| 293 |
|
of the integration. |
| 294 |
|
|
| 295 |
|
\subsection{\label{methodSection:NPTi}Constant-pressure integration with |
| 296 |
< |
isotropic box deformations (NPTi)} |
| 296 |
> |
isotropic box (NPTi)} |
| 297 |
|
|
| 298 |
|
We can used an isobaric-isothermal ensemble integrator which is |
| 299 |
|
implemented using the Melchionna modifications to the |
| 578 |
|
H_{\mathrm{NPTf}} & = & V + K + f k_B T_{\mathrm{target}} \left( |
| 579 |
|
\frac{\tau_{T}^2 \chi^2(t)}{2} + \int_{0}^{t} \chi(t^\prime) |
| 580 |
|
dt^\prime \right) \\ |
| 581 |
< |
& & + P_{\mathrm{target}} \mathcal{V}(t) + \frac{f k_B |
| 581 |
> |
& & + P_{\mathrm{target}} \mathcal{V}(t) + \frac{f k_B |
| 582 |
|
T_{\mathrm{target}}}{2} |
| 583 |
|
\mathrm{Tr}\left[\overleftrightarrow{\eta}(t)\right]^2 \tau_B^2. |
| 584 |
|
\end{eqnarray*} |