| 1 |
|
\chapter{\label{chapt:liquidcrystal}LIQUID CRYSTAL} |
| 2 |
|
|
| 3 |
|
\section{\label{liquidCrystalSection:introduction}Introduction} |
| 4 |
– |
% liquid crystal |
| 4 |
|
|
| 5 |
|
Long range orientational order is one of the most fundamental |
| 6 |
|
properties of liquid crystal mesophases. This orientational |
| 17 |
|
sufficiently long aliphatic chains has been reported, as well as the |
| 18 |
|
segregation phenomena in disk-like molecules. |
| 19 |
|
|
| 21 |
– |
% banana shaped |
| 20 |
|
Recently, the banana-shaped or bent-core liquid crystal have became |
| 21 |
|
one of the most active research areas in mesogenic materials and |
| 22 |
|
supramolecular chemistry. Unlike rods and disks, the polarity and |
| 39 |
|
direction of the molecule in adjacent layer (see |
| 40 |
|
Fig.~\cite{LCFig:SMCP}). |
| 41 |
|
|
| 42 |
< |
%general banana-shaped molecule modeling |
| 42 |
> |
\begin{figure} |
| 43 |
> |
\centering |
| 44 |
> |
\includegraphics[width=\linewidth]{smcp.eps} |
| 45 |
> |
\caption[] |
| 46 |
> |
{} |
| 47 |
> |
\label{LCFig:SMCP} |
| 48 |
> |
\end{figure} |
| 49 |
> |
|
| 50 |
|
Many liquid crystal synthesis experiments suggest that the |
| 51 |
|
occurrence of polarity and chirality strongly relies on the |
| 52 |
|
molecular structure and intermolecular interaction. From a |
| 72 |
|
simulation studies using hard spherocylinder dimer |
| 73 |
|
model\cite{Camp1999} produce nematic phases, while hard rod |
| 74 |
|
simulation studies identified a Landau point\cite{Bates2005}, at |
| 75 |
< |
which the isotropic phase undergoes a transition directly to the |
| 75 |
> |
which the isotropic phase undergoes a direct transition to the |
| 76 |
|
biaxial nematic, as well as some possible liquid crystal |
| 77 |
< |
phases\cite{Lansac2003}. Other anisotropic models using Gay-Berne |
| 78 |
< |
potential give the evidence of the novel packing arrangement of |
| 77 |
> |
phases\cite{Lansac2003}. Other anisotropic models using |
| 78 |
> |
Gay-Berne(GB) potential, which produce interactions that favor local |
| 79 |
> |
alignment, give the evidence of the novel packing arrangements of |
| 80 |
|
bent-core molecules\cite{Memmer2002,Orlandi2006}. |
| 81 |
|
|
| 82 |
+ |
Experimental studies by Levelut {\it et al.}~\cite{Levelut1981} |
| 83 |
+ |
revealed that terminal cyano or nitro groups usually induce |
| 84 |
+ |
permanent longitudinal dipole moments, which affect the phase |
| 85 |
+ |
behavior considerably. A series of theoretical studies also drawn |
| 86 |
+ |
equivalent conclusions. Monte Carlo studies of the GB potential with |
| 87 |
+ |
fixed longitudinal dipoles (i.e. pointed along the principal axis of |
| 88 |
+ |
rotation) were shown to enhance smectic phase |
| 89 |
+ |
stability~\cite{Berardi1996,Satoh1996}. Molecular simulation of GB |
| 90 |
+ |
ellipsoids with transverse dipoles at the terminus of the molecule |
| 91 |
+ |
also demonstrated that partial striped bilayer structures were |
| 92 |
+ |
developed from the smectic phase ~\cite{Berardi1996}. More |
| 93 |
+ |
significant effects have been shown by including multiple |
| 94 |
+ |
electrostatic moments. Adding longitudinal point quadrupole moments |
| 95 |
+ |
to rod-shaped GB mesogens, Withers \textit{et al} induced tilted |
| 96 |
+ |
smectic behaviour in the molecular system~\cite{Withers2003}. Thus, |
| 97 |
+ |
it is clear that many liquid-crystal forming molecules, specially, |
| 98 |
+ |
bent-core molecules, could be modeled more accurately by |
| 99 |
+ |
incorporating electrostatic interaction. |
| 100 |
+ |
|
| 101 |
+ |
In this chapter, we consider system consisting of banana-shaped |
| 102 |
+ |
molecule represented by three rigid GB particles with one or two |
| 103 |
+ |
point dipoles at different location. Performing a series of |
| 104 |
+ |
molecular dynamics simulations, we explore the structural properties |
| 105 |
+ |
of tilted smectic phases as well as the effect of electrostatic |
| 106 |
+ |
interactions. |
| 107 |
+ |
|
| 108 |
|
\section{\label{liquidCrystalSection:model}Model} |
| 109 |
|
|
| 110 |
+ |
A typical banana-shaped molecule consists of a rigid aromatic |
| 111 |
+ |
central bent unit with several rod-like wings which are held |
| 112 |
+ |
together by some linking units and terminal chains (see |
| 113 |
+ |
Fig.~\ref{LCFig:BananaMolecule}). In this work, each banana-shaped |
| 114 |
+ |
mesogen has been modeled as a rigid body consisting of three |
| 115 |
+ |
equivalent prolate ellipsoidal GB particles. The GB interaction |
| 116 |
+ |
potential used to mimic the apolar characteristics of liquid crystal |
| 117 |
+ |
molecules takes the familiar form of Lennard-Jones function with |
| 118 |
+ |
orientation and position dependent range ($\sigma$) and well depth |
| 119 |
+ |
($\epsilon$) parameters. It can can be expressed as, |
| 120 |
+ |
\begin{equation} |
| 121 |
+ |
V_{ij}^{GB} = 4\epsilon (\hat u_i ,\hat u_j ,\hat r_{ij} )\left[ |
| 122 |
+ |
{\left( {\frac{{\sigma _0 }}{{r_{ij} - \sigma (\hat u_i ,\hat u_j |
| 123 |
+ |
,\hat r_{ij} )}}} \right)^{12} - \left( {\frac{{\sigma _0 |
| 124 |
+ |
}}{{r_{ij} - \sigma (\hat u_i ,\hat u_j ,\hat r_{ij} )}}} \right)^6 |
| 125 |
+ |
} \right] \label{LCEquation:gb} |
| 126 |
+ |
\end{equation} |
| 127 |
+ |
where $\hat u_i,\hat u_j$ are unit vectors specifying the |
| 128 |
+ |
orientation of two molecules $i$ and $j$ separated by intermolecular |
| 129 |
+ |
vector $r_{ij}$. $\hat r_{ij}$ is the unit vector along the |
| 130 |
+ |
intermolecular vector. A schematic diagram of the orientation |
| 131 |
+ |
vectors is shown in Fig.\ref{LCFigure:GBScheme}. The functional form |
| 132 |
+ |
for $\sigma$ is given by |
| 133 |
+ |
\begin{equation} |
| 134 |
+ |
\sigma (\hat u_i ,\hat u_i ,\hat r_{ij} ) = \sigma _0 \left[ {1 - |
| 135 |
+ |
\frac{\chi }{2}\left( {\frac{{(\hat r_{ij} \cdot \hat u_i + \hat |
| 136 |
+ |
r_{ij} \cdot \hat u_j )^2 }}{{1 + \chi \hat u_i \cdot \hat u_j }} |
| 137 |
+ |
+ \frac{{(\hat r_{ij} \cdot \hat u_i - \hat r_{ij} \cdot \hat u_j |
| 138 |
+ |
)^2 }}{{1 - \chi \hat u_i \cdot \hat u_j }}} \right)} \right]^{ - |
| 139 |
+ |
\frac{1}{2}}, |
| 140 |
+ |
\end{equation} |
| 141 |
+ |
where the aspect ratio of the particles is governed by shape |
| 142 |
+ |
anisotropy parameter |
| 143 |
+ |
\begin{equation} |
| 144 |
+ |
\chi = \frac{{(\sigma _e /\sigma _s )^2 - 1}}{{(\sigma _e /\sigma |
| 145 |
+ |
_s )^2 + 1}}. |
| 146 |
+ |
\label{LCEquation:chi} |
| 147 |
+ |
\end{equation} |
| 148 |
+ |
Here, $\sigma_ s$ and $\sigma_{e}$ refer to the side-by-side breadth |
| 149 |
+ |
and the end-to-end length of the ellipsoid, respectively. Twell |
| 150 |
+ |
depth parameters takes the form |
| 151 |
+ |
\begin{equation} |
| 152 |
+ |
\epsilon (\hat u_i ,\hat u_j ,\hat r_{ij} ) = \epsilon _0 \epsilon |
| 153 |
+ |
^v (\hat u_i ,\hat u_j )\epsilon '^\mu (\hat u_i ,\hat u_j ,\hat |
| 154 |
+ |
r_{ij} ) |
| 155 |
+ |
\end{equation} |
| 156 |
+ |
where $\epsilon_{0}$ is a constant term and |
| 157 |
+ |
\begin{equation} |
| 158 |
+ |
\epsilon (\hat u_i ,\hat u_j ) = \frac{1}{{\sqrt {1 - \chi ^2 (\hat |
| 159 |
+ |
u_i \cdot \hat u_j )^2 } }} |
| 160 |
+ |
\end{equation} |
| 161 |
+ |
and |
| 162 |
+ |
\begin{equation} |
| 163 |
+ |
\epsilon '(\hat u_i ,\hat u_j ,\hat r_{ij} ) = 1 - \frac{{\chi |
| 164 |
+ |
'}}{2}\left[ {\frac{{(\hat r_{ij} \cdot \hat u_i + \hat r_{ij} |
| 165 |
+ |
\cdot \hat u_j )^2 }}{{1 + \chi '\hat u_i \cdot \hat u_j }} + |
| 166 |
+ |
\frac{{(\hat r_{ij} \cdot \hat u_i - \hat r_{ij} \cdot \hat u_j |
| 167 |
+ |
)^2 }}{{1 - \chi '\hat u_i \cdot \hat u_j }}} \right] |
| 168 |
+ |
\end{equation} |
| 169 |
+ |
where the well depth anisotropy parameter $\chi '$ depends on the |
| 170 |
+ |
ratio between \textit{end-to-end} well depth $\epsilon _e$ and |
| 171 |
+ |
\textit{side-by-side} well depth $\epsilon_s$, |
| 172 |
+ |
\begin{eqaution} |
| 173 |
+ |
\chi ' = \frac{{1 - (\epsilon _e /\epsilon _s )^{1/\mu} }}{{1 + |
| 174 |
+ |
(\epsilon _e /\epsilon _s )^{1/\mu} }}. |
| 175 |
+ |
\end{equation} |
| 176 |
+ |
|
| 177 |
+ |
\begin{figure} |
| 178 |
+ |
\centering |
| 179 |
+ |
\includegraphics[width=\linewidth]{banana.eps} |
| 180 |
+ |
\caption[]{} \label{LCFig:BananaMolecule} |
| 181 |
+ |
\end{figure} |
| 182 |
+ |
|
| 183 |
+ |
\begin{figure} |
| 184 |
+ |
\centering |
| 185 |
+ |
\includegraphics[width=\linewidth]{bananGB_grained.eps} |
| 186 |
+ |
\caption[]{} \label{LCFigure:BananaGB} |
| 187 |
+ |
\end{figure} |
| 188 |
+ |
|
| 189 |
+ |
\begin{figure} |
| 190 |
+ |
\centering |
| 191 |
+ |
\includegraphics[width=\linewidth]{gb_scheme.eps} |
| 192 |
+ |
\caption[]{Schematic diagram showing definitions of the orientation |
| 193 |
+ |
vectors for a pair of Gay-Berne molecules} |
| 194 |
+ |
\label{LCFigure:GBScheme} |
| 195 |
+ |
\end{figure} |
| 196 |
+ |
|
| 197 |
|
\section{\label{liquidCrystalSection:methods}Methods} |
| 198 |
|
|
| 199 |
|
\section{\label{liquidCrystalSection:resultDiscussion}Results and Discussion} |