ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/tengDissertation/dissertation.bib
(Generate patch)

Comparing trunk/tengDissertation/dissertation.bib (file contents):
Revision 2786 by tim, Sun Jun 4 20:18:07 2006 UTC vs.
Revision 2807 by tim, Wed Jun 7 01:49:15 2006 UTC

# Line 88 | Line 88 | Encoding: GBK
88    uri = {<Go to ISI>://000232532000064},
89   }
90  
91 + @BOOK{Alexander1987,
92 +  title = {A Pattern Language: Towns, Buildings, Construction},
93 +  publisher = {Oxford University Press},
94 +  year = {1987},
95 +  author = {C. Alexander},
96 +  address = {New York},
97 + }
98 +
99   @BOOK{Allen1987,
100    title = {Computer Simulations of Liquids},
101    publisher = {Oxford University Press},
# Line 125 | Line 133 | Encoding: GBK
133    uri = {<Go to ISI>://A1991EU81400029},
134   }
135  
136 + @ARTICLE{Andersen1983,
137 +  author = {H. C. Andersen},
138 +  title = {Rattle - a Velocity Version of the Shake Algorithm for Molecular-Dynamics
139 +        Calculations},
140 +  journal = {Journal of Computational Physics},
141 +  year = {1983},
142 +  volume = {52},
143 +  pages = {24-34},
144 +  number = {1},
145 +  annote = {Rq238 Times Cited:559 Cited References Count:14},
146 +  issn = {0021-9991},
147 +  uri = {<Go to ISI>://A1983RQ23800002},
148 + }
149 +
150   @ARTICLE{Auerbach2005,
151    author = {A. Auerbach},
152    title = {Gating of acetylcholine receptor channels: Brownian motion across
# Line 223 | Line 245 | Encoding: GBK
245    annote = {816YY Times Cited:8 Cited References Count:35},
246    issn = {0021-9606},
247    uri = {<Go to ISI>://000221146400009},
248 + }
249 +
250 + @ARTICLE{Barojas1973,
251 +  author = {J. Barojas and D. Levesque},
252 +  title = {Simulation of Diatomic Homonuclear Liquids},
253 +  journal = {Phys. Rev. A},
254 +  year = {1973},
255 +  volume = {7},
256 +  pages = {1092-1105},
257   }
258  
259   @ARTICLE{Barth1998,
# Line 399 | Line 430 | Encoding: GBK
430  
431   @ARTICLE{Berkov2005,
432    author = {D. V. Berkov and N. L. Gorn},
402  title = {Stochastic dynamic simulations of fast remagnetization processes:
403        recent advances and applications},
404  journal = {Journal of Magnetism and Magnetic Materials},
405  year = {2005},
406  volume = {290},
407  pages = {442-448},
408  month = {Apr},
409  abstract = {Numerical simulations of fast remagnetization processes using stochastic
410        dynamics are widely used to study various magnetic systems. In this
411        paper, we first address several crucial methodological problems
412        of such simulations: (i) the influence of finite-element discretization
413        on simulated dynamics, (ii) choice between Ito and Stratonovich
414        stochastic calculi by the solution of micromagnetic stochastic equations
415        of motion and (iii) non-trivial correlation properties of the random
416        (thermal) field. Next, we discuss several examples to demonstrate
417        the great potential of the Langevin dynamics for studying fast remagnetization
418        processes in technically relevant applications: we present numerical
419        analysis of equilibrium magnon spectra in patterned structures,
420        study thermal noise effects on the magnetization dynamics of nanoelements
421        in pulsed fields and show some results for a remagnetization dynamics
422        induced by a spin-polarized current. (c) 2004 Elsevier B.V. All
423        rights reserved.},
424  annote = {Part 1 Sp. Iss. SI 922KU Times Cited:2 Cited References Count:25},
425  issn = {0304-8853},
426  uri = {<Go to ISI>://000228837600109},
427 }
428
429 @ARTICLE{Berkov2005a,
430  author = {D. V. Berkov and N. L. Gorn},
433    title = {Magnetization precession due to a spin-polarized current in a thin
434          nanoelement: Numerical simulation study},
435    journal = {Physical Review B},
# Line 458 | Line 460 | Encoding: GBK
460    uri = {<Go to ISI>://000232228500058},
461   }
462  
463 + @ARTICLE{Berkov2005a,
464 +  author = {D. V. Berkov and N. L. Gorn},
465 +  title = {Stochastic dynamic simulations of fast remagnetization processes:
466 +        recent advances and applications},
467 +  journal = {Journal of Magnetism and Magnetic Materials},
468 +  year = {2005},
469 +  volume = {290},
470 +  pages = {442-448},
471 +  month = {Apr},
472 +  abstract = {Numerical simulations of fast remagnetization processes using stochastic
473 +        dynamics are widely used to study various magnetic systems. In this
474 +        paper, we first address several crucial methodological problems
475 +        of such simulations: (i) the influence of finite-element discretization
476 +        on simulated dynamics, (ii) choice between Ito and Stratonovich
477 +        stochastic calculi by the solution of micromagnetic stochastic equations
478 +        of motion and (iii) non-trivial correlation properties of the random
479 +        (thermal) field. Next, we discuss several examples to demonstrate
480 +        the great potential of the Langevin dynamics for studying fast remagnetization
481 +        processes in technically relevant applications: we present numerical
482 +        analysis of equilibrium magnon spectra in patterned structures,
483 +        study thermal noise effects on the magnetization dynamics of nanoelements
484 +        in pulsed fields and show some results for a remagnetization dynamics
485 +        induced by a spin-polarized current. (c) 2004 Elsevier B.V. All
486 +        rights reserved.},
487 +  annote = {Part 1 Sp. Iss. SI 922KU Times Cited:2 Cited References Count:25},
488 +  issn = {0304-8853},
489 +  uri = {<Go to ISI>://000228837600109},
490 + }
491 +
492   @ARTICLE{Berkov2002,
493    author = {D. V. Berkov and N. L. Gorn and P. Gornert},
494    title = {Magnetization dynamics in nanoparticle systems: Numerical simulation
# Line 509 | Line 540 | Encoding: GBK
540    annote = {Sm173 Times Cited:143 Cited References Count:22},
541    issn = {0009-2614},
542    uri = {<Go to ISI>://A1984SM17300007},
543 + }
544 +
545 + @ARTICLE{Budd1999,
546 +  author = {C. J. Budd and G. J. Collins and W. Z. Huang and R. D. Russell},
547 +  title = {Self-similar numerical solutions of the porous-medium equation using
548 +        moving mesh methods},
549 +  journal = {Philosophical Transactions of the Royal Society of London Series
550 +        a-Mathematical Physical and Engineering Sciences},
551 +  year = {1999},
552 +  volume = {357},
553 +  pages = {1047-1077},
554 +  number = {1754},
555 +  month = {Apr 15},
556 +  abstract = {This paper examines a synthesis of adaptive mesh methods with the
557 +        use of symmetry to study a partial differential equation. In particular,
558 +        it considers methods which admit discrete self-similar solutions,
559 +        examining the convergence of these to the true self-similar solution
560 +        as well as their stability. Special attention is given to the nonlinear
561 +        diffusion equation describing flow in a porous medium.},
562 +  annote = {199EE Times Cited:4 Cited References Count:14},
563 +  issn = {1364-503X},
564 +  uri = {<Go to ISI>://000080466800005},
565   }
566  
567   @ARTICLE{Camp1999,
# Line 640 | Line 693 | Encoding: GBK
693    annote = {221EN Times Cited:14 Cited References Count:66},
694    issn = {0021-9606},
695    uri = {<Go to ISI>://000081711200038},
696 + }
697 +
698 + @ARTICLE{Channell1990,
699 +  author = {P. J. Channell and C. Scovel},
700 +  title = {Symplectic Integration of Hamiltonian-Systems},
701 +  journal = {Nonlinearity},
702 +  year = {1990},
703 +  volume = {3},
704 +  pages = {231-259},
705 +  number = {2},
706 +  month = {may},
707 +  annote = {Dk631 Times Cited:152 Cited References Count:34},
708 +  issn = {0951-7715},
709 +  uri = {<Go to ISI>://A1990DK63100001},
710 + }
711 +
712 + @ARTICLE{Chen2003,
713 +  author = {B. Chen and F. Solis},
714 +  title = {Explicit mixed finite order Runge-Kutta methods},
715 +  journal = {Applied Numerical Mathematics},
716 +  year = {2003},
717 +  volume = {44},
718 +  pages = {21-30},
719 +  number = {1-2},
720 +  month = {Jan},
721 +  abstract = {We investigate the asymptotic behavior of systems of nonlinear differential
722 +        equations and introduce a family of mixed methods from combinations
723 +        of explicit Runge-Kutta methods. These methods have better stability
724 +        behavior than traditional Runge-Kutta methods and generally extend
725 +        the range of validity of the calculated solutions. These methods
726 +        also give a way of determining if the numerical solutions are real
727 +        or spurious. Emphasis is put on examples coming from mathematical
728 +        models in ecology. (C) 2002 IMACS. Published by Elsevier Science
729 +        B.V. All rights reserved.},
730 +  annote = {633ZD Times Cited:0 Cited References Count:9},
731 +  issn = {0168-9274},
732 +  uri = {<Go to ISI>://000180314200002},
733   }
734  
735   @ARTICLE{Cheung2004,
# Line 880 | Line 970 | Encoding: GBK
970    annote = {Ya587 Times Cited:35 Cited References Count:32},
971    issn = {0021-9606},
972    uri = {<Go to ISI>://A1997YA58700024},
973 + }
974 +
975 + @BOOK{Gamma1994,
976 +  title = {Design Patterns: Elements of Reusable Object-Oriented Software},
977 +  publisher = {Perason Education},
978 +  year = {1994},
979 +  author = {E. Gamma, R. Helm, R. Johnson and J. Vlissides},
980 +  address = {London},
981 +  chapter = {7},
982   }
983  
984   @ARTICLE{Edwards2005,
# Line 933 | Line 1032 | Encoding: GBK
1032    annote = {Fp216 Times Cited:785 Cited References Count:42},
1033    issn = {0021-9606},
1034    uri = {<Go to ISI>://A1978FP21600004},
1035 + }
1036 +
1037 + @ARTICLE{Evans1977,
1038 +  author = {D. J. Evans},
1039 +  title = {Representation of Orientation Space},
1040 +  journal = {Molecular Physics},
1041 +  year = {1977},
1042 +  volume = {34},
1043 +  pages = {317-325},
1044 +  number = {2},
1045 +  annote = {Ds757 Times Cited:271 Cited References Count:18},
1046 +  issn = {0026-8976},
1047 +  uri = {<Go to ISI>://A1977DS75700002},
1048   }
1049  
1050   @ARTICLE{Fennell2004,
# Line 999 | Line 1111 | Encoding: GBK
1111    uri = {<Go to ISI>://000180256300012},
1112   }
1113  
1114 + @BOOK{Frenkel1996,
1115 +  title = {Understanding Molecular Simulation : From Algorithms to Applications},
1116 +  publisher = {Academic Press},
1117 +  year = {1996},
1118 +  author = {D. Frenkel and B. Smit},
1119 +  address = {New York},
1120 + }
1121 +
1122   @ARTICLE{Gay1981,
1123    author = {J. G. Gay and B. J. Berne},
1124    title = {Modification of the Overlap Potential to Mimic a Linear Site-Site
# Line 1094 | Line 1214 | Encoding: GBK
1214    uri = {<Go to ISI>://000184351300022},
1215   }
1216  
1217 + @ARTICLE{Greengard1994,
1218 +  author = {L. Greengard},
1219 +  title = {Fast Algorithms for Classical Physics},
1220 +  journal = {Science},
1221 +  year = {1994},
1222 +  volume = {265},
1223 +  pages = {909-914},
1224 +  number = {5174},
1225 +  month = {Aug 12},
1226 +  abstract = {Some of the recently developed fast summation methods that have arisen
1227 +        in scientific computing are described. These methods require an
1228 +        amount of work proportional to N or N log N to evaluate all pairwise
1229 +        interactions in an ensemble of N particles. Traditional methods,
1230 +        by contrast, require an amount of work proportional to N-2. AS a
1231 +        result, large-scale simulations can be carried out using only modest
1232 +        computer resources. In combination with supercomputers, it is possible
1233 +        to address questions that were previously out of reach. Problems
1234 +        from diffusion, gravitation, and wave propagation are considered.},
1235 +  annote = {Pb499 Times Cited:99 Cited References Count:44},
1236 +  issn = {0036-8075},
1237 +  uri = {<Go to ISI>://A1994PB49900031},
1238 + }
1239 +
1240 + @ARTICLE{Greengard1987,
1241 +  author = {L. Greengard and V. Rokhlin},
1242 +  title = {A Fast Algorithm for Particle Simulations},
1243 +  journal = {Journal of Computational Physics},
1244 +  year = {1987},
1245 +  volume = {73},
1246 +  pages = {325-348},
1247 +  number = {2},
1248 +  month = {Dec},
1249 +  annote = {L0498 Times Cited:899 Cited References Count:7},
1250 +  issn = {0021-9991},
1251 +  uri = {<Go to ISI>://A1987L049800006},
1252 + }
1253 +
1254 + @ARTICLE{Hairer1997,
1255 +  author = {E. Hairer and C. Lubich},
1256 +  title = {The life-span of backward error analysis for numerical integrators},
1257 +  journal = {Numerische Mathematik},
1258 +  year = {1997},
1259 +  volume = {76},
1260 +  pages = {441-462},
1261 +  number = {4},
1262 +  month = {Jun},
1263 +  abstract = {Backward error analysis is a useful tool for the study of numerical
1264 +        approximations to ordinary differential equations. The numerical
1265 +        solution is formally interpreted as the exact solution of a perturbed
1266 +        differential equation, given as a formal and usually divergent series
1267 +        in powers of the step size. For a rigorous analysis, this series
1268 +        has to be truncated. In this article we study the influence of this
1269 +        truncation to the difference between the numerical solution and
1270 +        the exact solution of the perturbed differential equation. Results
1271 +        on the long-time behaviour of numerical solutions are obtained in
1272 +        this way. We present applications to the numerical phase portrait
1273 +        near hyperbolic equilibrium points, to asymptotically stable periodic
1274 +        orbits and Hopf bifurcation, and to energy conservation and approximation
1275 +        of invariant tori in Hamiltonian systems.},
1276 +  annote = {Xj488 Times Cited:50 Cited References Count:19},
1277 +  issn = {0029-599X},
1278 +  uri = {<Go to ISI>://A1997XJ48800002},
1279 + }
1280 +
1281   @ARTICLE{Hao1993,
1282    author = {M. H. Hao and M. R. Pincus and S. Rackovsky and H. A. Scheraga},
1283    title = {Unfolding and Refolding of the Native Structure of Bovine Pancreatic
# Line 1226 | Line 1410 | Encoding: GBK
1410    uri = {<Go to ISI>://A1992JU25100002},
1411   }
1412  
1413 + @BOOK{Hockney1981,
1414 +  title = {Computer Simulation Using Particles},
1415 +  publisher = {McGraw-Hill},
1416 +  year = {1981},
1417 +  author = {R.W. Hockney and J.W. Eastwood},
1418 +  address = {New York},
1419 + }
1420 +
1421 + @ARTICLE{Hoover1985,
1422 +  author = {W. G. Hoover},
1423 +  title = {Canonical Dynamics - Equilibrium Phase-Space Distributions},
1424 +  journal = {Physical Review A},
1425 +  year = {1985},
1426 +  volume = {31},
1427 +  pages = {1695-1697},
1428 +  number = {3},
1429 +  annote = {Acr30 Times Cited:1809 Cited References Count:11},
1430 +  issn = {1050-2947},
1431 +  uri = {<Go to ISI>://A1985ACR3000056},
1432 + }
1433 +
1434   @ARTICLE{Huh2004,
1435    author = {Y. Huh and N. M. Cann},
1436    title = {Discrimination in isotropic, nematic, and smectic phases of chiral
# Line 1292 | Line 1497 | Encoding: GBK
1497    uri = {<Go to ISI>://000166676100020},
1498   }
1499  
1500 < @ARTICLE{Gray2003,
1501 <  author = {J.~J Gray,S. Moughon, C. Wang },
1502 <  title = {Protein-protein docking with simultaneous optimization of rigid-body
1503 <        displacement and side-chain conformations},
1504 <  journal = {jmb},
1505 <  year = {2003},
1506 <  volume = {331},
1302 <  pages = {281-299},
1500 > @ARTICLE{Torre1977,
1501 >  author = {Jose Garcia De La Torre, V.A. Bloomfield},
1502 >  title = {Hydrodynamic properties of macromolecular complexes. I. Translation},
1503 >  journal = {Biopolymers},
1504 >  year = {1977},
1505 >  volume = {16},
1506 >  pages = {1747-1763},
1507   }
1508  
1509 + @ARTICLE{Kane2000,
1510 +  author = {C. Kane and J. E. Marsden and M. Ortiz and M. West},
1511 +  title = {Variational integrators and the Newmark algorithm for conservative
1512 +        and dissipative mechanical systems},
1513 +  journal = {International Journal for Numerical Methods in Engineering},
1514 +  year = {2000},
1515 +  volume = {49},
1516 +  pages = {1295-1325},
1517 +  number = {10},
1518 +  month = {Dec 10},
1519 +  abstract = {The purpose of this work is twofold. First, we demonstrate analytically
1520 +        that the classical Newmark family as well as related integration
1521 +        algorithms are variational in the sense of the Veselov formulation
1522 +        of discrete mechanics. Such variational algorithms are well known
1523 +        to be symplectic and momentum preserving and to often have excellent
1524 +        global energy behaviour. This analytical result is verified through
1525 +        numerical examples and is believed to be one of the primary reasons
1526 +        that this class of algorithms performs so well. Second, we develop
1527 +        algorithms for mechanical systems with forcing, and in particular,
1528 +        for dissipative systems. In this case, we develop integrators that
1529 +        are based on a discretization of the Lagrange d'Alembert principle
1530 +        as well as on a variational formulation of dissipation. It is demonstrated
1531 +        that these types of structured integrators have good numerical behaviour
1532 +        in terms of obtaining the correct amounts by which the energy changes
1533 +        over the integration run. Copyright (C) 2000 John Wiley & Sons,
1534 +        Ltd.},
1535 +  annote = {373CJ Times Cited:30 Cited References Count:41},
1536 +  issn = {0029-5981},
1537 +  uri = {<Go to ISI>://000165270600004},
1538 + }
1539 +
1540   @ARTICLE{Klimov1997,
1541    author = {D. K. Klimov and D. Thirumalai},
1542    title = {Viscosity dependence of the folding rates of proteins},
# Line 1325 | Line 1560 | Encoding: GBK
1560    annote = {Xk293 Times Cited:77 Cited References Count:17},
1561    issn = {0031-9007},
1562    uri = {<Go to ISI>://A1997XK29300035},
1563 + }
1564 +
1565 + @ARTICLE{Kol1997,
1566 +  author = {A. Kol and B. B. Laird and B. J. Leimkuhler},
1567 +  title = {A symplectic method for rigid-body molecular simulation},
1568 +  journal = {Journal of Chemical Physics},
1569 +  year = {1997},
1570 +  volume = {107},
1571 +  pages = {2580-2588},
1572 +  number = {7},
1573 +  month = {Aug 15},
1574 +  abstract = {Rigid-body molecular dynamics simulations typically are performed
1575 +        in a quaternion representation. The nonseparable form of the Hamiltonian
1576 +        in quaternions prevents the use of a standard leapfrog (Verlet)
1577 +        integrator, so nonsymplectic Runge-Kutta, multistep, or extrapolation
1578 +        methods are generally used, This is unfortunate since symplectic
1579 +        methods like Verlet exhibit superior energy conservation in long-time
1580 +        integrations. In this article, we describe an alternative method,
1581 +        which we call RSHAKE (for rotation-SHAKE), in which the entire rotation
1582 +        matrix is evolved (using the scheme of McLachlan and Scovel [J.
1583 +        Nonlin. Sci, 16 233 (1995)]) in tandem with the particle positions.
1584 +        We employ a fast approximate Newton solver to preserve the orthogonality
1585 +        of the rotation matrix. We test our method on a system of soft-sphere
1586 +        dipoles and compare with quaternion evolution using a 4th-order
1587 +        predictor-corrector integrator, Although the short-time error of
1588 +        the quaternion algorithm is smaller for fixed time step than that
1589 +        for RSHAKE, the quaternion scheme exhibits an energy drift which
1590 +        is not observed in simulations with RSHAKE, hence a fixed energy
1591 +        tolerance can be achieved by using a larger time step, The superiority
1592 +        of RSHAKE increases with system size. (C) 1997 American Institute
1593 +        of Physics.},
1594 +  annote = {Xq332 Times Cited:11 Cited References Count:18},
1595 +  issn = {0021-9606},
1596 +  uri = {<Go to ISI>://A1997XQ33200046},
1597   }
1598  
1599   @ARTICLE{Lansac2001,
# Line 1401 | Line 1670 | Encoding: GBK
1670    edition = {2nd},
1671   }
1672  
1673 + @ARTICLE{Leimkuhler1999,
1674 +  author = {B. Leimkuhler},
1675 +  title = {Reversible adaptive regularization: perturbed Kepler motion and classical
1676 +        atomic trajectories},
1677 +  journal = {Philosophical Transactions of the Royal Society of London Series
1678 +        a-Mathematical Physical and Engineering Sciences},
1679 +  year = {1999},
1680 +  volume = {357},
1681 +  pages = {1101-1133},
1682 +  number = {1754},
1683 +  month = {Apr 15},
1684 +  abstract = {Reversible and adaptive integration methods based on Kustaanheimo-Stiefel
1685 +        regularization and modified Sundman transformations are applied
1686 +        to simulate general perturbed Kepler motion and to compute classical
1687 +        trajectories of atomic systems (e.g. Rydberg atoms). The new family
1688 +        of reversible adaptive regularization methods also conserves angular
1689 +        momentum and exhibits superior energy conservation and numerical
1690 +        stability in long-time integrations. The schemes are appropriate
1691 +        for scattering, for astronomical calculations of escape time and
1692 +        long-term stability, and for classical and semiclassical studies
1693 +        of atomic dynamics. The components of an algorithm for trajectory
1694 +        calculations are described. Numerical experiments illustrate the
1695 +        effectiveness of the reversible approach.},
1696 +  annote = {199EE Times Cited:11 Cited References Count:48},
1697 +  issn = {1364-503X},
1698 +  uri = {<Go to ISI>://000080466800007},
1699 + }
1700 +
1701   @BOOK{Leimkuhler2004,
1702    title = {Simulating Hamiltonian Dynamics},
1703    publisher = {Cambridge University Press},
# Line 1477 | Line 1774 | Encoding: GBK
1774    uri = {<Go to ISI>://000234826102043},
1775   }
1776  
1777 + @ARTICLE{Luty1994,
1778 +  author = {B. A. Luty and M. E. Davis and I. G. Tironi and W. F. Vangunsteren},
1779 +  title = {A Comparison of Particle-Particle, Particle-Mesh and Ewald Methods
1780 +        for Calculating Electrostatic Interactions in Periodic Molecular-Systems},
1781 +  journal = {Molecular Simulation},
1782 +  year = {1994},
1783 +  volume = {14},
1784 +  pages = {11-20},
1785 +  number = {1},
1786 +  abstract = {We compare the Particle-Particle Particle-Mesh (PPPM) and Ewald methods
1787 +        for calculating electrostatic interactions in periodic molecular
1788 +        systems. A brief comparison of the theories shows that the methods
1789 +        are very similar differing mainly in the technique which is used
1790 +        to perform the ''k-space'' or mesh calculation. Because the PPPM
1791 +        utilizes the highly efficient numerical Fast Fourier Transform (FFT)
1792 +        method it requires significantly less computational effort than
1793 +        the Ewald method and scale's almost linearly with system size.},
1794 +  annote = {Qf464 Times Cited:50 Cited References Count:20},
1795 +  issn = {0892-7022},
1796 +  uri = {<Go to ISI>://A1994QF46400002},
1797 + }
1798 +
1799   @BOOK{Marion1990,
1800    title = {Classical Dynamics of Particles and Systems},
1801    publisher = {Academic Press},
# Line 1486 | Line 1805 | Encoding: GBK
1805    edition = {2rd},
1806   }
1807  
1808 + @ARTICLE{Marrink1994,
1809 +  author = {S. J. Marrink and H. J. C. Berendsen},
1810 +  title = {Simulation of Water Transport through a Lipid-Membrane},
1811 +  journal = {Journal of Physical Chemistry},
1812 +  year = {1994},
1813 +  volume = {98},
1814 +  pages = {4155-4168},
1815 +  number = {15},
1816 +  month = {Apr 14},
1817 +  abstract = {To obtain insight in the process of water permeation through a lipid
1818 +        membrane, we performed molecular dynamics simulations on a phospholipid
1819 +        (DPPC)/water system with atomic detail. Since the actual process
1820 +        of permeation is too slow to be studied directly, we deduced the
1821 +        permeation rate indirectly via computation of the free energy and
1822 +        diffusion rate profiles of a water molecule across the bilayer.
1823 +        We conclude that the permeation of water through a lipid membrane
1824 +        cannot be described adequately by a simple homogeneous solubility-diffusion
1825 +        model. Both the excess free energy and the diffusion rate strongly
1826 +        depend on the position in the membrane, as a result from the inhomogeneous
1827 +        nature of the membrane. The calculated excess free energy profile
1828 +        has a shallow slope and a maximum height of 26 kJ/mol. The diffusion
1829 +        rate is highest in the middle of the membrane where the lipid density
1830 +        is low. In the interfacial region almost all water molecules are
1831 +        bound by the lipid headgroups, and the diffusion turns out to be
1832 +        1 order of magnitude smaller. The total transport process is essentially
1833 +        determined by the free energy barrier. The rate-limiting step is
1834 +        the permeation through the dense part of the lipid tails, where
1835 +        the resistance is highest. We found a permeation rate of 7(+/-3)
1836 +        x 10(-2) cm/s at 350 K, comparable to experimental values for DPPC
1837 +        membranes, if corrected for the temperature of the simulation. Taking
1838 +        the inhomogeneity of the membrane into account, we define a new
1839 +        ''four-region'' model which seems to be more realistic than the
1840 +        ''two-phase'' solubility-diffusion model.},
1841 +  annote = {Ng219 Times Cited:187 Cited References Count:25},
1842 +  issn = {0022-3654},
1843 +  uri = {<Go to ISI>://A1994NG21900040},
1844 + }
1845 +
1846 + @ARTICLE{Marsden1998,
1847 +  author = {J. E. Marsden and G. W. Patrick and S. Shkoller},
1848 +  title = {Multisymplectic geometry, variational integrators, and nonlinear
1849 +        PDEs},
1850 +  journal = {Communications in Mathematical Physics},
1851 +  year = {1998},
1852 +  volume = {199},
1853 +  pages = {351-395},
1854 +  number = {2},
1855 +  month = {Dec},
1856 +  abstract = {This paper presents a geometric-variational approach to continuous
1857 +        and discrete mechanics and field theories. Using multisymplectic
1858 +        geometry, we show that the existence of the fundamental geometric
1859 +        structures as well as their preservation along solutions can be
1860 +        obtained directly from the variational principle. In particular,
1861 +        we prove that a unique multisymplectic structure is obtained by
1862 +        taking the derivative of an action function, and use this structure
1863 +        to prove covariant generalizations of conservation of symplecticity
1864 +        and Noether's theorem. Natural discretization schemes for PDEs,
1865 +        which have these important preservation properties, then follow
1866 +        by choosing a discrete action functional. In the case of mechanics,
1867 +        we recover the variational symplectic integrators of Veselov type,
1868 +        while for PDEs we obtain covariant spacetime integrators which conserve
1869 +        the corresponding discrete multisymplectic form as well as the discrete
1870 +        momentum mappings corresponding to symmetries. We show that the
1871 +        usual notion of symplecticity along an infinite-dimensional space
1872 +        of fields can be naturally obtained by making a spacetime split.
1873 +        All of the aspects of our method are demonstrated with a nonlinear
1874 +        sine-Gordon equation, including computational results and a comparison
1875 +        with other discretization schemes.},
1876 +  annote = {154RH Times Cited:88 Cited References Count:36},
1877 +  issn = {0010-3616},
1878 +  uri = {<Go to ISI>://000077902200006},
1879 + }
1880 +
1881   @ARTICLE{McLachlan1993,
1882    author = {R.~I McLachlan},
1883    title = {Explicit Lie-Poisson integration and the Euler equations},
# Line 1495 | Line 1887 | Encoding: GBK
1887    pages = {3043-3046},
1888   }
1889  
1890 + @ARTICLE{McLachlan1998,
1891 +  author = {R. I. McLachlan and G. R. W. Quispel},
1892 +  title = {Generating functions for dynamical systems with symmetries, integrals,
1893 +        and differential invariants},
1894 +  journal = {Physica D},
1895 +  year = {1998},
1896 +  volume = {112},
1897 +  pages = {298-309},
1898 +  number = {1-2},
1899 +  month = {Jan 15},
1900 +  abstract = {We give a survey and some new examples of generating functions for
1901 +        systems with symplectic structure, systems with a first integral,
1902 +        systems that preserve volume, and systems with symmetries and/or
1903 +        time-reversing symmetries. Both ODEs and maps are treated, and we
1904 +        discuss how generating functions may be used in the structure-preserving
1905 +        numerical integration of ODEs with the above properties.},
1906 +  annote = {Yt049 Times Cited:7 Cited References Count:26},
1907 +  issn = {0167-2789},
1908 +  uri = {<Go to ISI>://000071558900021},
1909 + }
1910 +
1911 + @ARTICLE{McLachlan1998a,
1912 +  author = {R. I. McLachlan and G. R. W. Quispel and G. S. Turner},
1913 +  title = {Numerical integrators that preserve symmetries and reversing symmetries},
1914 +  journal = {Siam Journal on Numerical Analysis},
1915 +  year = {1998},
1916 +  volume = {35},
1917 +  pages = {586-599},
1918 +  number = {2},
1919 +  month = {Apr},
1920 +  abstract = {We consider properties of flows, the relationships between them, and
1921 +        whether numerical integrators can be made to preserve these properties.
1922 +        This is done in the context of automorphisms and antiautomorphisms
1923 +        of a certain group generated by maps associated to vector fields.
1924 +        This new framework unifies several known constructions. We also
1925 +        use the concept of #covariance# of a numerical method with respect
1926 +        to a group of coordinate transformations. The main application is
1927 +        to explore the relationship between spatial symmetries, reversing
1928 +        symmetries, and time symmetry of flows and numerical integrators.},
1929 +  annote = {Zc449 Times Cited:14 Cited References Count:33},
1930 +  issn = {0036-1429},
1931 +  uri = {<Go to ISI>://000072580500010},
1932 + }
1933 +
1934   @ARTICLE{McLachlan2005,
1935    author = {R. I. McLachlan and A. Zanna},
1936    title = {The discrete Moser-Veselov algorithm for the free rigid body, revisited},
# Line 1522 | Line 1958 | Encoding: GBK
1958    uri = {<Go to ISI>://000228011900003},
1959   }
1960  
1961 + @ARTICLE{Melchionna1993,
1962 +  author = {S. Melchionna and G. Ciccotti and B. L. Holian},
1963 +  title = {Hoover Npt Dynamics for Systems Varying in Shape and Size},
1964 +  journal = {Molecular Physics},
1965 +  year = {1993},
1966 +  volume = {78},
1967 +  pages = {533-544},
1968 +  number = {3},
1969 +  month = {Feb 20},
1970 +  abstract = {In this paper we write down equations of motion (following the approach
1971 +        pioneered by Hoover) for an exact isothermal-isobaric molecular
1972 +        dynamics simulation, and we extend them to multiple thermostating
1973 +        rates, to a shape-varying cell and to molecular systems, coherently
1974 +        with the previous 'extended system method'. An integration scheme
1975 +        is proposed together with a numerical illustration of the method.},
1976 +  annote = {Kq355 Times Cited:172 Cited References Count:17},
1977 +  issn = {0026-8976},
1978 +  uri = {<Go to ISI>://A1993KQ35500002},
1979 + }
1980 +
1981   @ARTICLE{Memmer2002,
1982    author = {R. Memmer},
1983    title = {Liquid crystal phases of achiral banana-shaped molecules: a computer
# Line 1712 | Line 2168 | Encoding: GBK
2168    annote = {491UW Times Cited:48 Cited References Count:25},
2169    issn = {0021-9606},
2170    uri = {<Go to ISI>://000172129300049},
2171 + }
2172 +
2173 + @BOOK{Olver1986,
2174 +  title = {Applications of Lie groups to differential equatitons},
2175 +  publisher = {Springer},
2176 +  year = {1986},
2177 +  author = {P.J. Olver},
2178 +  address = {New York},
2179 + }
2180 +
2181 + @ARTICLE{Omelyan1998,
2182 +  author = {I. P. Omelyan},
2183 +  title = {On the numerical integration of motion for rigid polyatomics: The
2184 +        modified quaternion approach},
2185 +  journal = {Computers in Physics},
2186 +  year = {1998},
2187 +  volume = {12},
2188 +  pages = {97-103},
2189 +  number = {1},
2190 +  month = {Jan-Feb},
2191 +  abstract = {A revised version of the quaternion approach for numerical integration
2192 +        of the equations of motion for rigid polyatomic molecules is proposed.
2193 +        The modified approach is based on a formulation of the quaternion
2194 +        dynamics with constraints. This allows one to resolve the rigidity
2195 +        problem rigorously using constraint forces. It is shown that the
2196 +        procedure for preservation of molecular rigidity can be realized
2197 +        particularly simply within the Verlet algorithm in velocity form.
2198 +        We demonstrate that the method presented leads to an improved numerical
2199 +        stability with respect to the usual quaternion rescaling scheme
2200 +        and it is roughly as good as the cumbersome atomic-constraint technique.
2201 +        (C) 1998 American Institute of Physics.},
2202 +  annote = {Yx279 Times Cited:12 Cited References Count:28},
2203 +  issn = {0894-1866},
2204 +  uri = {<Go to ISI>://000072024300025},
2205   }
2206  
2207 + @ARTICLE{Omelyan1998a,
2208 +  author = {I. P. Omelyan},
2209 +  title = {Algorithm for numerical integration of the rigid-body equations of
2210 +        motion},
2211 +  journal = {Physical Review E},
2212 +  year = {1998},
2213 +  volume = {58},
2214 +  pages = {1169-1172},
2215 +  number = {1},
2216 +  month = {Jul},
2217 +  abstract = {An algorithm for numerical integration of the rigid-body equations
2218 +        of motion is proposed. The algorithm uses the leapfrog scheme and
2219 +        the quantities involved are angular velocities and orientational
2220 +        variables that can be expressed in terms of either principal axes
2221 +        or quaternions. Due to specific features of the algorithm, orthonormality
2222 +        and unit norms of the orientational variables are integrals of motion,
2223 +        despite an approximate character of the produced trajectories. It
2224 +        is shown that the method presented appears to be the most efficient
2225 +        among all such algorithms known.},
2226 +  annote = {101XL Times Cited:8 Cited References Count:22},
2227 +  issn = {1063-651X},
2228 +  uri = {<Go to ISI>://000074893400151},
2229 + }
2230 +
2231   @ARTICLE{Orlandi2006,
2232    author = {S. Orlandi and R. Berardi and J. Steltzer and C. Zannoni},
2233    title = {A Monte Carlo study of the mesophases formed by polar bent-shaped
# Line 1737 | Line 2251 | Encoding: GBK
2251    annote = {028CP Times Cited:0 Cited References Count:42},
2252    issn = {0021-9606},
2253    uri = {<Go to ISI>://000236464000072},
2254 + }
2255 +
2256 + @ARTICLE{Owren1992,
2257 +  author = {B. Owren and M. Zennaro},
2258 +  title = {Derivation of Efficient, Continuous, Explicit Runge-Kutta Methods},
2259 +  journal = {Siam Journal on Scientific and Statistical Computing},
2260 +  year = {1992},
2261 +  volume = {13},
2262 +  pages = {1488-1501},
2263 +  number = {6},
2264 +  month = {Nov},
2265 +  abstract = {Continuous, explicit Runge-Kutta methods with the minimal number of
2266 +        stages are considered. These methods are continuously differentiable
2267 +        if and only if one of the stages is the FSAL evaluation. A characterization
2268 +        of a subclass of these methods is developed for orders 3, 4, and
2269 +        5. It is shown how the free parameters of these methods can be used
2270 +        either to minimize the continuous truncation error coefficients
2271 +        or to maximize the stability region. As a representative for these
2272 +        methods the fifth-order method with minimized error coefficients
2273 +        is chosen, supplied with an error estimation method, and analysed
2274 +        by using the DETEST software. The results are compared with a similar
2275 +        implementation of the Dormand-Prince 5(4) pair with interpolant,
2276 +        showing a significant advantage in the new method for the chosen
2277 +        problems.},
2278 +  annote = {Ju936 Times Cited:25 Cited References Count:20},
2279 +  issn = {0196-5204},
2280 +  uri = {<Go to ISI>://A1992JU93600013},
2281   }
2282  
2283   @ARTICLE{Palacios1998,
# Line 1826 | Line 2367 | Encoding: GBK
2367    uri = {<Go to ISI>://A1985AKB9300008},
2368   }
2369  
2370 + @ARTICLE{Rotne1969,
2371 +  author = {F. Perrin},
2372 +  title = {Variational treatment of hydrodynamic interaction in polymers},
2373 +  journal = {J. Chem. Phys.},
2374 +  year = {1969},
2375 +  volume = {50},
2376 +  pages = {4831¨C4837},
2377 + }
2378 +
2379 + @ARTICLE{Perrin1936,
2380 +  author = {F. Perrin},
2381 +  title = {Mouvement brownien d'un ellipsoid(II). Rotation libre et depolarisation
2382 +        des fluorescences. Translation et diffusion de moleculese ellipsoidales},
2383 +  journal = {J. Phys. Radium},
2384 +  year = {1936},
2385 +  volume = {7},
2386 +  pages = {1-11},
2387 + }
2388 +
2389 + @ARTICLE{Perrin1934,
2390 +  author = {F. Perrin},
2391 +  title = {Mouvement brownien d'un ellipsoid(I). Dispersion dielectrique pour
2392 +        des molecules ellipsoidales},
2393 +  journal = {J. Phys. Radium},
2394 +  year = {1934},
2395 +  volume = {5},
2396 +  pages = {497-511},
2397 + }
2398 +
2399   @ARTICLE{Petrache1998,
2400    author = {H. I. Petrache and S. Tristram-Nagle and J. F. Nagle},
2401    title = {Fluid phase structure of EPC and DMPC bilayers},
# Line 1930 | Line 2500 | Encoding: GBK
2500    uri = {<Go to ISI>://000235990500001},
2501   }
2502  
2503 + @ARTICLE{Reich1999,
2504 +  author = {S. Reich},
2505 +  title = {Backward error analysis for numerical integrators},
2506 +  journal = {Siam Journal on Numerical Analysis},
2507 +  year = {1999},
2508 +  volume = {36},
2509 +  pages = {1549-1570},
2510 +  number = {5},
2511 +  month = {Sep 8},
2512 +  abstract = {Backward error analysis has become an important tool for understanding
2513 +        the long time behavior of numerical integration methods. This is
2514 +        true in particular for the integration of Hamiltonian systems where
2515 +        backward error analysis can be used to show that a symplectic method
2516 +        will conserve energy over exponentially long periods of time. Such
2517 +        results are typically based on two aspects of backward error analysis:
2518 +        (i) It can be shown that the modified vector fields have some qualitative
2519 +        properties which they share with the given problem and (ii) an estimate
2520 +        is given for the difference between the best interpolating vector
2521 +        field and the numerical method. These aspects have been investigated
2522 +        recently, for example, by Benettin and Giorgilli in [J. Statist.
2523 +        Phys., 74 (1994), pp. 1117-1143], by Hairer in [Ann. Numer. Math.,
2524 +        1 (1994), pp. 107-132], and by Hairer and Lubich in [Numer. Math.,
2525 +        76 (1997), pp. 441-462]. In this paper we aim at providing a unifying
2526 +        framework and a simplification of the existing results and corresponding
2527 +        proofs. Our approach to backward error analysis is based on a simple
2528 +        recursive definition of the modified vector fields that does not
2529 +        require explicit Taylor series expansion of the numerical method
2530 +        and the corresponding flow maps as in the above-cited works. As
2531 +        an application we discuss the long time integration of chaotic Hamiltonian
2532 +        systems and the approximation of time averages along numerically
2533 +        computed trajectories.},
2534 +  annote = {237HV Times Cited:43 Cited References Count:41},
2535 +  issn = {0036-1429},
2536 +  uri = {<Go to ISI>://000082650600010},
2537 + }
2538 +
2539   @ARTICLE{Ros2005,
2540    author = {M. B. Ros and J. L. Serrano and M. R. {de la Fuente} and C. L. Folcia},
2541    title = {Banana-shaped liquid crystals: a new field to explore},
# Line 1951 | Line 2557 | Encoding: GBK
2557    uri = {<Go to ISI>://000233775500001},
2558   }
2559  
2560 + @ARTICLE{Roux1991,
2561 +  author = {B. Roux and M. Karplus},
2562 +  title = {Ion-Transport in a Gramicidin-Like Channel - Dynamics and Mobility},
2563 +  journal = {Journal of Physical Chemistry},
2564 +  year = {1991},
2565 +  volume = {95},
2566 +  pages = {4856-4868},
2567 +  number = {12},
2568 +  month = {Jun 13},
2569 +  abstract = {The mobility of water, Na+. and K+ has been calculated inside a periodic
2570 +        poly-(L,D)-alanine beta-helix, a model for the interior of the gramicidin
2571 +        channel. Because of the different dynamical regimes for the three
2572 +        species (high barrier for Na+, low barrier for K+, almost free diffusion
2573 +        for water), different methods are used to calculate the mobilities.
2574 +        By use of activated dynamics and a potential of mean force determined
2575 +        previously (Roux, B.; Karplus, M. Biophys. J. 1991, 59, 961), the
2576 +        barrier crossing rate of Na+ ion is determined. The motion of Na+
2577 +        at the transition state is controlled by local interactions and
2578 +        collisions with the neighboring carbonyls and the two nearest water
2579 +        molecules. There are significant deviations from transition-state
2580 +        theory; the transmission coefficient is equal to 0.11. The water
2581 +        and K+ motions are found to be well described by a diffusive model;
2582 +        the motion of K+ appears to be controlled by the diffusion of water.
2583 +        The time-dependent friction functions of Na+ and K+ ions in the
2584 +        periodic beta-helix are calculated and analyzed by using a generalized
2585 +        Langevin equation approach. Both Na+ and K+ suffer many rapid collisions,
2586 +        and their dynamics is overdamped and noninertial. Thus, the selectivity
2587 +        sequence of ions in the beta-helix is not influenced strongly by
2588 +        their masses.},
2589 +  annote = {Fr756 Times Cited:97 Cited References Count:65},
2590 +  issn = {0022-3654},
2591 +  uri = {<Go to ISI>://A1991FR75600049},
2592 + }
2593 +
2594   @ARTICLE{Roy2005,
2595    author = {A. Roy and N. V. Madhusudana},
2596    title = {A frustrated packing model for the B-6-B-1-SmAP(A) sequence of phases
# Line 1977 | Line 2617 | Encoding: GBK
2617    uri = {<Go to ISI>://000233363300002},
2618   }
2619  
2620 + @ARTICLE{Ryckaert1977,
2621 +  author = {J. P. Ryckaert and G. Ciccotti and H. J. C. Berendsen},
2622 +  title = {Numerical-Integration of Cartesian Equations of Motion of a System
2623 +        with Constraints - Molecular-Dynamics of N-Alkanes},
2624 +  journal = {Journal of Computational Physics},
2625 +  year = {1977},
2626 +  volume = {23},
2627 +  pages = {327-341},
2628 +  number = {3},
2629 +  annote = {Cz253 Times Cited:3680 Cited References Count:7},
2630 +  issn = {0021-9991},
2631 +  uri = {<Go to ISI>://A1977CZ25300007},
2632 + }
2633 +
2634 + @ARTICLE{Sagui1999,
2635 +  author = {C. Sagui and T. A. Darden},
2636 +  title = {Molecular dynamics simulations of biomolecules: Long-range electrostatic
2637 +        effects},
2638 +  journal = {Annual Review of Biophysics and Biomolecular Structure},
2639 +  year = {1999},
2640 +  volume = {28},
2641 +  pages = {155-179},
2642 +  abstract = {Current computer simulations of biomolecules typically make use of
2643 +        classical molecular dynamics methods, as a very large number (tens
2644 +        to hundreds of thousands) of atoms are involved over timescales
2645 +        of many nanoseconds. The methodology for treating short-range bonded
2646 +        and van der Waals interactions has matured. However, long-range
2647 +        electrostatic interactions still represent a bottleneck in simulations.
2648 +        In this article, we introduce the basic issues for an accurate representation
2649 +        of the relevant electrostatic interactions. In spite of the huge
2650 +        computational time demanded by most biomolecular systems, it is
2651 +        no longer necessary to resort to uncontrolled approximations such
2652 +        as the use of cutoffs. In particular, we discuss the Ewald summation
2653 +        methods, the fast particle mesh methods, and the fast multipole
2654 +        methods. We also review recent efforts to understand the role of
2655 +        boundary conditions in systems with long-range interactions, and
2656 +        conclude with a short perspective on future trends.},
2657 +  annote = {213KJ Times Cited:126 Cited References Count:73},
2658 +  issn = {1056-8700},
2659 +  uri = {<Go to ISI>://000081271400008},
2660 + }
2661 +
2662   @ARTICLE{Sandu1999,
2663    author = {A. Sandu and T. Schlick},
2664    title = {Masking resonance artifacts in force-splitting methods for biomolecular
# Line 2027 | Line 2709 | Encoding: GBK
2709    annote = {194FM Times Cited:14 Cited References Count:32},
2710    issn = {0021-9991},
2711    uri = {<Go to ISI>://000080181500004},
2712 + }
2713 +
2714 + @ARTICLE{Sasaki2004,
2715 +  author = {Y. Sasaki and R. Shukla and B. D. Smith},
2716 +  title = {Facilitated phosphatidylserine flip-flop across vesicle and cell
2717 +        membranes using urea-derived synthetic translocases},
2718 +  journal = {Organic \& Biomolecular Chemistry},
2719 +  year = {2004},
2720 +  volume = {2},
2721 +  pages = {214-219},
2722 +  number = {2},
2723 +  abstract = {Tris(2-aminoethyl) amine derivatives with appended urea and sulfonamide
2724 +        groups are shown to facilitate the translocation of fluorescent
2725 +        phospholipid probes and endogenous phosphatidylserine across vesicle
2726 +        and erythrocyte cell membranes. The synthetic translocases appear
2727 +        to operate by binding to the phospholipid head groups and forming
2728 +        lipophilic supramolecular complexes which diffuse through the non-polar
2729 +        interior of the bilayer membrane.},
2730 +  annote = {760PX Times Cited:8 Cited References Count:25},
2731 +  issn = {1477-0520},
2732 +  uri = {<Go to ISI>://000187843800012},
2733   }
2734  
2735   @ARTICLE{Satoh1996,
# Line 2097 | Line 2800 | Encoding: GBK
2800    annote = {901QJ Times Cited:9 Cited References Count:23},
2801    issn = {1476-1122},
2802    uri = {<Go to ISI>://000227296700019},
2803 + }
2804 +
2805 + @ARTICLE{Shimada1993,
2806 +  author = {J. Shimada and H. Kaneko and T. Takada},
2807 +  title = {Efficient Calculations of Coulombic Interactions in Biomolecular
2808 +        Simulations with Periodic Boundary-Conditions},
2809 +  journal = {Journal of Computational Chemistry},
2810 +  year = {1993},
2811 +  volume = {14},
2812 +  pages = {867-878},
2813 +  number = {7},
2814 +  month = {Jul},
2815 +  abstract = {To make improved treatments of electrostatic interactions in biomacromolecular
2816 +        simulations, two possibilities are considered. The first is the
2817 +        famous particle-particle and particle-mesh (PPPM) method developed
2818 +        by Hockney and Eastwood, and the second is a new one developed here
2819 +        in their spirit but by the use of the multipole expansion technique
2820 +        suggested by Ladd. It is then numerically found that the new PPPM
2821 +        method gives more accurate results for a two-particle system at
2822 +        small separation of particles. Preliminary numerical examination
2823 +        of the various computational methods for a single configuration
2824 +        of a model BPTI-water system containing about 24,000 particles indicates
2825 +        that both of the PPPM methods give far more accurate values with
2826 +        reasonable computational cost than do the conventional truncation
2827 +        methods. It is concluded the two PPPM methods are nearly comparable
2828 +        in overall performance for the many-particle systems, although the
2829 +        first method has the drawback that the accuracy in the total electrostatic
2830 +        energy is not high for configurations of charged particles randomly
2831 +        generated.},
2832 +  annote = {Lh164 Times Cited:27 Cited References Count:47},
2833 +  issn = {0192-8651},
2834 +  uri = {<Go to ISI>://A1993LH16400011},
2835   }
2836  
2837   @ARTICLE{Skeel2002,
# Line 2258 | Line 2993 | Encoding: GBK
2993    uri = {<Go to ISI>://A1992JE89100044},
2994   }
2995  
2996 + @BOOK{Varadarajan1974,
2997 +  title = {Lie groups, Lie algebras, and their representations},
2998 +  publisher = {Prentice-Hall},
2999 +  year = {1974},
3000 +  author = {V.S. Varadarajan},
3001 +  address = {New York},
3002 + }
3003 +
3004   @ARTICLE{Wegener1979,
3005    author = {W.~A. Wegener, V.~J. Koester and R.~M. Dowben},
3006    title = {A general ellipsoid can not always serve as a modle for the rotational
# Line 2267 | Line 3010 | Encoding: GBK
3010    volume = {76},
3011    pages = {6356-6360},
3012    number = {12},
3013 + }
3014 +
3015 + @ARTICLE{Wilson2006,
3016 +  author = {G.~V. Wilson },
3017 +  title = {Where's the Real Bottleneck in Scientific Computing?},
3018 +  journal = {American Scientist},
3019 +  year = {2006},
3020 +  volume = {94},
3021   }
3022  
3023   @ARTICLE{Withers2003,
# Line 2311 | Line 3062 | Encoding: GBK
3062    uri = {<Go to ISI>://000186273200027},
3063   }
3064  
3065 + @ARTICLE{Wolf1999,
3066 +  author = {D. Wolf and P. Keblinski and S. R. Phillpot and J. Eggebrecht},
3067 +  title = {Exact method for the simulation of Coulombic systems by spherically
3068 +        truncated, pairwise r(-1) summation},
3069 +  journal = {Journal of Chemical Physics},
3070 +  year = {1999},
3071 +  volume = {110},
3072 +  pages = {8254-8282},
3073 +  number = {17},
3074 +  month = {May 1},
3075 +  abstract = {Based on a recent result showing that the net Coulomb potential in
3076 +        condensed ionic systems is rather short ranged, an exact and physically
3077 +        transparent method permitting the evaluation of the Coulomb potential
3078 +        by direct summation over the r(-1) Coulomb pair potential is presented.
3079 +        The key observation is that the problems encountered in determining
3080 +        the Coulomb energy by pairwise, spherically truncated r(-1) summation
3081 +        are a direct consequence of the fact that the system summed over
3082 +        is practically never neutral. A simple method is developed that
3083 +        achieves charge neutralization wherever the r(-1) pair potential
3084 +        is truncated. This enables the extraction of the Coulomb energy,
3085 +        forces, and stresses from a spherically truncated, usually charged
3086 +        environment in a manner that is independent of the grouping of the
3087 +        pair terms. The close connection of our approach with the Ewald
3088 +        method is demonstrated and exploited, providing an efficient method
3089 +        for the simulation of even highly disordered ionic systems by direct,
3090 +        pairwise r(-1) summation with spherical truncation at rather short
3091 +        range, i.e., a method which fully exploits the short-ranged nature
3092 +        of the interactions in ionic systems. The method is validated by
3093 +        simulations of crystals, liquids, and interfacial systems, such
3094 +        as free surfaces and grain boundaries. (C) 1999 American Institute
3095 +        of Physics. [S0021-9606(99)51517-1].},
3096 +  annote = {189PD Times Cited:70 Cited References Count:34},
3097 +  issn = {0021-9606},
3098 +  uri = {<Go to ISI>://000079913000008},
3099 + }
3100 +
3101 + @ARTICLE{Yoshida1990,
3102 +  author = {H. Yoshida},
3103 +  title = {Construction of Higher-Order Symplectic Integrators},
3104 +  journal = {Physics Letters A},
3105 +  year = {1990},
3106 +  volume = {150},
3107 +  pages = {262-268},
3108 +  number = {5-7},
3109 +  month = {Nov 12},
3110 +  annote = {Ej798 Times Cited:492 Cited References Count:9},
3111 +  issn = {0375-9601},
3112 +  uri = {<Go to ISI>://A1990EJ79800009},
3113 + }
3114 +

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines