3rd},
1055 }
1056
1126   @ARTICLE{Gray2003,
1127    author = {J. J. Gray and S. Moughon and C. Wang and O. Schueler-Furman and
1128          B. Kuhlman and C. A. Rohl and D. Baker},
# Line 1094 | Line 1163 | Encoding: GBK
1163    uri = {<Go to ISI>://000184351300022},
1164   }
1165  
1166 + @ARTICLE{Greengard1994,
1167 +  author = {L. Greengard},
1168 +  title = {Fast Algorithms for Classical Physics},
1169 +  journal = {Science},
1170 +  year = {1994},
1171 +  volume = {265},
1172 +  pages = {909-914},
1173 +  number = {5174},
1174 +  month = {Aug 12},
1175 +  abstract = {Some of the recently developed fast summation methods that have arisen
1176 +        in scientific computing are described. These methods require an
1177 +        amount of work proportional to N or N log N to evaluate all pairwise
1178 +        interactions in an ensemble of N particles. Traditional methods,
1179 +        by contrast, require an amount of work proportional to N-2. AS a
1180 +        result, large-scale simulations can be carried out using only modest
1181 +        computer resources. In combination with supercomputers, it is possible
1182 +        to address questions that were previously out of reach. Problems
1183 +        from diffusion, gravitation, and wave propagation are considered.},
1184 +  annote = {Pb499 Times Cited:99 Cited References Count:44},
1185 +  issn = {0036-8075},
1186 +  uri = {<Go to ISI>://A1994PB49900031},
1187 + }
1188 +
1189 + @ARTICLE{Greengard1987,
1190 +  author = {L. Greengard and V. Rokhlin},
1191 +  title = {A Fast Algorithm for Particle Simulations},
1192 +  journal = {Journal of Computational Physics},
1193 +  year = {1987},
1194 +  volume = {73},
1195 +  pages = {325-348},
1196 +  number = {2},
1197 +  month = {Dec},
1198 +  annote = {L0498 Times Cited:899 Cited References Count:7},
1199 +  issn = {0021-9991},
1200 +  uri = {<Go to ISI>://A1987L049800006},
1201 + }
1202 +
1203 + @ARTICLE{Hairer1997,
1204 +  author = {E. Hairer and C. Lubich},
1205 +  title = {The life-span of backward error analysis for numerical integrators},
1206 +  journal = {Numerische Mathematik},
1207 +  year = {1997},
1208 +  volume = {76},
1209 +  pages = {441-462},
1210 +  number = {4},
1211 +  month = {Jun},
1212 +  abstract = {Backward error analysis is a useful tool for the study of numerical
1213 +        approximations to ordinary differential equations. The numerical
1214 +        solution is formally interpreted as the exact solution of a perturbed
1215 +        differential equation, given as a formal and usually divergent series
1216 +        in powers of the step size. For a rigorous analysis, this series
1217 +        has to be truncated. In this article we study the influence of this
1218 +        truncation to the difference between the numerical solution and
1219 +        the exact solution of the perturbed differential equation. Results
1220 +        on the long-time behaviour of numerical solutions are obtained in
1221 +        this way. We present applications to the numerical phase portrait
1222 +        near hyperbolic equilibrium points, to asymptotically stable periodic
1223 +        orbits and Hopf bifurcation, and to energy conservation and approximation
1224 +        of invariant tori in Hamiltonian systems.},
1225 +  annote = {Xj488 Times Cited:50 Cited References Count:19},
1226 +  issn = {0029-599X},
1227 +  uri = {<Go to ISI>://A1997XJ48800002},
1228 + }
1229 +
1230   @ARTICLE{Hao1993,
1231    author = {M. H. Hao and M. R. Pincus and S. Rackovsky and H. A. Scheraga},
1232    title = {Unfolding and Refolding of the Native Structure of Bovine Pancreatic
# Line 1226 | Line 1359 | Encoding: GBK
1359    uri = {<Go to ISI>://A1992JU25100002},
1360   }
1361  
1362 + @ARTICLE{Hoover1985,
1363 +  author = {W. G. Hoover},
1364 +  title = {Canonical Dynamics - Equilibrium Phase-Space Distributions},
1365 +  journal = {Physical Review A},
1366 +  year = {1985},
1367 +  volume = {31},
1368 +  pages = {1695-1697},
1369 +  number = {3},
1370 +  annote = {Acr30 Times Cited:1809 Cited References Count:11},
1371 +  issn = {1050-2947},
1372 +  uri = {<Go to ISI>://A1985ACR3000056},
1373 + }
1374 +
1375   @ARTICLE{Huh2004,
1376    author = {Y. Huh and N. M. Cann},
1377    title = {Discrimination in isotropic, nematic, and smectic phases of chiral
# Line 1251 | Line 1397 | Encoding: GBK
1397    uri = {<Go to ISI>://000225042700059},
1398   }
1399  
1400 + @ARTICLE{Humphrey1996,
1401 +  author = {W. Humphrey and A. Dalke and K. Schulten},
1402 +  title = {VMD: Visual molecular dynamics},
1403 +  journal = {Journal of Molecular Graphics},
1404 +  year = {1996},
1405 +  volume = {14},
1406 +  pages = {33-\&},
1407 +  number = {1},
1408 +  month = {Feb},
1409 +  abstract = {VMD is a molecular graphics program designed for the display and analysis
1410 +        of molecular assemblies, in particular biopolymers such as proteins
1411 +        and nucleic acids. VMD can simultaneously display any number of
1412 +        structures using a wide variety of rendering styles and coloring
1413 +        methods. Molecules are displayed as one or more ''representations,''
1414 +        in which each representation embodies a particular rendering method
1415 +        and coloring scheme for a selected subset of atoms. The atoms displayed
1416 +        in each representation are chosen using an extensive atom selection
1417 +        syntax, which includes Boolean operators and regular expressions.
1418 +        VMD provides a complete graphical user interface for program control,
1419 +        as well as a text interface using the Tcl embeddable parser to allow
1420 +        for complex scripts with variable substitution, control loops, and
1421 +        function calls. Full session logging is supported, which produces
1422 +        a VMD command script for later playback. High-resolution raster
1423 +        images of displayed molecules may be produced by generating input
1424 +        scripts for use by a number of photorealistic image-rendering applications.
1425 +        VMD has also been expressly designed with the ability to animate
1426 +        molecular dynamics (MD) simulation trajectories, imported either
1427 +        from files or from a direct connection to a running MD simulation.
1428 +        VMD is the visualization component of MDScope, a set of tools for
1429 +        interactive problem solving in structural biology, which also includes
1430 +        the parallel MD program NAMD, and the MDCOMM software used to connect
1431 +        the visualization and simulation programs. VMD is written in C++,
1432 +        using an object-oriented design; the program, including source code
1433 +        and extensive documentation, is freely available via anonymous ftp
1434 +        and through the World Wide Web.},
1435 +  annote = {Uh515 Times Cited:1418 Cited References Count:19},
1436 +  issn = {0263-7855},
1437 +  uri = {<Go to ISI>://A1996UH51500005},
1438 + }
1439 +
1440   @ARTICLE{Izaguirre2001,
1441    author = {J. A. Izaguirre and D. P. Catarello and J. M. Wozniak and R. D. Skeel},
1442    title = {Langevin stabilization of molecular dynamics},
# Line 1292 | Line 1478 | Encoding: GBK
1478    uri = {<Go to ISI>://000166676100020},
1479   }
1480  
1481 < @ARTICLE{Gray2003,
1482 <  author = {J.~J Gray,S. Moughon, C. Wang },
1483 <  title = {Protein-protein docking with simultaneous optimization of rigid-body
1484 <        displacement and side-chain conformations},
1485 <  journal = {jmb},
1486 <  year = {2003},
1487 <  volume = {331},
1488 <  pages = {281-299},
1481 > @ARTICLE{Kane2000,
1482 >  author = {C. Kane and J. E. Marsden and M. Ortiz and M. West},
1483 >  title = {Variational integrators and the Newmark algorithm for conservative
1484 >        and dissipative mechanical systems},
1485 >  journal = {International Journal for Numerical Methods in Engineering},
1486 >  year = {2000},
1487 >  volume = {49},
1488 >  pages = {1295-1325},
1489 >  number = {10},
1490 >  month = {Dec 10},
1491 >  abstract = {The purpose of this work is twofold. First, we demonstrate analytically
1492 >        that the classical Newmark family as well as related integration
1493 >        algorithms are variational in the sense of the Veselov formulation
1494 >        of discrete mechanics. Such variational algorithms are well known
1495 >        to be symplectic and momentum preserving and to often have excellent
1496 >        global energy behaviour. This analytical result is verified through
1497 >        numerical examples and is believed to be one of the primary reasons
1498 >        that this class of algorithms performs so well. Second, we develop
1499 >        algorithms for mechanical systems with forcing, and in particular,
1500 >        for dissipative systems. In this case, we develop integrators that
1501 >        are based on a discretization of the Lagrange d'Alembert principle
1502 >        as well as on a variational formulation of dissipation. It is demonstrated
1503 >        that these types of structured integrators have good numerical behaviour
1504 >        in terms of obtaining the correct amounts by which the energy changes
1505 >        over the integration run. Copyright (C) 2000 John Wiley & Sons,
1506 >        Ltd.},
1507 >  annote = {373CJ Times Cited:30 Cited References Count:41},
1508 >  issn = {0029-5981},
1509 >  uri = {<Go to ISI>://000165270600004},
1510   }
1511  
1512   @ARTICLE{Klimov1997,
# Line 1327 | Line 1534 | Encoding: GBK
1534    uri = {<Go to ISI>://A1997XK29300035},
1535   }
1536  
1537 + @ARTICLE{Kol1997,
1538 +  author = {A. Kol and B. B. Laird and B. J. Leimkuhler},
1539 +  title = {A symplectic method for rigid-body molecular simulation},
1540 +  journal = {Journal of Chemical Physics},
1541 +  year = {1997},
1542 +  volume = {107},
1543 +  pages = {2580-2588},
1544 +  number = {7},
1545 +  month = {Aug 15},
1546 +  abstract = {Rigid-body molecular dynamics simulations typically are performed
1547 +        in a quaternion representation. The nonseparable form of the Hamiltonian
1548 +        in quaternions prevents the use of a standard leapfrog (Verlet)
1549 +        integrator, so nonsymplectic Runge-Kutta, multistep, or extrapolation
1550 +        methods are generally used, This is unfortunate since symplectic
1551 +        methods like Verlet exhibit superior energy conservation in long-time
1552 +        integrations. In this article, we describe an alternative method,
1553 +        which we call RSHAKE (for rotation-SHAKE), in which the entire rotation
1554 +        matrix is evolved (using the scheme of McLachlan and Scovel [J.
1555 +        Nonlin. Sci, 16 233 (1995)]) in tandem with the particle positions.
1556 +        We employ a fast approximate Newton solver to preserve the orthogonality
1557 +        of the rotation matrix. We test our method on a system of soft-sphere
1558 +        dipoles and compare with quaternion evolution using a 4th-order
1559 +        predictor-corrector integrator, Although the short-time error of
1560 +        the quaternion algorithm is smaller for fixed time step than that
1561 +        for RSHAKE, the quaternion scheme exhibits an energy drift which
1562 +        is not observed in simulations with RSHAKE, hence a fixed energy
1563 +        tolerance can be achieved by using a larger time step, The superiority
1564 +        of RSHAKE increases with system size. (C) 1997 American Institute
1565 +        of Physics.},
1566 +  annote = {Xq332 Times Cited:11 Cited References Count:18},
1567 +  issn = {0021-9606},
1568 +  uri = {<Go to ISI>://A1997XQ33200046},
1569 + }
1570 +
1571   @ARTICLE{Lansac2001,
1572    author = {Y. Lansac and M. A. Glaser and N. A. Clark},
1573    title = {Microscopic structure and dynamics of a partial bilayer smectic liquid
# Line 1392 | Line 1633 | Encoding: GBK
1633    uri = {<Go to ISI>://000181017300042},
1634   }
1635  
1636 < @BOOK{Leach2001,
1637 <  title = {Molecular Modeling: Principles and Applications},
1638 <  publisher = {Pearson Educated Limited},
1639 <  year = {2001},
1640 <  author = {A. Leach},
1641 <  address = {Harlow, England},
1642 <  edition = {2nd},
1636 > @ARTICLE{Leimkuhler1999,
1637 >  author = {B. Leimkuhler},
1638 >  title = {Reversible adaptive regularization: perturbed Kepler motion and classical
1639 >        atomic trajectories},
1640 >  journal = {Philosophical Transactions of the Royal Society of London Series
1641 >        a-Mathematical Physical and Engineering Sciences},
1642 >  year = {1999},
1643 >  volume = {357},
1644 >  pages = {1101-1133},
1645 >  number = {1754},
1646 >  month = {Apr 15},
1647 >  abstract = {Reversible and adaptive integration methods based on Kustaanheimo-Stiefel
1648 >        regularization and modified Sundman transformations are applied
1649 >        to simulate general perturbed Kepler motion and to compute classical
1650 >        trajectories of atomic systems (e.g. Rydberg atoms). The new family
1651 >        of reversible adaptive regularization methods also conserves angular
1652 >        momentum and exhibits superior energy conservation and numerical
1653 >        stability in long-time integrations. The schemes are appropriate
1654 >        for scattering, for astronomical calculations of escape time and
1655 >        long-term stability, and for classical and semiclassical studies
1656 >        of atomic dynamics. The components of an algorithm for trajectory
1657 >        calculations are described. Numerical experiments illustrate the
1658 >        effectiveness of the reversible approach.},
1659 >  annote = {199EE Times Cited:11 Cited References Count:48},
1660 >  issn = {1364-503X},
1661 >  uri = {<Go to ISI>://000080466800007},
1662   }
1663  
1404 @BOOK{Leimkuhler2004,
1405  title = {Simulating Hamiltonian Dynamics},
1406  publisher = {Cambridge University Press},
1407  year = {2004},
1408  author = {B. Leimkuhler and S. Reich},
1409  address = {Cambridge},
1410 }
1411
1664   @ARTICLE{Levelut1981,
1665    author = {A. M. Levelut and R. J. Tarento and F. Hardouin and M. F. Achard
1666          and G. Sigaud},
# Line 1477 | Line 1729 | Encoding: GBK
1729    uri = {<Go to ISI>://000234826102043},
1730   }
1731  
1732 < @BOOK{Marion1990,
1733 <  title = {Classical Dynamics of Particles and Systems},
1734 <  publisher = {Academic Press},
1735 <  year = {1990},
1736 <  author = {J.~B. Marion},
1737 <  address = {New York},
1738 <  edition = {2rd},
1732 > @ARTICLE{Luty1994,
1733 >  author = {B. A. Luty and M. E. Davis and I. G. Tironi and W. F. Vangunsteren},
1734 >  title = {A Comparison of Particle-Particle, Particle-Mesh and Ewald Methods
1735 >        for Calculating Electrostatic Interactions in Periodic Molecular-Systems},
1736 >  journal = {Molecular Simulation},
1737 >  year = {1994},
1738 >  volume = {14},
1739 >  pages = {11-20},
1740 >  number = {1},
1741 >  abstract = {We compare the Particle-Particle Particle-Mesh (PPPM) and Ewald methods
1742 >        for calculating electrostatic interactions in periodic molecular
1743 >        systems. A brief comparison of the theories shows that the methods
1744 >        are very similar differing mainly in the technique which is used
1745 >        to perform the ''k-space'' or mesh calculation. Because the PPPM
1746 >        utilizes the highly efficient numerical Fast Fourier Transform (FFT)
1747 >        method it requires significantly less computational effort than
1748 >        the Ewald method and scale's almost linearly with system size.},
1749 >  annote = {Qf464 Times Cited:50 Cited References Count:20},
1750 >  issn = {0892-7022},
1751 >  uri = {<Go to ISI>://A1994QF46400002},
1752   }
1753  
1754 < @ARTICLE{McLachlan1993,
1755 <  author = {R.~I McLachlan},
1756 <  title = {Explicit Lie-Poisson integration and the Euler equations},
1757 <  journal = {prl},
1758 <  year = {1993},
1759 <  volume = {71},
1760 <  pages = {3043-3046},
1754 > @ARTICLE{Marrink1994,
1755 >  author = {S. J. Marrink and H. J. C. Berendsen},
1756 >  title = {Simulation of Water Transport through a Lipid-Membrane},
1757 >  journal = {Journal of Physical Chemistry},
1758 >  year = {1994},
1759 >  volume = {98},
1760 >  pages = {4155-4168},
1761 >  number = {15},
1762 >  month = {Apr 14},
1763 >  abstract = {To obtain insight in the process of water permeation through a lipid
1764 >        membrane, we performed molecular dynamics simulations on a phospholipid
1765 >        (DPPC)/water system with atomic detail. Since the actual process
1766 >        of permeation is too slow to be studied directly, we deduced the
1767 >        permeation rate indirectly via computation of the free energy and
1768 >        diffusion rate profiles of a water molecule across the bilayer.
1769 >        We conclude that the permeation of water through a lipid membrane
1770 >        cannot be described adequately by a simple homogeneous solubility-diffusion
1771 >        model. Both the excess free energy and the diffusion rate strongly
1772 >        depend on the position in the membrane, as a result from the inhomogeneous
1773 >        nature of the membrane. The calculated excess free energy profile
1774 >        has a shallow slope and a maximum height of 26 kJ/mol. The diffusion
1775 >        rate is highest in the middle of the membrane where the lipid density
1776 >        is low. In the interfacial region almost all water molecules are
1777 >        bound by the lipid headgroups, and the diffusion turns out to be
1778 >        1 order of magnitude smaller. The total transport process is essentially
1779 >        determined by the free energy barrier. The rate-limiting step is
1780 >        the permeation through the dense part of the lipid tails, where
1781 >        the resistance is highest. We found a permeation rate of 7(+/-3)
1782 >        x 10(-2) cm/s at 350 K, comparable to experimental values for DPPC
1783 >        membranes, if corrected for the temperature of the simulation. Taking
1784 >        the inhomogeneity of the membrane into account, we define a new
1785 >        ''four-region'' model which seems to be more realistic than the
1786 >        ''two-phase'' solubility-diffusion model.},
1787 >  annote = {Ng219 Times Cited:187 Cited References Count:25},
1788 >  issn = {0022-3654},
1789 >  uri = {<Go to ISI>://A1994NG21900040},
1790   }
1791  
1792 + @ARTICLE{Marsden1998,
1793 +  author = {J. E. Marsden and G. W. Patrick and S. Shkoller},
1794 +  title = {Multisymplectic geometry, variational integrators, and nonlinear
1795 +        PDEs},
1796 +  journal = {Communications in Mathematical Physics},
1797 +  year = {1998},
1798 +  volume = {199},
1799 +  pages = {351-395},
1800 +  number = {2},
1801 +  month = {Dec},
1802 +  abstract = {This paper presents a geometric-variational approach to continuous
1803 +        and discrete mechanics and field theories. Using multisymplectic
1804 +        geometry, we show that the existence of the fundamental geometric
1805 +        structures as well as their preservation along solutions can be
1806 +        obtained directly from the variational principle. In particular,
1807 +        we prove that a unique multisymplectic structure is obtained by
1808 +        taking the derivative of an action function, and use this structure
1809 +        to prove covariant generalizations of conservation of symplecticity
1810 +        and Noether's theorem. Natural discretization schemes for PDEs,
1811 +        which have these important preservation properties, then follow
1812 +        by choosing a discrete action functional. In the case of mechanics,
1813 +        we recover the variational symplectic integrators of Veselov type,
1814 +        while for PDEs we obtain covariant spacetime integrators which conserve
1815 +        the corresponding discrete multisymplectic form as well as the discrete
1816 +        momentum mappings corresponding to symmetries. We show that the
1817 +        usual notion of symplecticity along an infinite-dimensional space
1818 +        of fields can be naturally obtained by making a spacetime split.
1819 +        All of the aspects of our method are demonstrated with a nonlinear
1820 +        sine-Gordon equation, including computational results and a comparison
1821 +        with other discretization schemes.},
1822 +  annote = {154RH Times Cited:88 Cited References Count:36},
1823 +  issn = {0010-3616},
1824 +  uri = {<Go to ISI>://000077902200006},
1825 + }
1826 +
1827 + @ARTICLE{Matthey2004,
1828 +  author = {T. Matthey and T. Cickovski and S. Hampton and A. Ko and Q. Ma and
1829 +        M. Nyerges and T. Raeder and T. Slabach and J. A. Izaguirre},
1830 +  title = {ProtoMol, an object-oriented framework for prototyping novel algorithms
1831 +        for molecular dynamics},
1832 +  journal = {Acm Transactions on Mathematical Software},
1833 +  year = {2004},
1834 +  volume = {30},
1835 +  pages = {237-265},
1836 +  number = {3},
1837 +  month = {Sep},
1838 +  abstract = {PROTOMOL is a high-performance framework in C++ for rapid prototyping
1839 +        of novel algorithms for molecular dynamics and related applications.
1840 +        Its flexibility is achieved primarily through the use of inheritance
1841 +        and design patterns (object-oriented programming): Performance is
1842 +        obtained by using templates that enable generation of efficient
1843 +        code for sections critical to performance (generic programming).
1844 +        The framework encapsulates important optimizations that can be used
1845 +        by developers, such as parallelism in the force computation. Its
1846 +        design is based on domain analysis of numerical integrators for
1847 +        molecular dynamics (MD) and of fast solvers for the force computation,
1848 +        particularly due to electrostatic interactions. Several new and
1849 +        efficient algorithms are implemented in PROTOMOL. Finally, it is
1850 +        shown that PROTOMOL'S sequential performance is excellent when compared
1851 +        to a leading MD program, and that it scales well for moderate number
1852 +        of processors. Binaries and source codes for Windows, Linux, Solaris,
1853 +        IRIX, HP-UX, and AIX platforms are available under open source license
1854 +        at http://protomol.sourceforge.net.},
1855 +  annote = {860EP Times Cited:2 Cited References Count:52},
1856 +  issn = {0098-3500},
1857 +  uri = {<Go to ISI>://000224325600001},
1858 + }
1859 +
1860 + @ARTICLE{McLachlan1998,
1861 +  author = {R. I. McLachlan and G. R. W. Quispel},
1862 +  title = {Generating functions for dynamical systems with symmetries, integrals,
1863 +        and differential invariants},
1864 +  journal = {Physica D},
1865 +  year = {1998},
1866 +  volume = {112},
1867 +  pages = {298-309},
1868 +  number = {1-2},
1869 +  month = {Jan 15},
1870 +  abstract = {We give a survey and some new examples of generating functions for
1871 +        systems with symplectic structure, systems with a first integral,
1872 +        systems that preserve volume, and systems with symmetries and/or
1873 +        time-reversing symmetries. Both ODEs and maps are treated, and we
1874 +        discuss how generating functions may be used in the structure-preserving
1875 +        numerical integration of ODEs with the above properties.},
1876 +  annote = {Yt049 Times Cited:7 Cited References Count:26},
1877 +  issn = {0167-2789},
1878 +  uri = {<Go to ISI>://000071558900021},
1879 + }
1880 +
1881 + @ARTICLE{McLachlan1998a,
1882 +  author = {R. I. McLachlan and G. R. W. Quispel and G. S. Turner},
1883 +  title = {Numerical integrators that preserve symmetries and reversing symmetries},
1884 +  journal = {Siam Journal on Numerical Analysis},
1885 +  year = {1998},
1886 +  volume = {35},
1887 +  pages = {586-599},
1888 +  number = {2},
1889 +  month = {Apr},
1890 +  abstract = {We consider properties of flows, the relationships between them, and
1891 +        whether numerical integrators can be made to preserve these properties.
1892 +        This is done in the context of automorphisms and antiautomorphisms
1893 +        of a certain group generated by maps associated to vector fields.
1894 +        This new framework unifies several known constructions. We also
1895 +        use the concept of #covariance# of a numerical method with respect
1896 +        to a group of coordinate transformations. The main application is
1897 +        to explore the relationship between spatial symmetries, reversing
1898 +        symmetries, and time symmetry of flows and numerical integrators.},
1899 +  annote = {Zc449 Times Cited:14 Cited References Count:33},
1900 +  issn = {0036-1429},
1901 +  uri = {<Go to ISI>://000072580500010},
1902 + }
1903 +
1904   @ARTICLE{McLachlan2005,
1905    author = {R. I. McLachlan and A. Zanna},
1906    title = {The discrete Moser-Veselov algorithm for the free rigid body, revisited},
# Line 1522 | Line 1928 | Encoding: GBK
1928    uri = {<Go to ISI>://000228011900003},
1929   }
1930  
1931 + @ARTICLE{Meineke2005,
1932 +  author = {M. A. Meineke and C. F. Vardeman and T. Lin and C. J. Fennell and
1933 +        J. D. Gezelter},
1934 +  title = {OOPSE: An object-oriented parallel simulation engine for molecular
1935 +        dynamics},
1936 +  journal = {Journal of Computational Chemistry},
1937 +  year = {2005},
1938 +  volume = {26},
1939 +  pages = {252-271},
1940 +  number = {3},
1941 +  month = {Feb},
1942 +  abstract = {OOPSE is a new molecular dynamics simulation program that is capable
1943 +        of efficiently integrating equations of motion for atom types with
1944 +        orientational degrees of freedom (e.g. #sticky# atoms and point
1945 +        dipoles). Transition metals can also be simulated using the embedded
1946 +        atom method (EAM) potential included in the code. Parallel simulations
1947 +        are carried out using the force-based decomposition method. Simulations
1948 +        are specified using a very simple C-based meta-data language. A
1949 +        number of advanced integrators are included, and the basic integrator
1950 +        for orientational dynamics provides substantial improvements over
1951 +        older quaternion-based schemes. (C) 2004 Wiley Periodicals, Inc.},
1952 +  annote = {891CF Times Cited:1 Cited References Count:56},
1953 +  issn = {0192-8651},
1954 +  uri = {<Go to ISI>://000226558200006},
1955 + }
1956 +
1957 + @ARTICLE{Melchionna1993,
1958 +  author = {S. Melchionna and G. Ciccotti and B. L. Holian},
1959 +  title = {Hoover Npt Dynamics for Systems Varying in Shape and Size},
1960 +  journal = {Molecular Physics},
1961 +  year = {1993},
1962 +  volume = {78},
1963 +  pages = {533-544},
1964 +  number = {3},
1965 +  month = {Feb 20},
1966 +  abstract = {In this paper we write down equations of motion (following the approach
1967 +        pioneered by Hoover) for an exact isothermal-isobaric molecular
1968 +        dynamics simulation, and we extend them to multiple thermostating
1969 +        rates, to a shape-varying cell and to molecular systems, coherently
1970 +        with the previous 'extended system method'. An integration scheme
1971 +        is proposed together with a numerical illustration of the method.},
1972 +  annote = {Kq355 Times Cited:172 Cited References Count:17},
1973 +  issn = {0026-8976},
1974 +  uri = {<Go to ISI>://A1993KQ35500002},
1975 + }
1976 +
1977   @ARTICLE{Memmer2002,
1978    author = {R. Memmer},
1979    title = {Liquid crystal phases of achiral banana-shaped molecules: a computer
# Line 1562 | Line 2014 | Encoding: GBK
2014    uri = {<Go to ISI>://000174410500001},
2015   }
2016  
1565 @ARTICLE{Metropolis1949,
1566  author = {N. Metropolis and S. Ulam},
1567  title = {The $\mbox{Monte Carlo}$ Method},
1568  journal = {J. Am. Stat. Ass.},
1569  year = {1949},
1570  volume = {44},
1571  pages = {335-341},
1572 }
1573
2017   @ARTICLE{Mielke2004,
2018    author = {S. P. Mielke and W. H. Fink and V. V. Krishnan and N. Gronbech-Jensen
2019          and C. J. Benham},
# Line 1712 | Line 2155 | Encoding: GBK
2155    annote = {491UW Times Cited:48 Cited References Count:25},
2156    issn = {0021-9606},
2157    uri = {<Go to ISI>://000172129300049},
2158 + }
2159 +
2160 + @ARTICLE{Omelyan1998,
2161 +  author = {I. P. Omelyan},
2162 +  title = {On the numerical integration of motion for rigid polyatomics: The
2163 +        modified quaternion approach},
2164 +  journal = {Computers in Physics},
2165 +  year = {1998},
2166 +  volume = {12},
2167 +  pages = {97-103},
2168 +  number = {1},
2169 +  month = {Jan-Feb},
2170 +  abstract = {A revised version of the quaternion approach for numerical integration
2171 +        of the equations of motion for rigid polyatomic molecules is proposed.
2172 +        The modified approach is based on a formulation of the quaternion
2173 +        dynamics with constraints. This allows one to resolve the rigidity
2174 +        problem rigorously using constraint forces. It is shown that the
2175 +        procedure for preservation of molecular rigidity can be realized
2176 +        particularly simply within the Verlet algorithm in velocity form.
2177 +        We demonstrate that the method presented leads to an improved numerical
2178 +        stability with respect to the usual quaternion rescaling scheme
2179 +        and it is roughly as good as the cumbersome atomic-constraint technique.
2180 +        (C) 1998 American Institute of Physics.},
2181 +  annote = {Yx279 Times Cited:12 Cited References Count:28},
2182 +  issn = {0894-1866},
2183 +  uri = {<Go to ISI>://000072024300025},
2184   }
2185  
2186 + @ARTICLE{Omelyan1998a,
2187 +  author = {I. P. Omelyan},
2188 +  title = {Algorithm for numerical integration of the rigid-body equations of
2189 +        motion},
2190 +  journal = {Physical Review E},
2191 +  year = {1998},
2192 +  volume = {58},
2193 +  pages = {1169-1172},
2194 +  number = {1},
2195 +  month = {Jul},
2196 +  abstract = {An algorithm for numerical integration of the rigid-body equations
2197 +        of motion is proposed. The algorithm uses the leapfrog scheme and
2198 +        the quantities involved are angular velocities and orientational
2199 +        variables that can be expressed in terms of either principal axes
2200 +        or quaternions. Due to specific features of the algorithm, orthonormality
2201 +        and unit norms of the orientational variables are integrals of motion,
2202 +        despite an approximate character of the produced trajectories. It
2203 +        is shown that the method presented appears to be the most efficient
2204 +        among all such algorithms known.},
2205 +  annote = {101XL Times Cited:8 Cited References Count:22},
2206 +  issn = {1063-651X},
2207 +  uri = {<Go to ISI>://000074893400151},
2208 + }
2209 +
2210   @ARTICLE{Orlandi2006,
2211    author = {S. Orlandi and R. Berardi and J. Steltzer and C. Zannoni},
2212    title = {A Monte Carlo study of the mesophases formed by polar bent-shaped
# Line 1737 | Line 2230 | Encoding: GBK
2230    annote = {028CP Times Cited:0 Cited References Count:42},
2231    issn = {0021-9606},
2232    uri = {<Go to ISI>://000236464000072},
2233 + }
2234 +
2235 + @ARTICLE{Owren1992,
2236 +  author = {B. Owren and M. Zennaro},
2237 +  title = {Derivation of Efficient, Continuous, Explicit Runge-Kutta Methods},
2238 +  journal = {Siam Journal on Scientific and Statistical Computing},
2239 +  year = {1992},
2240 +  volume = {13},
2241 +  pages = {1488-1501},
2242 +  number = {6},
2243 +  month = {Nov},
2244 +  abstract = {Continuous, explicit Runge-Kutta methods with the minimal number of
2245 +        stages are considered. These methods are continuously differentiable
2246 +        if and only if one of the stages is the FSAL evaluation. A characterization
2247 +        of a subclass of these methods is developed for orders 3, 4, and
2248 +        5. It is shown how the free parameters of these methods can be used
2249 +        either to minimize the continuous truncation error coefficients
2250 +        or to maximize the stability region. As a representative for these
2251 +        methods the fifth-order method with minimized error coefficients
2252 +        is chosen, supplied with an error estimation method, and analysed
2253 +        by using the DETEST software. The results are compared with a similar
2254 +        implementation of the Dormand-Prince 5(4) pair with interpolant,
2255 +        showing a significant advantage in the new method for the chosen
2256 +        problems.},
2257 +  annote = {Ju936 Times Cited:25 Cited References Count:20},
2258 +  issn = {0196-5204},
2259 +  uri = {<Go to ISI>://A1992JU93600013},
2260   }
2261  
2262   @ARTICLE{Palacios1998,
# Line 1784 | Line 2304 | Encoding: GBK
2304    uri = {<Go to ISI>://000077460000052},
2305   }
2306  
2307 + @ARTICLE{Parr1995,
2308 +  author = {T. J. Parr and R. W. Quong},
2309 +  title = {Antlr - a Predicated-Ll(K) Parser Generator},
2310 +  journal = {Software-Practice \& Experience},
2311 +  year = {1995},
2312 +  volume = {25},
2313 +  pages = {789-810},
2314 +  number = {7},
2315 +  month = {Jul},
2316 +  abstract = {Despite the parsing power of LR/LALR algorithms, e.g. YACC, programmers
2317 +        often choose to write recursive-descent parsers by hand to obtain
2318 +        increased flexibility, better error handling, and ease of debugging.
2319 +        We introduce ANTLR, a public-domain parser generator that combines
2320 +        the flexibility of hand-coded parsing with the convenience of a
2321 +        parser generator, which is a component of PCCTS. ANTLR has many
2322 +        features that make it easier to use than other language tools. Most
2323 +        important, ANTLR provides predicates which let the programmer systematically
2324 +        direct the parse via arbitrary expressions using semantic and syntactic
2325 +        context; in practice, the use of predicates eliminates the need
2326 +        to hand-tweak the ANTLR output, even for difficult parsing problems.
2327 +        ANTLR also integrates the description of lexical and syntactic analysis,
2328 +        accepts LL(k) grammars for k > 1 with extended BNF notation, and
2329 +        can automatically generate abstract syntax trees. ANTLR is widely
2330 +        used, with over 1000 registered industrial and academic users in
2331 +        37 countries. It has been ported to many popular systems such as
2332 +        the PC, Macintosh, and a variety of UNIX platforms; a commercial
2333 +        C++ front-end has been developed as a result of one of our industrial
2334 +        collaborations.},
2335 +  annote = {Rk104 Times Cited:19 Cited References Count:10},
2336 +  issn = {0038-0644},
2337 +  uri = {<Go to ISI>://A1995RK10400004},
2338 + }
2339 +
2340   @ARTICLE{Pastor1988,
2341    author = {R. W. Pastor and B. R. Brooks and A. Szabo},
2342    title = {An Analysis of the Accuracy of Langevin and Molecular-Dynamics Algorithms},
# Line 1857 | Line 2410 | Encoding: GBK
2410    uri = {<Go to ISI>://000076497600007},
2411   }
2412  
1860 @ARTICLE{Powles1973,
1861  author = {J.~G. Powles},
1862  title = {A general ellipsoid can not always serve as a modle for the rotational
1863        diffusion properties of arbitrary shaped rigid molecules},
1864  journal = {Advan. Phys.},
1865  year = {1973},
1866  volume = {22},
1867  pages = {1-56},
1868 }
1869
2413   @ARTICLE{Recio2004,
2414    author = {J. Fernandez-Recio and M. Totrov and R. Abagyan},
2415    title = {Identification of protein-protein interaction sites from docking
# Line 1930 | Line 2473 | Encoding: GBK
2473    uri = {<Go to ISI>://000235990500001},
2474   }
2475  
2476 + @ARTICLE{Reich1999,
2477 +  author = {S. Reich},
2478 +  title = {Backward error analysis for numerical integrators},
2479 +  journal = {Siam Journal on Numerical Analysis},
2480 +  year = {1999},
2481 +  volume = {36},
2482 +  pages = {1549-1570},
2483 +  number = {5},
2484 +  month = {Sep 8},
2485 +  abstract = {Backward error analysis has become an important tool for understanding
2486 +        the long time behavior of numerical integration methods. This is
2487 +        true in particular for the integration of Hamiltonian systems where
2488 +        backward error analysis can be used to show that a symplectic method
2489 +        will conserve energy over exponentially long periods of time. Such
2490 +        results are typically based on two aspects of backward error analysis:
2491 +        (i) It can be shown that the modified vector fields have some qualitative
2492 +        properties which they share with the given problem and (ii) an estimate
2493 +        is given for the difference between the best interpolating vector
2494 +        field and the numerical method. These aspects have been investigated
2495 +        recently, for example, by Benettin and Giorgilli in [J. Statist.
2496 +        Phys., 74 (1994), pp. 1117-1143], by Hairer in [Ann. Numer. Math.,
2497 +        1 (1994), pp. 107-132], and by Hairer and Lubich in [Numer. Math.,
2498 +        76 (1997), pp. 441-462]. In this paper we aim at providing a unifying
2499 +        framework and a simplification of the existing results and corresponding
2500 +        proofs. Our approach to backward error analysis is based on a simple
2501 +        recursive definition of the modified vector fields that does not
2502 +        require explicit Taylor series expansion of the numerical method
2503 +        and the corresponding flow maps as in the above-cited works. As
2504 +        an application we discuss the long time integration of chaotic Hamiltonian
2505 +        systems and the approximation of time averages along numerically
2506 +        computed trajectories.},
2507 +  annote = {237HV Times Cited:43 Cited References Count:41},
2508 +  issn = {0036-1429},
2509 +  uri = {<Go to ISI>://000082650600010},
2510 + }
2511 +
2512   @ARTICLE{Ros2005,
2513    author = {M. B. Ros and J. L. Serrano and M. R. {de la Fuente} and C. L. Folcia},
2514    title = {Banana-shaped liquid crystals: a new field to explore},
# Line 1951 | Line 2530 | Encoding: GBK
2530    uri = {<Go to ISI>://000233775500001},
2531   }
2532  
2533 + @ARTICLE{Roux1991,
2534 +  author = {B. Roux and M. Karplus},
2535 +  title = {Ion-Transport in a Gramicidin-Like Channel - Dynamics and Mobility},
2536 +  journal = {Journal of Physical Chemistry},
2537 +  year = {1991},
2538 +  volume = {95},
2539 +  pages = {4856-4868},
2540 +  number = {12},
2541 +  month = {Jun 13},
2542 +  abstract = {The mobility of water, Na+. and K+ has been calculated inside a periodic
2543 +        poly-(L,D)-alanine beta-helix, a model for the interior of the gramicidin
2544 +        channel. Because of the different dynamical regimes for the three
2545 +        species (high barrier for Na+, low barrier for K+, almost free diffusion
2546 +        for water), different methods are used to calculate the mobilities.
2547 +        By use of activated dynamics and a potential of mean force determined
2548 +        previously (Roux, B.; Karplus, M. Biophys. J. 1991, 59, 961), the
2549 +        barrier crossing rate of Na+ ion is determined. The motion of Na+
2550 +        at the transition state is controlled by local interactions and
2551 +        collisions with the neighboring carbonyls and the two nearest water
2552 +        molecules. There are significant deviations from transition-state
2553 +        theory; the transmission coefficient is equal to 0.11. The water
2554 +        and K+ motions are found to be well described by a diffusive model;
2555 +        the motion of K+ appears to be controlled by the diffusion of water.
2556 +        The time-dependent friction functions of Na+ and K+ ions in the
2557 +        periodic beta-helix are calculated and analyzed by using a generalized
2558 +        Langevin equation approach. Both Na+ and K+ suffer many rapid collisions,
2559 +        and their dynamics is overdamped and noninertial. Thus, the selectivity
2560 +        sequence of ions in the beta-helix is not influenced strongly by
2561 +        their masses.},
2562 +  annote = {Fr756 Times Cited:97 Cited References Count:65},
2563 +  issn = {0022-3654},
2564 +  uri = {<Go to ISI>://A1991FR75600049},
2565 + }
2566 +
2567   @ARTICLE{Roy2005,
2568    author = {A. Roy and N. V. Madhusudana},
2569    title = {A frustrated packing model for the B-6-B-1-SmAP(A) sequence of phases
# Line 1977 | Line 2590 | Encoding: GBK
2590    uri = {<Go to ISI>://000233363300002},
2591   }
2592  
2593 + @ARTICLE{Ryckaert1977,
2594 +  author = {J. P. Ryckaert and G. Ciccotti and H. J. C. Berendsen},
2595 +  title = {Numerical-Integration of Cartesian Equations of Motion of a System
2596 +        with Constraints - Molecular-Dynamics of N-Alkanes},
2597 +  journal = {Journal of Computational Physics},
2598 +  year = {1977},
2599 +  volume = {23},
2600 +  pages = {327-341},
2601 +  number = {3},
2602 +  annote = {Cz253 Times Cited:3680 Cited References Count:7},
2603 +  issn = {0021-9991},
2604 +  uri = {<Go to ISI>://A1977CZ25300007},
2605 + }
2606 +
2607 + @ARTICLE{Sagui1999,
2608 +  author = {C. Sagui and T. A. Darden},
2609 +  title = {Molecular dynamics simulations of biomolecules: Long-range electrostatic
2610 +        effects},
2611 +  journal = {Annual Review of Biophysics and Biomolecular Structure},
2612 +  year = {1999},
2613 +  volume = {28},
2614 +  pages = {155-179},
2615 +  abstract = {Current computer simulations of biomolecules typically make use of
2616 +        classical molecular dynamics methods, as a very large number (tens
2617 +        to hundreds of thousands) of atoms are involved over timescales
2618 +        of many nanoseconds. The methodology for treating short-range bonded
2619 +        and van der Waals interactions has matured. However, long-range
2620 +        electrostatic interactions still represent a bottleneck in simulations.
2621 +        In this article, we introduce the basic issues for an accurate representation
2622 +        of the relevant electrostatic interactions. In spite of the huge
2623 +        computational time demanded by most biomolecular systems, it is
2624 +        no longer necessary to resort to uncontrolled approximations such
2625 +        as the use of cutoffs. In particular, we discuss the Ewald summation
2626 +        methods, the fast particle mesh methods, and the fast multipole
2627 +        methods. We also review recent efforts to understand the role of
2628 +        boundary conditions in systems with long-range interactions, and
2629 +        conclude with a short perspective on future trends.},
2630 +  annote = {213KJ Times Cited:126 Cited References Count:73},
2631 +  issn = {1056-8700},
2632 +  uri = {<Go to ISI>://000081271400008},
2633 + }
2634 +
2635   @ARTICLE{Sandu1999,
2636    author = {A. Sandu and T. Schlick},
2637    title = {Masking resonance artifacts in force-splitting methods for biomolecular
# Line 2027 | Line 2682 | Encoding: GBK
2682    annote = {194FM Times Cited:14 Cited References Count:32},
2683    issn = {0021-9991},
2684    uri = {<Go to ISI>://000080181500004},
2685 + }
2686 +
2687 + @ARTICLE{Sasaki2004,
2688 +  author = {Y. Sasaki and R. Shukla and B. D. Smith},
2689 +  title = {Facilitated phosphatidylserine flip-flop across vesicle and cell
2690 +        membranes using urea-derived synthetic translocases},
2691 +  journal = {Organic \& Biomolecular Chemistry},
2692 +  year = {2004},
2693 +  volume = {2},
2694 +  pages = {214-219},
2695 +  number = {2},
2696 +  abstract = {Tris(2-aminoethyl) amine derivatives with appended urea and sulfonamide
2697 +        groups are shown to facilitate the translocation of fluorescent
2698 +        phospholipid probes and endogenous phosphatidylserine across vesicle
2699 +        and erythrocyte cell membranes. The synthetic translocases appear
2700 +        to operate by binding to the phospholipid head groups and forming
2701 +        lipophilic supramolecular complexes which diffuse through the non-polar
2702 +        interior of the bilayer membrane.},
2703 +  annote = {760PX Times Cited:8 Cited References Count:25},
2704 +  issn = {1477-0520},
2705 +  uri = {<Go to ISI>://000187843800012},
2706   }
2707  
2708   @ARTICLE{Satoh1996,
# Line 2051 | Line 2727 | Encoding: GBK
2727    uri = {<Go to ISI>://A1996UQ97500017},
2728   }
2729  
2730 + @ARTICLE{Schaps1999,
2731 +  author = {G. L. Schaps},
2732 +  title = {Compiler construction with ANTLR and Java - Tools for building tools},
2733 +  journal = {Dr Dobbs Journal},
2734 +  year = {1999},
2735 +  volume = {24},
2736 +  pages = {84-+},
2737 +  number = {3},
2738 +  month = {Mar},
2739 +  annote = {163EC Times Cited:0 Cited References Count:0},
2740 +  issn = {1044-789X},
2741 +  uri = {<Go to ISI>://000078389200023},
2742 + }
2743 +
2744   @ARTICLE{Shen2002,
2745    author = {M. Y. Shen and K. F. Freed},
2746    title = {Long time dynamics of met-enkephalin: Comparison of explicit and
# Line 2099 | Line 2789 | Encoding: GBK
2789    uri = {<Go to ISI>://000227296700019},
2790   }
2791  
2792 + @ARTICLE{Shimada1993,
2793 +  author = {J. Shimada and H. Kaneko and T. Takada},
2794 +  title = {Efficient Calculations of Coulombic Interactions in Biomolecular
2795 +        Simulations with Periodic Boundary-Conditions},
2796 +  journal = {Journal of Computational Chemistry},
2797 +  year = {1993},
2798 +  volume = {14},
2799 +  pages = {867-878},
2800 +  number = {7},
2801 +  month = {Jul},
2802 +  abstract = {To make improved treatments of electrostatic interactions in biomacromolecular
2803 +        simulations, two possibilities are considered. The first is the
2804 +        famous particle-particle and particle-mesh (PPPM) method developed
2805 +        by Hockney and Eastwood, and the second is a new one developed here
2806 +        in their spirit but by the use of the multipole expansion technique
2807 +        suggested by Ladd. It is then numerically found that the new PPPM
2808 +        method gives more accurate results for a two-particle system at
2809 +        small separation of particles. Preliminary numerical examination
2810 +        of the various computational methods for a single configuration
2811 +        of a model BPTI-water system containing about 24,000 particles indicates
2812 +        that both of the PPPM methods give far more accurate values with
2813 +        reasonable computational cost than do the conventional truncation
2814 +        methods. It is concluded the two PPPM methods are nearly comparable
2815 +        in overall performance for the many-particle systems, although the
2816 +        first method has the drawback that the accuracy in the total electrostatic
2817 +        energy is not high for configurations of charged particles randomly
2818 +        generated.},
2819 +  annote = {Lh164 Times Cited:27 Cited References Count:47},
2820 +  issn = {0192-8651},
2821 +  uri = {<Go to ISI>://A1993LH16400011},
2822 + }
2823 +
2824   @ARTICLE{Skeel2002,
2825    author = {R. D. Skeel and J. A. Izaguirre},
2826    title = {An impulse integrator for Langevin dynamics},
# Line 2187 | Line 2909 | Encoding: GBK
2909    uri = {<Go to ISI>://000230332400077},
2910   }
2911  
2190 @BOOK{Tolman1979,
2191  title = {The Principles of Statistical Mechanics},
2192  publisher = {Dover Publications, Inc.},
2193  year = {1979},
2194  author = {R.~C. Tolman},
2195  address = {New York},
2196  chapter = {2},
2197  pages = {19-22},
2198 }
2199
2912   @ARTICLE{Tu1995,
2913    author = {K. Tu and D. J. Tobias and M. L. Klein},
2914    title = {Constant pressure and temperature molecular dynamics simulation of
# Line 2258 | Line 2970 | Encoding: GBK
2970    uri = {<Go to ISI>://A1992JE89100044},
2971   }
2972  
2261 @ARTICLE{Wegener1979,
2262  author = {W.~A. Wegener, V.~J. Koester and R.~M. Dowben},
2263  title = {A general ellipsoid can not always serve as a modle for the rotational
2264        diffusion properties of arbitrary shaped rigid molecules},
2265  journal = {Proc. Natl. Acad. Sci.},
2266  year = {1979},
2267  volume = {76},
2268  pages = {6356-6360},
2269  number = {12},
2270 }
2271
2973   @ARTICLE{Withers2003,
2974    author = {I. M. Withers},
2975    title = {Effects of longitudinal quadrupoles on the phase behavior of a Gay-Berne
# Line 2311 | Line 3012 | Encoding: GBK
3012    uri = {<Go to ISI>://000186273200027},
3013   }
3014  
3015 + @ARTICLE{Wolf1999,
3016 +  author = {D. Wolf and P. Keblinski and S. R. Phillpot and J. Eggebrecht},
3017 +  title = {Exact method for the simulation of Coulombic systems by spherically
3018 +        truncated, pairwise r(-1) summation},
3019 +  journal = {Journal of Chemical Physics},
3020 +  year = {1999},
3021 +  volume = {110},
3022 +  pages = {8254-8282},
3023 +  number = {17},
3024 +  month = {May 1},
3025 +  abstract = {Based on a recent result showing that the net Coulomb potential in
3026 +        condensed ionic systems is rather short ranged, an exact and physically
3027 +        transparent method permitting the evaluation of the Coulomb potential
3028 +        by direct summation over the r(-1) Coulomb pair potential is presented.
3029 +        The key observation is that the problems encountered in determining
3030 +        the Coulomb energy by pairwise, spherically truncated r(-1) summation
3031 +        are a direct consequence of the fact that the system summed over
3032 +        is practically never neutral. A simple method is developed that
3033 +        achieves charge neutralization wherever the r(-1) pair potential
3034 +        is truncated. This enables the extraction of the Coulomb energy,
3035 +        forces, and stresses from a spherically truncated, usually charged
3036 +        environment in a manner that is independent of the grouping of the
3037 +        pair terms. The close connection of our approach with the Ewald
3038 +        method is demonstrated and exploited, providing an efficient method
3039 +        for the simulation of even highly disordered ionic systems by direct,
3040 +        pairwise r(-1) summation with spherical truncation at rather short
3041 +        range, i.e., a method which fully exploits the short-ranged nature
3042 +        of the interactions in ionic systems. The method is validated by
3043 +        simulations of crystals, liquids, and interfacial systems, such
3044 +        as free surfaces and grain boundaries. (C) 1999 American Institute
3045 +        of Physics. [S0021-9606(99)51517-1].},
3046 +  annote = {189PD Times Cited:70 Cited References Count:34},
3047 +  issn = {0021-9606},
3048 +  uri = {<Go to ISI>://000079913000008},
3049 + }
3050 +
3051 + @ARTICLE{Yoshida1990,
3052 +  author = {H. Yoshida},
3053 +  title = {Construction of Higher-Order Symplectic Integrators},
3054 +  journal = {Physics Letters A},
3055 +  year = {1990},
3056 +  volume = {150},
3057 +  pages = {262-268},
3058 +  number = {5-7},
3059 +  month = {Nov 12},
3060 +  annote = {Ej798 Times Cited:492 Cited References Count:9},
3061 +  issn = {0375-9601},
3062 +  uri = {<Go to ISI>://A1990EJ79800009},
3063 + }
3064 +

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines