ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/tengDissertation/dissertation.bib
(Generate patch)

Comparing trunk/tengDissertation/dissertation.bib (file contents):
Revision 2786 by tim, Sun Jun 4 20:18:07 2006 UTC vs.
Revision 2840 by tim, Fri Jun 9 02:54:01 2006 UTC

# Line 88 | Line 88 | Encoding: GBK
88    uri = {<Go to ISI>://000232532000064},
89   }
90  
91 + @BOOK{Alexander1987,
92 +  title = {A Pattern Language: Towns, Buildings, Construction},
93 +  publisher = {Oxford University Press},
94 +  year = {1987},
95 +  author = {C. Alexander},
96 +  address = {New York},
97 + }
98 +
99   @BOOK{Allen1987,
100    title = {Computer Simulations of Liquids},
101    publisher = {Oxford University Press},
# Line 123 | Line 131 | Encoding: GBK
131    annote = {Eu814 Times Cited:8 Cited References Count:32},
132    issn = {0024-9297},
133    uri = {<Go to ISI>://A1991EU81400029},
134 + }
135 +
136 + @ARTICLE{Andersen1983,
137 +  author = {H. C. Andersen},
138 +  title = {Rattle - a Velocity Version of the Shake Algorithm for Molecular-Dynamics
139 +        Calculations},
140 +  journal = {Journal of Computational Physics},
141 +  year = {1983},
142 +  volume = {52},
143 +  pages = {24-34},
144 +  number = {1},
145 +  annote = {Rq238 Times Cited:559 Cited References Count:14},
146 +  issn = {0021-9991},
147 +  uri = {<Go to ISI>://A1983RQ23800002},
148   }
149  
150   @ARTICLE{Auerbach2005,
# Line 225 | Line 247 | Encoding: GBK
247    uri = {<Go to ISI>://000221146400009},
248   }
249  
250 + @ARTICLE{Barojas1973,
251 +  author = {J. Barojas and D. Levesque},
252 +  title = {Simulation of Diatomic Homonuclear Liquids},
253 +  journal = {Phys. Rev. A},
254 +  year = {1973},
255 +  volume = {7},
256 +  pages = {1092-1105},
257 + }
258 +
259   @ARTICLE{Barth1998,
260    author = {E. Barth and T. Schlick},
261    title = {Overcoming stability limitations in biomolecular dynamics. I. Combining
# Line 399 | Line 430 | Encoding: GBK
430  
431   @ARTICLE{Berkov2005,
432    author = {D. V. Berkov and N. L. Gorn},
402  title = {Stochastic dynamic simulations of fast remagnetization processes:
403        recent advances and applications},
404  journal = {Journal of Magnetism and Magnetic Materials},
405  year = {2005},
406  volume = {290},
407  pages = {442-448},
408  month = {Apr},
409  abstract = {Numerical simulations of fast remagnetization processes using stochastic
410        dynamics are widely used to study various magnetic systems. In this
411        paper, we first address several crucial methodological problems
412        of such simulations: (i) the influence of finite-element discretization
413        on simulated dynamics, (ii) choice between Ito and Stratonovich
414        stochastic calculi by the solution of micromagnetic stochastic equations
415        of motion and (iii) non-trivial correlation properties of the random
416        (thermal) field. Next, we discuss several examples to demonstrate
417        the great potential of the Langevin dynamics for studying fast remagnetization
418        processes in technically relevant applications: we present numerical
419        analysis of equilibrium magnon spectra in patterned structures,
420        study thermal noise effects on the magnetization dynamics of nanoelements
421        in pulsed fields and show some results for a remagnetization dynamics
422        induced by a spin-polarized current. (c) 2004 Elsevier B.V. All
423        rights reserved.},
424  annote = {Part 1 Sp. Iss. SI 922KU Times Cited:2 Cited References Count:25},
425  issn = {0304-8853},
426  uri = {<Go to ISI>://000228837600109},
427 }
428
429 @ARTICLE{Berkov2005a,
430  author = {D. V. Berkov and N. L. Gorn},
433    title = {Magnetization precession due to a spin-polarized current in a thin
434          nanoelement: Numerical simulation study},
435    journal = {Physical Review B},
# Line 456 | Line 458 | Encoding: GBK
458    annote = {969IT Times Cited:2 Cited References Count:55},
459    issn = {1098-0121},
460    uri = {<Go to ISI>://000232228500058},
461 + }
462 +
463 + @ARTICLE{Berkov2005a,
464 +  author = {D. V. Berkov and N. L. Gorn},
465 +  title = {Stochastic dynamic simulations of fast remagnetization processes:
466 +        recent advances and applications},
467 +  journal = {Journal of Magnetism and Magnetic Materials},
468 +  year = {2005},
469 +  volume = {290},
470 +  pages = {442-448},
471 +  month = {Apr},
472 +  abstract = {Numerical simulations of fast remagnetization processes using stochastic
473 +        dynamics are widely used to study various magnetic systems. In this
474 +        paper, we first address several crucial methodological problems
475 +        of such simulations: (i) the influence of finite-element discretization
476 +        on simulated dynamics, (ii) choice between Ito and Stratonovich
477 +        stochastic calculi by the solution of micromagnetic stochastic equations
478 +        of motion and (iii) non-trivial correlation properties of the random
479 +        (thermal) field. Next, we discuss several examples to demonstrate
480 +        the great potential of the Langevin dynamics for studying fast remagnetization
481 +        processes in technically relevant applications: we present numerical
482 +        analysis of equilibrium magnon spectra in patterned structures,
483 +        study thermal noise effects on the magnetization dynamics of nanoelements
484 +        in pulsed fields and show some results for a remagnetization dynamics
485 +        induced by a spin-polarized current. (c) 2004 Elsevier B.V. All
486 +        rights reserved.},
487 +  annote = {Part 1 Sp. Iss. SI 922KU Times Cited:2 Cited References Count:25},
488 +  issn = {0304-8853},
489 +  uri = {<Go to ISI>://000228837600109},
490   }
491  
492   @ARTICLE{Berkov2002,
# Line 497 | Line 528 | Encoding: GBK
528    pages = {751-766},
529   }
530  
531 + @ARTICLE{Brenner1967,
532 +  author = {H. Brenner },
533 +  title = {Coupling between the Translational and Rotational Brownian Motions
534 +        of Rigid Particles of Arbitrary shape},
535 +  journal = {J. Collid. Int. Sci.},
536 +  year = {1967},
537 +  volume = {23},
538 +  pages = {407-436},
539 + }
540 +
541   @ARTICLE{Brunger1984,
542    author = {A. Brunger and C. L. Brooks and M. Karplus},
543    title = {Stochastic Boundary-Conditions for Molecular-Dynamics Simulations
# Line 511 | Line 552 | Encoding: GBK
552    uri = {<Go to ISI>://A1984SM17300007},
553   }
554  
555 + @ARTICLE{Budd1999,
556 +  author = {C. J. Budd and G. J. Collins and W. Z. Huang and R. D. Russell},
557 +  title = {Self-similar numerical solutions of the porous-medium equation using
558 +        moving mesh methods},
559 +  journal = {Philosophical Transactions of the Royal Society of London Series
560 +        a-Mathematical Physical and Engineering Sciences},
561 +  year = {1999},
562 +  volume = {357},
563 +  pages = {1047-1077},
564 +  number = {1754},
565 +  month = {Apr 15},
566 +  abstract = {This paper examines a synthesis of adaptive mesh methods with the
567 +        use of symmetry to study a partial differential equation. In particular,
568 +        it considers methods which admit discrete self-similar solutions,
569 +        examining the convergence of these to the true self-similar solution
570 +        as well as their stability. Special attention is given to the nonlinear
571 +        diffusion equation describing flow in a porous medium.},
572 +  annote = {199EE Times Cited:4 Cited References Count:14},
573 +  issn = {1364-503X},
574 +  uri = {<Go to ISI>://000080466800005},
575 + }
576 +
577   @ARTICLE{Camp1999,
578    author = {P. J. Camp and M. P. Allen and A. J. Masters},
579    title = {Theory and computer simulation of bent-core molecules},
# Line 640 | Line 703 | Encoding: GBK
703    annote = {221EN Times Cited:14 Cited References Count:66},
704    issn = {0021-9606},
705    uri = {<Go to ISI>://000081711200038},
706 + }
707 +
708 + @ARTICLE{Channell1990,
709 +  author = {P. J. Channell and C. Scovel},
710 +  title = {Symplectic Integration of Hamiltonian-Systems},
711 +  journal = {Nonlinearity},
712 +  year = {1990},
713 +  volume = {3},
714 +  pages = {231-259},
715 +  number = {2},
716 +  month = {may},
717 +  annote = {Dk631 Times Cited:152 Cited References Count:34},
718 +  issn = {0951-7715},
719 +  uri = {<Go to ISI>://A1990DK63100001},
720 + }
721 +
722 + @ARTICLE{Chen2003,
723 +  author = {B. Chen and F. Solis},
724 +  title = {Explicit mixed finite order Runge-Kutta methods},
725 +  journal = {Applied Numerical Mathematics},
726 +  year = {2003},
727 +  volume = {44},
728 +  pages = {21-30},
729 +  number = {1-2},
730 +  month = {Jan},
731 +  abstract = {We investigate the asymptotic behavior of systems of nonlinear differential
732 +        equations and introduce a family of mixed methods from combinations
733 +        of explicit Runge-Kutta methods. These methods have better stability
734 +        behavior than traditional Runge-Kutta methods and generally extend
735 +        the range of validity of the calculated solutions. These methods
736 +        also give a way of determining if the numerical solutions are real
737 +        or spurious. Emphasis is put on examples coming from mathematical
738 +        models in ecology. (C) 2002 IMACS. Published by Elsevier Science
739 +        B.V. All rights reserved.},
740 +  annote = {633ZD Times Cited:0 Cited References Count:9},
741 +  issn = {0168-9274},
742 +  uri = {<Go to ISI>://000180314200002},
743   }
744  
745   @ARTICLE{Cheung2004,
# Line 880 | Line 980 | Encoding: GBK
980    annote = {Ya587 Times Cited:35 Cited References Count:32},
981    issn = {0021-9606},
982    uri = {<Go to ISI>://A1997YA58700024},
983 + }
984 +
985 + @BOOK{Gamma1994,
986 +  title = {Design Patterns: Elements of Reusable Object-Oriented Software},
987 +  publisher = {Perason Education},
988 +  year = {1994},
989 +  author = {E. Gamma, R. Helm, R. Johnson and J. Vlissides},
990 +  address = {London},
991 +  chapter = {7},
992   }
993  
994   @ARTICLE{Edwards2005,
# Line 935 | Line 1044 | Encoding: GBK
1044    uri = {<Go to ISI>://A1978FP21600004},
1045   }
1046  
1047 + @ARTICLE{Evans1977,
1048 +  author = {D. J. Evans},
1049 +  title = {Representation of Orientation Space},
1050 +  journal = {Molecular Physics},
1051 +  year = {1977},
1052 +  volume = {34},
1053 +  pages = {317-325},
1054 +  number = {2},
1055 +  annote = {Ds757 Times Cited:271 Cited References Count:18},
1056 +  issn = {0026-8976},
1057 +  uri = {<Go to ISI>://A1977DS75700002},
1058 + }
1059 +
1060   @ARTICLE{Fennell2004,
1061    author = {C. J. Fennell and J. D. Gezelter},
1062    title = {On the structural and transport properties of the soft sticky dipole
# Line 999 | Line 1121 | Encoding: GBK
1121    uri = {<Go to ISI>://000180256300012},
1122   }
1123  
1124 + @BOOK{Frenkel1996,
1125 +  title = {Understanding Molecular Simulation : From Algorithms to Applications},
1126 +  publisher = {Academic Press},
1127 +  year = {1996},
1128 +  author = {D. Frenkel and B. Smit},
1129 +  address = {New York},
1130 + }
1131 +
1132   @ARTICLE{Gay1981,
1133    author = {J. G. Gay and B. J. Berne},
1134    title = {Modification of the Overlap Potential to Mimic a Linear Site-Site
# Line 1094 | Line 1224 | Encoding: GBK
1224    uri = {<Go to ISI>://000184351300022},
1225   }
1226  
1227 + @ARTICLE{Greengard1994,
1228 +  author = {L. Greengard},
1229 +  title = {Fast Algorithms for Classical Physics},
1230 +  journal = {Science},
1231 +  year = {1994},
1232 +  volume = {265},
1233 +  pages = {909-914},
1234 +  number = {5174},
1235 +  month = {Aug 12},
1236 +  abstract = {Some of the recently developed fast summation methods that have arisen
1237 +        in scientific computing are described. These methods require an
1238 +        amount of work proportional to N or N log N to evaluate all pairwise
1239 +        interactions in an ensemble of N particles. Traditional methods,
1240 +        by contrast, require an amount of work proportional to N-2. AS a
1241 +        result, large-scale simulations can be carried out using only modest
1242 +        computer resources. In combination with supercomputers, it is possible
1243 +        to address questions that were previously out of reach. Problems
1244 +        from diffusion, gravitation, and wave propagation are considered.},
1245 +  annote = {Pb499 Times Cited:99 Cited References Count:44},
1246 +  issn = {0036-8075},
1247 +  uri = {<Go to ISI>://A1994PB49900031},
1248 + }
1249 +
1250 + @ARTICLE{Greengard1987,
1251 +  author = {L. Greengard and V. Rokhlin},
1252 +  title = {A Fast Algorithm for Particle Simulations},
1253 +  journal = {Journal of Computational Physics},
1254 +  year = {1987},
1255 +  volume = {73},
1256 +  pages = {325-348},
1257 +  number = {2},
1258 +  month = {Dec},
1259 +  annote = {L0498 Times Cited:899 Cited References Count:7},
1260 +  issn = {0021-9991},
1261 +  uri = {<Go to ISI>://A1987L049800006},
1262 + }
1263 +
1264 + @ARTICLE{Hairer1997,
1265 +  author = {E. Hairer and C. Lubich},
1266 +  title = {The life-span of backward error analysis for numerical integrators},
1267 +  journal = {Numerische Mathematik},
1268 +  year = {1997},
1269 +  volume = {76},
1270 +  pages = {441-462},
1271 +  number = {4},
1272 +  month = {Jun},
1273 +  abstract = {Backward error analysis is a useful tool for the study of numerical
1274 +        approximations to ordinary differential equations. The numerical
1275 +        solution is formally interpreted as the exact solution of a perturbed
1276 +        differential equation, given as a formal and usually divergent series
1277 +        in powers of the step size. For a rigorous analysis, this series
1278 +        has to be truncated. In this article we study the influence of this
1279 +        truncation to the difference between the numerical solution and
1280 +        the exact solution of the perturbed differential equation. Results
1281 +        on the long-time behaviour of numerical solutions are obtained in
1282 +        this way. We present applications to the numerical phase portrait
1283 +        near hyperbolic equilibrium points, to asymptotically stable periodic
1284 +        orbits and Hopf bifurcation, and to energy conservation and approximation
1285 +        of invariant tori in Hamiltonian systems.},
1286 +  annote = {Xj488 Times Cited:50 Cited References Count:19},
1287 +  issn = {0029-599X},
1288 +  uri = {<Go to ISI>://A1997XJ48800002},
1289 + }
1290 +
1291   @ARTICLE{Hao1993,
1292    author = {M. H. Hao and M. R. Pincus and S. Rackovsky and H. A. Scheraga},
1293    title = {Unfolding and Refolding of the Native Structure of Bovine Pancreatic
# Line 1224 | Line 1418 | Encoding: GBK
1418    annote = {Ju251 Times Cited:55 Cited References Count:44},
1419    issn = {0006-3495},
1420    uri = {<Go to ISI>://A1992JU25100002},
1421 + }
1422 +
1423 + @BOOK{Hockney1981,
1424 +  title = {Computer Simulation Using Particles},
1425 +  publisher = {McGraw-Hill},
1426 +  year = {1981},
1427 +  author = {R.W. Hockney and J.W. Eastwood},
1428 +  address = {New York},
1429 + }
1430 +
1431 + @ARTICLE{Hoover1985,
1432 +  author = {W. G. Hoover},
1433 +  title = {Canonical Dynamics - Equilibrium Phase-Space Distributions},
1434 +  journal = {Physical Review A},
1435 +  year = {1985},
1436 +  volume = {31},
1437 +  pages = {1695-1697},
1438 +  number = {3},
1439 +  annote = {Acr30 Times Cited:1809 Cited References Count:11},
1440 +  issn = {1050-2947},
1441 +  uri = {<Go to ISI>://A1985ACR3000056},
1442   }
1443  
1444   @ARTICLE{Huh2004,
# Line 1251 | Line 1466 | Encoding: GBK
1466    uri = {<Go to ISI>://000225042700059},
1467   }
1468  
1469 + @ARTICLE{Humphrey1996,
1470 +  author = {W. Humphrey and A. Dalke and K. Schulten},
1471 +  title = {VMD: Visual molecular dynamics},
1472 +  journal = {Journal of Molecular Graphics},
1473 +  year = {1996},
1474 +  volume = {14},
1475 +  pages = {33-\&},
1476 +  number = {1},
1477 +  month = {Feb},
1478 +  abstract = {VMD is a molecular graphics program designed for the display and analysis
1479 +        of molecular assemblies, in particular biopolymers such as proteins
1480 +        and nucleic acids. VMD can simultaneously display any number of
1481 +        structures using a wide variety of rendering styles and coloring
1482 +        methods. Molecules are displayed as one or more ''representations,''
1483 +        in which each representation embodies a particular rendering method
1484 +        and coloring scheme for a selected subset of atoms. The atoms displayed
1485 +        in each representation are chosen using an extensive atom selection
1486 +        syntax, which includes Boolean operators and regular expressions.
1487 +        VMD provides a complete graphical user interface for program control,
1488 +        as well as a text interface using the Tcl embeddable parser to allow
1489 +        for complex scripts with variable substitution, control loops, and
1490 +        function calls. Full session logging is supported, which produces
1491 +        a VMD command script for later playback. High-resolution raster
1492 +        images of displayed molecules may be produced by generating input
1493 +        scripts for use by a number of photorealistic image-rendering applications.
1494 +        VMD has also been expressly designed with the ability to animate
1495 +        molecular dynamics (MD) simulation trajectories, imported either
1496 +        from files or from a direct connection to a running MD simulation.
1497 +        VMD is the visualization component of MDScope, a set of tools for
1498 +        interactive problem solving in structural biology, which also includes
1499 +        the parallel MD program NAMD, and the MDCOMM software used to connect
1500 +        the visualization and simulation programs. VMD is written in C++,
1501 +        using an object-oriented design; the program, including source code
1502 +        and extensive documentation, is freely available via anonymous ftp
1503 +        and through the World Wide Web.},
1504 +  annote = {Uh515 Times Cited:1418 Cited References Count:19},
1505 +  issn = {0263-7855},
1506 +  uri = {<Go to ISI>://A1996UH51500005},
1507 + }
1508 +
1509   @ARTICLE{Izaguirre2001,
1510    author = {J. A. Izaguirre and D. P. Catarello and J. M. Wozniak and R. D. Skeel},
1511    title = {Langevin stabilization of molecular dynamics},
# Line 1292 | Line 1547 | Encoding: GBK
1547    uri = {<Go to ISI>://000166676100020},
1548   }
1549  
1550 < @ARTICLE{Gray2003,
1551 <  author = {J.~J Gray,S. Moughon, C. Wang },
1552 <  title = {Protein-protein docking with simultaneous optimization of rigid-body
1553 <        displacement and side-chain conformations},
1554 <  journal = {jmb},
1555 <  year = {2003},
1556 <  volume = {331},
1302 <  pages = {281-299},
1550 > @ARTICLE{Torre1977,
1551 >  author = {Jose Garcia De La Torre, V.A. Bloomfield},
1552 >  title = {Hydrodynamic properties of macromolecular complexes. I. Translation},
1553 >  journal = {Biopolymers},
1554 >  year = {1977},
1555 >  volume = {16},
1556 >  pages = {1747-1763},
1557   }
1558  
1559 + @ARTICLE{Kane2000,
1560 +  author = {C. Kane and J. E. Marsden and M. Ortiz and M. West},
1561 +  title = {Variational integrators and the Newmark algorithm for conservative
1562 +        and dissipative mechanical systems},
1563 +  journal = {International Journal for Numerical Methods in Engineering},
1564 +  year = {2000},
1565 +  volume = {49},
1566 +  pages = {1295-1325},
1567 +  number = {10},
1568 +  month = {Dec 10},
1569 +  abstract = {The purpose of this work is twofold. First, we demonstrate analytically
1570 +        that the classical Newmark family as well as related integration
1571 +        algorithms are variational in the sense of the Veselov formulation
1572 +        of discrete mechanics. Such variational algorithms are well known
1573 +        to be symplectic and momentum preserving and to often have excellent
1574 +        global energy behaviour. This analytical result is verified through
1575 +        numerical examples and is believed to be one of the primary reasons
1576 +        that this class of algorithms performs so well. Second, we develop
1577 +        algorithms for mechanical systems with forcing, and in particular,
1578 +        for dissipative systems. In this case, we develop integrators that
1579 +        are based on a discretization of the Lagrange d'Alembert principle
1580 +        as well as on a variational formulation of dissipation. It is demonstrated
1581 +        that these types of structured integrators have good numerical behaviour
1582 +        in terms of obtaining the correct amounts by which the energy changes
1583 +        over the integration run. Copyright (C) 2000 John Wiley & Sons,
1584 +        Ltd.},
1585 +  annote = {373CJ Times Cited:30 Cited References Count:41},
1586 +  issn = {0029-5981},
1587 +  uri = {<Go to ISI>://000165270600004},
1588 + }
1589 +
1590   @ARTICLE{Klimov1997,
1591    author = {D. K. Klimov and D. Thirumalai},
1592    title = {Viscosity dependence of the folding rates of proteins},
# Line 1327 | Line 1612 | Encoding: GBK
1612    uri = {<Go to ISI>://A1997XK29300035},
1613   }
1614  
1615 + @ARTICLE{Kol1997,
1616 +  author = {A. Kol and B. B. Laird and B. J. Leimkuhler},
1617 +  title = {A symplectic method for rigid-body molecular simulation},
1618 +  journal = {Journal of Chemical Physics},
1619 +  year = {1997},
1620 +  volume = {107},
1621 +  pages = {2580-2588},
1622 +  number = {7},
1623 +  month = {Aug 15},
1624 +  abstract = {Rigid-body molecular dynamics simulations typically are performed
1625 +        in a quaternion representation. The nonseparable form of the Hamiltonian
1626 +        in quaternions prevents the use of a standard leapfrog (Verlet)
1627 +        integrator, so nonsymplectic Runge-Kutta, multistep, or extrapolation
1628 +        methods are generally used, This is unfortunate since symplectic
1629 +        methods like Verlet exhibit superior energy conservation in long-time
1630 +        integrations. In this article, we describe an alternative method,
1631 +        which we call RSHAKE (for rotation-SHAKE), in which the entire rotation
1632 +        matrix is evolved (using the scheme of McLachlan and Scovel [J.
1633 +        Nonlin. Sci, 16 233 (1995)]) in tandem with the particle positions.
1634 +        We employ a fast approximate Newton solver to preserve the orthogonality
1635 +        of the rotation matrix. We test our method on a system of soft-sphere
1636 +        dipoles and compare with quaternion evolution using a 4th-order
1637 +        predictor-corrector integrator, Although the short-time error of
1638 +        the quaternion algorithm is smaller for fixed time step than that
1639 +        for RSHAKE, the quaternion scheme exhibits an energy drift which
1640 +        is not observed in simulations with RSHAKE, hence a fixed energy
1641 +        tolerance can be achieved by using a larger time step, The superiority
1642 +        of RSHAKE increases with system size. (C) 1997 American Institute
1643 +        of Physics.},
1644 +  annote = {Xq332 Times Cited:11 Cited References Count:18},
1645 +  issn = {0021-9606},
1646 +  uri = {<Go to ISI>://A1997XQ33200046},
1647 + }
1648 +
1649   @ARTICLE{Lansac2001,
1650    author = {Y. Lansac and M. A. Glaser and N. A. Clark},
1651    title = {Microscopic structure and dynamics of a partial bilayer smectic liquid
# Line 1401 | Line 1720 | Encoding: GBK
1720    edition = {2nd},
1721   }
1722  
1723 + @ARTICLE{Leimkuhler1999,
1724 +  author = {B. Leimkuhler},
1725 +  title = {Reversible adaptive regularization: perturbed Kepler motion and classical
1726 +        atomic trajectories},
1727 +  journal = {Philosophical Transactions of the Royal Society of London Series
1728 +        a-Mathematical Physical and Engineering Sciences},
1729 +  year = {1999},
1730 +  volume = {357},
1731 +  pages = {1101-1133},
1732 +  number = {1754},
1733 +  month = {Apr 15},
1734 +  abstract = {Reversible and adaptive integration methods based on Kustaanheimo-Stiefel
1735 +        regularization and modified Sundman transformations are applied
1736 +        to simulate general perturbed Kepler motion and to compute classical
1737 +        trajectories of atomic systems (e.g. Rydberg atoms). The new family
1738 +        of reversible adaptive regularization methods also conserves angular
1739 +        momentum and exhibits superior energy conservation and numerical
1740 +        stability in long-time integrations. The schemes are appropriate
1741 +        for scattering, for astronomical calculations of escape time and
1742 +        long-term stability, and for classical and semiclassical studies
1743 +        of atomic dynamics. The components of an algorithm for trajectory
1744 +        calculations are described. Numerical experiments illustrate the
1745 +        effectiveness of the reversible approach.},
1746 +  annote = {199EE Times Cited:11 Cited References Count:48},
1747 +  issn = {1364-503X},
1748 +  uri = {<Go to ISI>://000080466800007},
1749 + }
1750 +
1751   @BOOK{Leimkuhler2004,
1752    title = {Simulating Hamiltonian Dynamics},
1753    publisher = {Cambridge University Press},
# Line 1477 | Line 1824 | Encoding: GBK
1824    uri = {<Go to ISI>://000234826102043},
1825   }
1826  
1827 + @ARTICLE{Luty1994,
1828 +  author = {B. A. Luty and M. E. Davis and I. G. Tironi and W. F. Vangunsteren},
1829 +  title = {A Comparison of Particle-Particle, Particle-Mesh and Ewald Methods
1830 +        for Calculating Electrostatic Interactions in Periodic Molecular-Systems},
1831 +  journal = {Molecular Simulation},
1832 +  year = {1994},
1833 +  volume = {14},
1834 +  pages = {11-20},
1835 +  number = {1},
1836 +  abstract = {We compare the Particle-Particle Particle-Mesh (PPPM) and Ewald methods
1837 +        for calculating electrostatic interactions in periodic molecular
1838 +        systems. A brief comparison of the theories shows that the methods
1839 +        are very similar differing mainly in the technique which is used
1840 +        to perform the ''k-space'' or mesh calculation. Because the PPPM
1841 +        utilizes the highly efficient numerical Fast Fourier Transform (FFT)
1842 +        method it requires significantly less computational effort than
1843 +        the Ewald method and scale's almost linearly with system size.},
1844 +  annote = {Qf464 Times Cited:50 Cited References Count:20},
1845 +  issn = {0892-7022},
1846 +  uri = {<Go to ISI>://A1994QF46400002},
1847 + }
1848 +
1849   @BOOK{Marion1990,
1850    title = {Classical Dynamics of Particles and Systems},
1851    publisher = {Academic Press},
# Line 1486 | Line 1855 | Encoding: GBK
1855    edition = {2rd},
1856   }
1857  
1858 + @ARTICLE{Marrink1994,
1859 +  author = {S. J. Marrink and H. J. C. Berendsen},
1860 +  title = {Simulation of Water Transport through a Lipid-Membrane},
1861 +  journal = {Journal of Physical Chemistry},
1862 +  year = {1994},
1863 +  volume = {98},
1864 +  pages = {4155-4168},
1865 +  number = {15},
1866 +  month = {Apr 14},
1867 +  abstract = {To obtain insight in the process of water permeation through a lipid
1868 +        membrane, we performed molecular dynamics simulations on a phospholipid
1869 +        (DPPC)/water system with atomic detail. Since the actual process
1870 +        of permeation is too slow to be studied directly, we deduced the
1871 +        permeation rate indirectly via computation of the free energy and
1872 +        diffusion rate profiles of a water molecule across the bilayer.
1873 +        We conclude that the permeation of water through a lipid membrane
1874 +        cannot be described adequately by a simple homogeneous solubility-diffusion
1875 +        model. Both the excess free energy and the diffusion rate strongly
1876 +        depend on the position in the membrane, as a result from the inhomogeneous
1877 +        nature of the membrane. The calculated excess free energy profile
1878 +        has a shallow slope and a maximum height of 26 kJ/mol. The diffusion
1879 +        rate is highest in the middle of the membrane where the lipid density
1880 +        is low. In the interfacial region almost all water molecules are
1881 +        bound by the lipid headgroups, and the diffusion turns out to be
1882 +        1 order of magnitude smaller. The total transport process is essentially
1883 +        determined by the free energy barrier. The rate-limiting step is
1884 +        the permeation through the dense part of the lipid tails, where
1885 +        the resistance is highest. We found a permeation rate of 7(+/-3)
1886 +        x 10(-2) cm/s at 350 K, comparable to experimental values for DPPC
1887 +        membranes, if corrected for the temperature of the simulation. Taking
1888 +        the inhomogeneity of the membrane into account, we define a new
1889 +        ''four-region'' model which seems to be more realistic than the
1890 +        ''two-phase'' solubility-diffusion model.},
1891 +  annote = {Ng219 Times Cited:187 Cited References Count:25},
1892 +  issn = {0022-3654},
1893 +  uri = {<Go to ISI>://A1994NG21900040},
1894 + }
1895 +
1896 + @ARTICLE{Marsden1998,
1897 +  author = {J. E. Marsden and G. W. Patrick and S. Shkoller},
1898 +  title = {Multisymplectic geometry, variational integrators, and nonlinear
1899 +        PDEs},
1900 +  journal = {Communications in Mathematical Physics},
1901 +  year = {1998},
1902 +  volume = {199},
1903 +  pages = {351-395},
1904 +  number = {2},
1905 +  month = {Dec},
1906 +  abstract = {This paper presents a geometric-variational approach to continuous
1907 +        and discrete mechanics and field theories. Using multisymplectic
1908 +        geometry, we show that the existence of the fundamental geometric
1909 +        structures as well as their preservation along solutions can be
1910 +        obtained directly from the variational principle. In particular,
1911 +        we prove that a unique multisymplectic structure is obtained by
1912 +        taking the derivative of an action function, and use this structure
1913 +        to prove covariant generalizations of conservation of symplecticity
1914 +        and Noether's theorem. Natural discretization schemes for PDEs,
1915 +        which have these important preservation properties, then follow
1916 +        by choosing a discrete action functional. In the case of mechanics,
1917 +        we recover the variational symplectic integrators of Veselov type,
1918 +        while for PDEs we obtain covariant spacetime integrators which conserve
1919 +        the corresponding discrete multisymplectic form as well as the discrete
1920 +        momentum mappings corresponding to symmetries. We show that the
1921 +        usual notion of symplecticity along an infinite-dimensional space
1922 +        of fields can be naturally obtained by making a spacetime split.
1923 +        All of the aspects of our method are demonstrated with a nonlinear
1924 +        sine-Gordon equation, including computational results and a comparison
1925 +        with other discretization schemes.},
1926 +  annote = {154RH Times Cited:88 Cited References Count:36},
1927 +  issn = {0010-3616},
1928 +  uri = {<Go to ISI>://000077902200006},
1929 + }
1930 +
1931 + @ARTICLE{Matthey2004,
1932 +  author = {T. Matthey and T. Cickovski and S. Hampton and A. Ko and Q. Ma and
1933 +        M. Nyerges and T. Raeder and T. Slabach and J. A. Izaguirre},
1934 +  title = {ProtoMol, an object-oriented framework for prototyping novel algorithms
1935 +        for molecular dynamics},
1936 +  journal = {Acm Transactions on Mathematical Software},
1937 +  year = {2004},
1938 +  volume = {30},
1939 +  pages = {237-265},
1940 +  number = {3},
1941 +  month = {Sep},
1942 +  abstract = {PROTOMOL is a high-performance framework in C++ for rapid prototyping
1943 +        of novel algorithms for molecular dynamics and related applications.
1944 +        Its flexibility is achieved primarily through the use of inheritance
1945 +        and design patterns (object-oriented programming): Performance is
1946 +        obtained by using templates that enable generation of efficient
1947 +        code for sections critical to performance (generic programming).
1948 +        The framework encapsulates important optimizations that can be used
1949 +        by developers, such as parallelism in the force computation. Its
1950 +        design is based on domain analysis of numerical integrators for
1951 +        molecular dynamics (MD) and of fast solvers for the force computation,
1952 +        particularly due to electrostatic interactions. Several new and
1953 +        efficient algorithms are implemented in PROTOMOL. Finally, it is
1954 +        shown that PROTOMOL'S sequential performance is excellent when compared
1955 +        to a leading MD program, and that it scales well for moderate number
1956 +        of processors. Binaries and source codes for Windows, Linux, Solaris,
1957 +        IRIX, HP-UX, and AIX platforms are available under open source license
1958 +        at http://protomol.sourceforge.net.},
1959 +  annote = {860EP Times Cited:2 Cited References Count:52},
1960 +  issn = {0098-3500},
1961 +  uri = {<Go to ISI>://000224325600001},
1962 + }
1963 +
1964   @ARTICLE{McLachlan1993,
1965    author = {R.~I McLachlan},
1966    title = {Explicit Lie-Poisson integration and the Euler equations},
# Line 1493 | Line 1968 | Encoding: GBK
1968    year = {1993},
1969    volume = {71},
1970    pages = {3043-3046},
1971 + }
1972 +
1973 + @ARTICLE{McLachlan1998,
1974 +  author = {R. I. McLachlan and G. R. W. Quispel},
1975 +  title = {Generating functions for dynamical systems with symmetries, integrals,
1976 +        and differential invariants},
1977 +  journal = {Physica D},
1978 +  year = {1998},
1979 +  volume = {112},
1980 +  pages = {298-309},
1981 +  number = {1-2},
1982 +  month = {Jan 15},
1983 +  abstract = {We give a survey and some new examples of generating functions for
1984 +        systems with symplectic structure, systems with a first integral,
1985 +        systems that preserve volume, and systems with symmetries and/or
1986 +        time-reversing symmetries. Both ODEs and maps are treated, and we
1987 +        discuss how generating functions may be used in the structure-preserving
1988 +        numerical integration of ODEs with the above properties.},
1989 +  annote = {Yt049 Times Cited:7 Cited References Count:26},
1990 +  issn = {0167-2789},
1991 +  uri = {<Go to ISI>://000071558900021},
1992 + }
1993 +
1994 + @ARTICLE{McLachlan1998a,
1995 +  author = {R. I. McLachlan and G. R. W. Quispel and G. S. Turner},
1996 +  title = {Numerical integrators that preserve symmetries and reversing symmetries},
1997 +  journal = {Siam Journal on Numerical Analysis},
1998 +  year = {1998},
1999 +  volume = {35},
2000 +  pages = {586-599},
2001 +  number = {2},
2002 +  month = {Apr},
2003 +  abstract = {We consider properties of flows, the relationships between them, and
2004 +        whether numerical integrators can be made to preserve these properties.
2005 +        This is done in the context of automorphisms and antiautomorphisms
2006 +        of a certain group generated by maps associated to vector fields.
2007 +        This new framework unifies several known constructions. We also
2008 +        use the concept of #covariance# of a numerical method with respect
2009 +        to a group of coordinate transformations. The main application is
2010 +        to explore the relationship between spatial symmetries, reversing
2011 +        symmetries, and time symmetry of flows and numerical integrators.},
2012 +  annote = {Zc449 Times Cited:14 Cited References Count:33},
2013 +  issn = {0036-1429},
2014 +  uri = {<Go to ISI>://000072580500010},
2015   }
2016  
2017   @ARTICLE{McLachlan2005,
# Line 1522 | Line 2041 | Encoding: GBK
2041    uri = {<Go to ISI>://000228011900003},
2042   }
2043  
2044 + @ARTICLE{Meineke2005,
2045 +  author = {M. A. Meineke and C. F. Vardeman and T. Lin and C. J. Fennell and
2046 +        J. D. Gezelter},
2047 +  title = {OOPSE: An object-oriented parallel simulation engine for molecular
2048 +        dynamics},
2049 +  journal = {Journal of Computational Chemistry},
2050 +  year = {2005},
2051 +  volume = {26},
2052 +  pages = {252-271},
2053 +  number = {3},
2054 +  month = {Feb},
2055 +  abstract = {OOPSE is a new molecular dynamics simulation program that is capable
2056 +        of efficiently integrating equations of motion for atom types with
2057 +        orientational degrees of freedom (e.g. #sticky# atoms and point
2058 +        dipoles). Transition metals can also be simulated using the embedded
2059 +        atom method (EAM) potential included in the code. Parallel simulations
2060 +        are carried out using the force-based decomposition method. Simulations
2061 +        are specified using a very simple C-based meta-data language. A
2062 +        number of advanced integrators are included, and the basic integrator
2063 +        for orientational dynamics provides substantial improvements over
2064 +        older quaternion-based schemes. (C) 2004 Wiley Periodicals, Inc.},
2065 +  annote = {891CF Times Cited:1 Cited References Count:56},
2066 +  issn = {0192-8651},
2067 +  uri = {<Go to ISI>://000226558200006},
2068 + }
2069 +
2070 + @ARTICLE{Melchionna1993,
2071 +  author = {S. Melchionna and G. Ciccotti and B. L. Holian},
2072 +  title = {Hoover Npt Dynamics for Systems Varying in Shape and Size},
2073 +  journal = {Molecular Physics},
2074 +  year = {1993},
2075 +  volume = {78},
2076 +  pages = {533-544},
2077 +  number = {3},
2078 +  month = {Feb 20},
2079 +  abstract = {In this paper we write down equations of motion (following the approach
2080 +        pioneered by Hoover) for an exact isothermal-isobaric molecular
2081 +        dynamics simulation, and we extend them to multiple thermostating
2082 +        rates, to a shape-varying cell and to molecular systems, coherently
2083 +        with the previous 'extended system method'. An integration scheme
2084 +        is proposed together with a numerical illustration of the method.},
2085 +  annote = {Kq355 Times Cited:172 Cited References Count:17},
2086 +  issn = {0026-8976},
2087 +  uri = {<Go to ISI>://A1993KQ35500002},
2088 + }
2089 +
2090   @ARTICLE{Memmer2002,
2091    author = {R. Memmer},
2092    title = {Liquid crystal phases of achiral banana-shaped molecules: a computer
# Line 1712 | Line 2277 | Encoding: GBK
2277    annote = {491UW Times Cited:48 Cited References Count:25},
2278    issn = {0021-9606},
2279    uri = {<Go to ISI>://000172129300049},
2280 + }
2281 +
2282 + @BOOK{Olver1986,
2283 +  title = {Applications of Lie groups to differential equatitons},
2284 +  publisher = {Springer},
2285 +  year = {1986},
2286 +  author = {P.J. Olver},
2287 +  address = {New York},
2288 + }
2289 +
2290 + @ARTICLE{Omelyan1998,
2291 +  author = {I. P. Omelyan},
2292 +  title = {On the numerical integration of motion for rigid polyatomics: The
2293 +        modified quaternion approach},
2294 +  journal = {Computers in Physics},
2295 +  year = {1998},
2296 +  volume = {12},
2297 +  pages = {97-103},
2298 +  number = {1},
2299 +  month = {Jan-Feb},
2300 +  abstract = {A revised version of the quaternion approach for numerical integration
2301 +        of the equations of motion for rigid polyatomic molecules is proposed.
2302 +        The modified approach is based on a formulation of the quaternion
2303 +        dynamics with constraints. This allows one to resolve the rigidity
2304 +        problem rigorously using constraint forces. It is shown that the
2305 +        procedure for preservation of molecular rigidity can be realized
2306 +        particularly simply within the Verlet algorithm in velocity form.
2307 +        We demonstrate that the method presented leads to an improved numerical
2308 +        stability with respect to the usual quaternion rescaling scheme
2309 +        and it is roughly as good as the cumbersome atomic-constraint technique.
2310 +        (C) 1998 American Institute of Physics.},
2311 +  annote = {Yx279 Times Cited:12 Cited References Count:28},
2312 +  issn = {0894-1866},
2313 +  uri = {<Go to ISI>://000072024300025},
2314   }
2315  
2316 + @ARTICLE{Omelyan1998a,
2317 +  author = {I. P. Omelyan},
2318 +  title = {Algorithm for numerical integration of the rigid-body equations of
2319 +        motion},
2320 +  journal = {Physical Review E},
2321 +  year = {1998},
2322 +  volume = {58},
2323 +  pages = {1169-1172},
2324 +  number = {1},
2325 +  month = {Jul},
2326 +  abstract = {An algorithm for numerical integration of the rigid-body equations
2327 +        of motion is proposed. The algorithm uses the leapfrog scheme and
2328 +        the quantities involved are angular velocities and orientational
2329 +        variables that can be expressed in terms of either principal axes
2330 +        or quaternions. Due to specific features of the algorithm, orthonormality
2331 +        and unit norms of the orientational variables are integrals of motion,
2332 +        despite an approximate character of the produced trajectories. It
2333 +        is shown that the method presented appears to be the most efficient
2334 +        among all such algorithms known.},
2335 +  annote = {101XL Times Cited:8 Cited References Count:22},
2336 +  issn = {1063-651X},
2337 +  uri = {<Go to ISI>://000074893400151},
2338 + }
2339 +
2340   @ARTICLE{Orlandi2006,
2341    author = {S. Orlandi and R. Berardi and J. Steltzer and C. Zannoni},
2342    title = {A Monte Carlo study of the mesophases formed by polar bent-shaped
# Line 1739 | Line 2362 | Encoding: GBK
2362    uri = {<Go to ISI>://000236464000072},
2363   }
2364  
2365 + @ARTICLE{Owren1992,
2366 +  author = {B. Owren and M. Zennaro},
2367 +  title = {Derivation of Efficient, Continuous, Explicit Runge-Kutta Methods},
2368 +  journal = {Siam Journal on Scientific and Statistical Computing},
2369 +  year = {1992},
2370 +  volume = {13},
2371 +  pages = {1488-1501},
2372 +  number = {6},
2373 +  month = {Nov},
2374 +  abstract = {Continuous, explicit Runge-Kutta methods with the minimal number of
2375 +        stages are considered. These methods are continuously differentiable
2376 +        if and only if one of the stages is the FSAL evaluation. A characterization
2377 +        of a subclass of these methods is developed for orders 3, 4, and
2378 +        5. It is shown how the free parameters of these methods can be used
2379 +        either to minimize the continuous truncation error coefficients
2380 +        or to maximize the stability region. As a representative for these
2381 +        methods the fifth-order method with minimized error coefficients
2382 +        is chosen, supplied with an error estimation method, and analysed
2383 +        by using the DETEST software. The results are compared with a similar
2384 +        implementation of the Dormand-Prince 5(4) pair with interpolant,
2385 +        showing a significant advantage in the new method for the chosen
2386 +        problems.},
2387 +  annote = {Ju936 Times Cited:25 Cited References Count:20},
2388 +  issn = {0196-5204},
2389 +  uri = {<Go to ISI>://A1992JU93600013},
2390 + }
2391 +
2392   @ARTICLE{Palacios1998,
2393    author = {J. L. Garcia-Palacios and F. J. Lazaro},
2394    title = {Langevin-dynamics study of the dynamical properties of small magnetic
# Line 1784 | Line 2434 | Encoding: GBK
2434    uri = {<Go to ISI>://000077460000052},
2435   }
2436  
2437 + @ARTICLE{Parr1995,
2438 +  author = {T. J. Parr and R. W. Quong},
2439 +  title = {Antlr - a Predicated-Ll(K) Parser Generator},
2440 +  journal = {Software-Practice \& Experience},
2441 +  year = {1995},
2442 +  volume = {25},
2443 +  pages = {789-810},
2444 +  number = {7},
2445 +  month = {Jul},
2446 +  abstract = {Despite the parsing power of LR/LALR algorithms, e.g. YACC, programmers
2447 +        often choose to write recursive-descent parsers by hand to obtain
2448 +        increased flexibility, better error handling, and ease of debugging.
2449 +        We introduce ANTLR, a public-domain parser generator that combines
2450 +        the flexibility of hand-coded parsing with the convenience of a
2451 +        parser generator, which is a component of PCCTS. ANTLR has many
2452 +        features that make it easier to use than other language tools. Most
2453 +        important, ANTLR provides predicates which let the programmer systematically
2454 +        direct the parse via arbitrary expressions using semantic and syntactic
2455 +        context; in practice, the use of predicates eliminates the need
2456 +        to hand-tweak the ANTLR output, even for difficult parsing problems.
2457 +        ANTLR also integrates the description of lexical and syntactic analysis,
2458 +        accepts LL(k) grammars for k > 1 with extended BNF notation, and
2459 +        can automatically generate abstract syntax trees. ANTLR is widely
2460 +        used, with over 1000 registered industrial and academic users in
2461 +        37 countries. It has been ported to many popular systems such as
2462 +        the PC, Macintosh, and a variety of UNIX platforms; a commercial
2463 +        C++ front-end has been developed as a result of one of our industrial
2464 +        collaborations.},
2465 +  annote = {Rk104 Times Cited:19 Cited References Count:10},
2466 +  issn = {0038-0644},
2467 +  uri = {<Go to ISI>://A1995RK10400004},
2468 + }
2469 +
2470   @ARTICLE{Pastor1988,
2471    author = {R. W. Pastor and B. R. Brooks and A. Szabo},
2472    title = {An Analysis of the Accuracy of Langevin and Molecular-Dynamics Algorithms},
# Line 1824 | Line 2507 | Encoding: GBK
2507    annote = {Akb93 Times Cited:71 Cited References Count:12},
2508    issn = {0021-9991},
2509    uri = {<Go to ISI>://A1985AKB9300008},
2510 + }
2511 +
2512 + @ARTICLE{Rotne1969,
2513 +  author = {F. Perrin},
2514 +  title = {Variational treatment of hydrodynamic interaction in polymers},
2515 +  journal = {J. Chem. Phys.},
2516 +  year = {1969},
2517 +  volume = {50},
2518 +  pages = {4831¨C4837},
2519 + }
2520 +
2521 + @ARTICLE{Perrin1936,
2522 +  author = {F. Perrin},
2523 +  title = {Mouvement brownien d'un ellipsoid(II). Rotation libre et depolarisation
2524 +        des fluorescences. Translation et diffusion de moleculese ellipsoidales},
2525 +  journal = {J. Phys. Radium},
2526 +  year = {1936},
2527 +  volume = {7},
2528 +  pages = {1-11},
2529 + }
2530 +
2531 + @ARTICLE{Perrin1934,
2532 +  author = {F. Perrin},
2533 +  title = {Mouvement brownien d'un ellipsoid(I). Dispersion dielectrique pour
2534 +        des molecules ellipsoidales},
2535 +  journal = {J. Phys. Radium},
2536 +  year = {1934},
2537 +  volume = {5},
2538 +  pages = {497-511},
2539   }
2540  
2541 + @ARTICLE{Petrache2000,
2542 +  author = {H.~I. Petrache and S.~W. Dodd and M.~F. Brown},
2543 +  title = {Area per Lipid and Acyl Length Distributions in Fluid Phosphatidylcholines
2544 +        Determined by $^2\text{H}$ {\sc nmr} Spectroscopy},
2545 +  journal = {Biophysical Journal},
2546 +  year = {2000},
2547 +  volume = {79},
2548 +  pages = {3172-3192},
2549 + }
2550 +
2551   @ARTICLE{Petrache1998,
2552    author = {H. I. Petrache and S. Tristram-Nagle and J. F. Nagle},
2553    title = {Fluid phase structure of EPC and DMPC bilayers},
# Line 1930 | Line 2652 | Encoding: GBK
2652    uri = {<Go to ISI>://000235990500001},
2653   }
2654  
2655 + @ARTICLE{Reich1999,
2656 +  author = {S. Reich},
2657 +  title = {Backward error analysis for numerical integrators},
2658 +  journal = {Siam Journal on Numerical Analysis},
2659 +  year = {1999},
2660 +  volume = {36},
2661 +  pages = {1549-1570},
2662 +  number = {5},
2663 +  month = {Sep 8},
2664 +  abstract = {Backward error analysis has become an important tool for understanding
2665 +        the long time behavior of numerical integration methods. This is
2666 +        true in particular for the integration of Hamiltonian systems where
2667 +        backward error analysis can be used to show that a symplectic method
2668 +        will conserve energy over exponentially long periods of time. Such
2669 +        results are typically based on two aspects of backward error analysis:
2670 +        (i) It can be shown that the modified vector fields have some qualitative
2671 +        properties which they share with the given problem and (ii) an estimate
2672 +        is given for the difference between the best interpolating vector
2673 +        field and the numerical method. These aspects have been investigated
2674 +        recently, for example, by Benettin and Giorgilli in [J. Statist.
2675 +        Phys., 74 (1994), pp. 1117-1143], by Hairer in [Ann. Numer. Math.,
2676 +        1 (1994), pp. 107-132], and by Hairer and Lubich in [Numer. Math.,
2677 +        76 (1997), pp. 441-462]. In this paper we aim at providing a unifying
2678 +        framework and a simplification of the existing results and corresponding
2679 +        proofs. Our approach to backward error analysis is based on a simple
2680 +        recursive definition of the modified vector fields that does not
2681 +        require explicit Taylor series expansion of the numerical method
2682 +        and the corresponding flow maps as in the above-cited works. As
2683 +        an application we discuss the long time integration of chaotic Hamiltonian
2684 +        systems and the approximation of time averages along numerically
2685 +        computed trajectories.},
2686 +  annote = {237HV Times Cited:43 Cited References Count:41},
2687 +  issn = {0036-1429},
2688 +  uri = {<Go to ISI>://000082650600010},
2689 + }
2690 +
2691   @ARTICLE{Ros2005,
2692    author = {M. B. Ros and J. L. Serrano and M. R. {de la Fuente} and C. L. Folcia},
2693    title = {Banana-shaped liquid crystals: a new field to explore},
# Line 1951 | Line 2709 | Encoding: GBK
2709    uri = {<Go to ISI>://000233775500001},
2710   }
2711  
2712 + @ARTICLE{Roux1991,
2713 +  author = {B. Roux and M. Karplus},
2714 +  title = {Ion-Transport in a Gramicidin-Like Channel - Dynamics and Mobility},
2715 +  journal = {Journal of Physical Chemistry},
2716 +  year = {1991},
2717 +  volume = {95},
2718 +  pages = {4856-4868},
2719 +  number = {12},
2720 +  month = {Jun 13},
2721 +  abstract = {The mobility of water, Na+. and K+ has been calculated inside a periodic
2722 +        poly-(L,D)-alanine beta-helix, a model for the interior of the gramicidin
2723 +        channel. Because of the different dynamical regimes for the three
2724 +        species (high barrier for Na+, low barrier for K+, almost free diffusion
2725 +        for water), different methods are used to calculate the mobilities.
2726 +        By use of activated dynamics and a potential of mean force determined
2727 +        previously (Roux, B.; Karplus, M. Biophys. J. 1991, 59, 961), the
2728 +        barrier crossing rate of Na+ ion is determined. The motion of Na+
2729 +        at the transition state is controlled by local interactions and
2730 +        collisions with the neighboring carbonyls and the two nearest water
2731 +        molecules. There are significant deviations from transition-state
2732 +        theory; the transmission coefficient is equal to 0.11. The water
2733 +        and K+ motions are found to be well described by a diffusive model;
2734 +        the motion of K+ appears to be controlled by the diffusion of water.
2735 +        The time-dependent friction functions of Na+ and K+ ions in the
2736 +        periodic beta-helix are calculated and analyzed by using a generalized
2737 +        Langevin equation approach. Both Na+ and K+ suffer many rapid collisions,
2738 +        and their dynamics is overdamped and noninertial. Thus, the selectivity
2739 +        sequence of ions in the beta-helix is not influenced strongly by
2740 +        their masses.},
2741 +  annote = {Fr756 Times Cited:97 Cited References Count:65},
2742 +  issn = {0022-3654},
2743 +  uri = {<Go to ISI>://A1991FR75600049},
2744 + }
2745 +
2746   @ARTICLE{Roy2005,
2747    author = {A. Roy and N. V. Madhusudana},
2748    title = {A frustrated packing model for the B-6-B-1-SmAP(A) sequence of phases
# Line 1977 | Line 2769 | Encoding: GBK
2769    uri = {<Go to ISI>://000233363300002},
2770   }
2771  
2772 + @ARTICLE{Ryckaert1977,
2773 +  author = {J. P. Ryckaert and G. Ciccotti and H. J. C. Berendsen},
2774 +  title = {Numerical-Integration of Cartesian Equations of Motion of a System
2775 +        with Constraints - Molecular-Dynamics of N-Alkanes},
2776 +  journal = {Journal of Computational Physics},
2777 +  year = {1977},
2778 +  volume = {23},
2779 +  pages = {327-341},
2780 +  number = {3},
2781 +  annote = {Cz253 Times Cited:3680 Cited References Count:7},
2782 +  issn = {0021-9991},
2783 +  uri = {<Go to ISI>://A1977CZ25300007},
2784 + }
2785 +
2786 + @ARTICLE{Sagui1999,
2787 +  author = {C. Sagui and T. A. Darden},
2788 +  title = {Molecular dynamics simulations of biomolecules: Long-range electrostatic
2789 +        effects},
2790 +  journal = {Annual Review of Biophysics and Biomolecular Structure},
2791 +  year = {1999},
2792 +  volume = {28},
2793 +  pages = {155-179},
2794 +  abstract = {Current computer simulations of biomolecules typically make use of
2795 +        classical molecular dynamics methods, as a very large number (tens
2796 +        to hundreds of thousands) of atoms are involved over timescales
2797 +        of many nanoseconds. The methodology for treating short-range bonded
2798 +        and van der Waals interactions has matured. However, long-range
2799 +        electrostatic interactions still represent a bottleneck in simulations.
2800 +        In this article, we introduce the basic issues for an accurate representation
2801 +        of the relevant electrostatic interactions. In spite of the huge
2802 +        computational time demanded by most biomolecular systems, it is
2803 +        no longer necessary to resort to uncontrolled approximations such
2804 +        as the use of cutoffs. In particular, we discuss the Ewald summation
2805 +        methods, the fast particle mesh methods, and the fast multipole
2806 +        methods. We also review recent efforts to understand the role of
2807 +        boundary conditions in systems with long-range interactions, and
2808 +        conclude with a short perspective on future trends.},
2809 +  annote = {213KJ Times Cited:126 Cited References Count:73},
2810 +  issn = {1056-8700},
2811 +  uri = {<Go to ISI>://000081271400008},
2812 + }
2813 +
2814   @ARTICLE{Sandu1999,
2815    author = {A. Sandu and T. Schlick},
2816    title = {Masking resonance artifacts in force-splitting methods for biomolecular
# Line 2029 | Line 2863 | Encoding: GBK
2863    uri = {<Go to ISI>://000080181500004},
2864   }
2865  
2866 + @ARTICLE{Sasaki2004,
2867 +  author = {Y. Sasaki and R. Shukla and B. D. Smith},
2868 +  title = {Facilitated phosphatidylserine flip-flop across vesicle and cell
2869 +        membranes using urea-derived synthetic translocases},
2870 +  journal = {Organic \& Biomolecular Chemistry},
2871 +  year = {2004},
2872 +  volume = {2},
2873 +  pages = {214-219},
2874 +  number = {2},
2875 +  abstract = {Tris(2-aminoethyl) amine derivatives with appended urea and sulfonamide
2876 +        groups are shown to facilitate the translocation of fluorescent
2877 +        phospholipid probes and endogenous phosphatidylserine across vesicle
2878 +        and erythrocyte cell membranes. The synthetic translocases appear
2879 +        to operate by binding to the phospholipid head groups and forming
2880 +        lipophilic supramolecular complexes which diffuse through the non-polar
2881 +        interior of the bilayer membrane.},
2882 +  annote = {760PX Times Cited:8 Cited References Count:25},
2883 +  issn = {1477-0520},
2884 +  uri = {<Go to ISI>://000187843800012},
2885 + }
2886 +
2887   @ARTICLE{Satoh1996,
2888    author = {K. Satoh and S. Mita and S. Kondo},
2889    title = {Monte Carlo simulations using the dipolar Gay-Berne model: Effect
# Line 2051 | Line 2906 | Encoding: GBK
2906    uri = {<Go to ISI>://A1996UQ97500017},
2907   }
2908  
2909 + @ARTICLE{Schaps1999,
2910 +  author = {G. L. Schaps},
2911 +  title = {Compiler construction with ANTLR and Java - Tools for building tools},
2912 +  journal = {Dr Dobbs Journal},
2913 +  year = {1999},
2914 +  volume = {24},
2915 +  pages = {84-+},
2916 +  number = {3},
2917 +  month = {Mar},
2918 +  annote = {163EC Times Cited:0 Cited References Count:0},
2919 +  issn = {1044-789X},
2920 +  uri = {<Go to ISI>://000078389200023},
2921 + }
2922 +
2923   @ARTICLE{Shen2002,
2924    author = {M. Y. Shen and K. F. Freed},
2925    title = {Long time dynamics of met-enkephalin: Comparison of explicit and
# Line 2097 | Line 2966 | Encoding: GBK
2966    annote = {901QJ Times Cited:9 Cited References Count:23},
2967    issn = {1476-1122},
2968    uri = {<Go to ISI>://000227296700019},
2969 + }
2970 +
2971 + @ARTICLE{Shimada1993,
2972 +  author = {J. Shimada and H. Kaneko and T. Takada},
2973 +  title = {Efficient Calculations of Coulombic Interactions in Biomolecular
2974 +        Simulations with Periodic Boundary-Conditions},
2975 +  journal = {Journal of Computational Chemistry},
2976 +  year = {1993},
2977 +  volume = {14},
2978 +  pages = {867-878},
2979 +  number = {7},
2980 +  month = {Jul},
2981 +  abstract = {To make improved treatments of electrostatic interactions in biomacromolecular
2982 +        simulations, two possibilities are considered. The first is the
2983 +        famous particle-particle and particle-mesh (PPPM) method developed
2984 +        by Hockney and Eastwood, and the second is a new one developed here
2985 +        in their spirit but by the use of the multipole expansion technique
2986 +        suggested by Ladd. It is then numerically found that the new PPPM
2987 +        method gives more accurate results for a two-particle system at
2988 +        small separation of particles. Preliminary numerical examination
2989 +        of the various computational methods for a single configuration
2990 +        of a model BPTI-water system containing about 24,000 particles indicates
2991 +        that both of the PPPM methods give far more accurate values with
2992 +        reasonable computational cost than do the conventional truncation
2993 +        methods. It is concluded the two PPPM methods are nearly comparable
2994 +        in overall performance for the many-particle systems, although the
2995 +        first method has the drawback that the accuracy in the total electrostatic
2996 +        energy is not high for configurations of charged particles randomly
2997 +        generated.},
2998 +  annote = {Lh164 Times Cited:27 Cited References Count:47},
2999 +  issn = {0192-8651},
3000 +  uri = {<Go to ISI>://A1993LH16400011},
3001   }
3002  
3003   @ARTICLE{Skeel2002,
# Line 2258 | Line 3159 | Encoding: GBK
3159    uri = {<Go to ISI>://A1992JE89100044},
3160   }
3161  
3162 + @BOOK{Varadarajan1974,
3163 +  title = {Lie groups, Lie algebras, and their representations},
3164 +  publisher = {Prentice-Hall},
3165 +  year = {1974},
3166 +  author = {V.S. Varadarajan},
3167 +  address = {New York},
3168 + }
3169 +
3170   @ARTICLE{Wegener1979,
3171    author = {W.~A. Wegener, V.~J. Koester and R.~M. Dowben},
3172    title = {A general ellipsoid can not always serve as a modle for the rotational
# Line 2269 | Line 3178 | Encoding: GBK
3178    number = {12},
3179   }
3180  
3181 + @ARTICLE{Wilson2006,
3182 +  author = {G.~V. Wilson },
3183 +  title = {Where's the Real Bottleneck in Scientific Computing?},
3184 +  journal = {American Scientist},
3185 +  year = {2006},
3186 +  volume = {94},
3187 + }
3188 +
3189   @ARTICLE{Withers2003,
3190    author = {I. M. Withers},
3191    title = {Effects of longitudinal quadrupoles on the phase behavior of a Gay-Berne
# Line 2311 | Line 3228 | Encoding: GBK
3228    uri = {<Go to ISI>://000186273200027},
3229   }
3230  
3231 + @ARTICLE{Wolf1999,
3232 +  author = {D. Wolf and P. Keblinski and S. R. Phillpot and J. Eggebrecht},
3233 +  title = {Exact method for the simulation of Coulombic systems by spherically
3234 +        truncated, pairwise r(-1) summation},
3235 +  journal = {Journal of Chemical Physics},
3236 +  year = {1999},
3237 +  volume = {110},
3238 +  pages = {8254-8282},
3239 +  number = {17},
3240 +  month = {May 1},
3241 +  abstract = {Based on a recent result showing that the net Coulomb potential in
3242 +        condensed ionic systems is rather short ranged, an exact and physically
3243 +        transparent method permitting the evaluation of the Coulomb potential
3244 +        by direct summation over the r(-1) Coulomb pair potential is presented.
3245 +        The key observation is that the problems encountered in determining
3246 +        the Coulomb energy by pairwise, spherically truncated r(-1) summation
3247 +        are a direct consequence of the fact that the system summed over
3248 +        is practically never neutral. A simple method is developed that
3249 +        achieves charge neutralization wherever the r(-1) pair potential
3250 +        is truncated. This enables the extraction of the Coulomb energy,
3251 +        forces, and stresses from a spherically truncated, usually charged
3252 +        environment in a manner that is independent of the grouping of the
3253 +        pair terms. The close connection of our approach with the Ewald
3254 +        method is demonstrated and exploited, providing an efficient method
3255 +        for the simulation of even highly disordered ionic systems by direct,
3256 +        pairwise r(-1) summation with spherical truncation at rather short
3257 +        range, i.e., a method which fully exploits the short-ranged nature
3258 +        of the interactions in ionic systems. The method is validated by
3259 +        simulations of crystals, liquids, and interfacial systems, such
3260 +        as free surfaces and grain boundaries. (C) 1999 American Institute
3261 +        of Physics. [S0021-9606(99)51517-1].},
3262 +  annote = {189PD Times Cited:70 Cited References Count:34},
3263 +  issn = {0021-9606},
3264 +  uri = {<Go to ISI>://000079913000008},
3265 + }
3266 +
3267 + @ARTICLE{Yoshida1990,
3268 +  author = {H. Yoshida},
3269 +  title = {Construction of Higher-Order Symplectic Integrators},
3270 +  journal = {Physics Letters A},
3271 +  year = {1990},
3272 +  volume = {150},
3273 +  pages = {262-268},
3274 +  number = {5-7},
3275 +  month = {Nov 12},
3276 +  annote = {Ej798 Times Cited:492 Cited References Count:9},
3277 +  issn = {0375-9601},
3278 +  uri = {<Go to ISI>://A1990EJ79800009},
3279 + }
3280 +

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines