ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/tengDissertation/Introduction.tex
(Generate patch)

Comparing trunk/tengDissertation/Introduction.tex (file contents):
Revision 2699 by tim, Mon Apr 10 05:35:55 2006 UTC vs.
Revision 2776 by tim, Thu May 25 21:32:14 2006 UTC

# Line 27 | Line 27 | acceleration along the direction of the force acting o
27   \end{equation}
28   A point mass interacting with other bodies moves with the
29   acceleration along the direction of the force acting on it. Let
30 < $F_ij$ be the force that particle $i$ exerts on particle $j$, and
31 < $F_ji$ be the force that particle $j$ exerts on particle $i$.
30 > $F_{ij}$ be the force that particle $i$ exerts on particle $j$, and
31 > $F_{ji}$ be the force that particle $j$ exerts on particle $i$.
32   Newton¡¯s third law states that
33   \begin{equation}
34 < F_ij = -F_ji
34 > F_{ij} = -F_{ji}
35   \label{introEquation:newtonThirdLaw}
36   \end{equation}
37  
# Line 117 | Line 117 | Equations of Motion in Lagrangian Mechanics}
117   \subsubsection{\label{introSection:equationOfMotionLagrangian}The
118   Equations of Motion in Lagrangian Mechanics}
119  
120 < for a holonomic system of $f$ degrees of freedom, the equations of
120 > For a holonomic system of $f$ degrees of freedom, the equations of
121   motion in the Lagrangian form is
122   \begin{equation}
123   \frac{d}{{dt}}\frac{{\partial L}}{{\partial \dot q_i }} -
# Line 221 | Line 221 | The following section will give a brief introduction t
221   The thermodynamic behaviors and properties of Molecular Dynamics
222   simulation are governed by the principle of Statistical Mechanics.
223   The following section will give a brief introduction to some of the
224 < Statistical Mechanics concepts presented in this dissertation.
224 > Statistical Mechanics concepts and theorem presented in this
225 > dissertation.
226  
227 < \subsection{\label{introSection:ensemble}Ensemble and Phase Space}
227 > \subsection{\label{introSection:ensemble}Phase Space and Ensemble}
228  
229 + Mathematically, phase space is the space which represents all
230 + possible states. Each possible state of the system corresponds to
231 + one unique point in the phase space. For mechanical systems, the
232 + phase space usually consists of all possible values of position and
233 + momentum variables. Consider a dynamic system in a cartesian space,
234 + where each of the $6f$ coordinates and momenta is assigned to one of
235 + $6f$ mutually orthogonal axes, the phase space of this system is a
236 + $6f$ dimensional space. A point, $x = (q_1 , \ldots ,q_f ,p_1 ,
237 + \ldots ,p_f )$, with a unique set of values of $6f$ coordinates and
238 + momenta is a phase space vector.
239 +
240 + A microscopic state or microstate of a classical system is
241 + specification of the complete phase space vector of a system at any
242 + instant in time. An ensemble is defined as a collection of systems
243 + sharing one or more macroscopic characteristics but each being in a
244 + unique microstate. The complete ensemble is specified by giving all
245 + systems or microstates consistent with the common macroscopic
246 + characteristics of the ensemble. Although the state of each
247 + individual system in the ensemble could be precisely described at
248 + any instance in time by a suitable phase space vector, when using
249 + ensembles for statistical purposes, there is no need to maintain
250 + distinctions between individual systems, since the numbers of
251 + systems at any time in the different states which correspond to
252 + different regions of the phase space are more interesting. Moreover,
253 + in the point of view of statistical mechanics, one would prefer to
254 + use ensembles containing a large enough population of separate
255 + members so that the numbers of systems in such different states can
256 + be regarded as changing continuously as we traverse different
257 + regions of the phase space. The condition of an ensemble at any time
258 + can be regarded as appropriately specified by the density $\rho$
259 + with which representative points are distributed over the phase
260 + space. The density of distribution for an ensemble with $f$ degrees
261 + of freedom is defined as,
262 + \begin{equation}
263 + \rho  = \rho (q_1 , \ldots ,q_f ,p_1 , \ldots ,p_f ,t).
264 + \label{introEquation:densityDistribution}
265 + \end{equation}
266 + Governed by the principles of mechanics, the phase points change
267 + their value which would change the density at any time at phase
268 + space. Hence, the density of distribution is also to be taken as a
269 + function of the time.
270 +
271 + The number of systems $\delta N$ at time $t$ can be determined by,
272 + \begin{equation}
273 + \delta N = \rho (q,p,t)dq_1  \ldots dq_f dp_1  \ldots dp_f.
274 + \label{introEquation:deltaN}
275 + \end{equation}
276 + Assuming a large enough population of systems are exploited, we can
277 + sufficiently approximate $\delta N$ without introducing
278 + discontinuity when we go from one region in the phase space to
279 + another. By integrating over the whole phase space,
280 + \begin{equation}
281 + N = \int { \ldots \int {\rho (q,p,t)dq_1 } ...dq_f dp_1 } ...dp_f
282 + \label{introEquation:totalNumberSystem}
283 + \end{equation}
284 + gives us an expression for the total number of the systems. Hence,
285 + the probability per unit in the phase space can be obtained by,
286 + \begin{equation}
287 + \frac{{\rho (q,p,t)}}{N} = \frac{{\rho (q,p,t)}}{{\int { \ldots \int
288 + {\rho (q,p,t)dq_1 } ...dq_f dp_1 } ...dp_f }}.
289 + \label{introEquation:unitProbability}
290 + \end{equation}
291 + With the help of Equation(\ref{introEquation:unitProbability}) and
292 + the knowledge of the system, it is possible to calculate the average
293 + value of any desired quantity which depends on the coordinates and
294 + momenta of the system. Even when the dynamics of the real system is
295 + complex, or stochastic, or even discontinuous, the average
296 + properties of the ensemble of possibilities as a whole may still
297 + remain well defined. For a classical system in thermal equilibrium
298 + with its environment, the ensemble average of a mechanical quantity,
299 + $\langle A(q , p) \rangle_t$, takes the form of an integral over the
300 + phase space of the system,
301 + \begin{equation}
302 + \langle  A(q , p) \rangle_t = \frac{{\int { \ldots \int {A(q,p)\rho
303 + (q,p,t)dq_1 } ...dq_f dp_1 } ...dp_f }}{{\int { \ldots \int {\rho
304 + (q,p,t)dq_1 } ...dq_f dp_1 } ...dp_f }}
305 + \label{introEquation:ensembelAverage}
306 + \end{equation}
307 +
308 + There are several different types of ensembles with different
309 + statistical characteristics. As a function of macroscopic
310 + parameters, such as temperature \textit{etc}, partition function can
311 + be used to describe the statistical properties of a system in
312 + thermodynamic equilibrium.
313 +
314 + As an ensemble of systems, each of which is known to be thermally
315 + isolated and conserve energy, Microcanonical ensemble(NVE) has a
316 + partition function like,
317 + \begin{equation}
318 + \Omega (N,V,E) = e^{\beta TS} \label{introEquation:NVEPartition}.
319 + \end{equation}
320 + A canonical ensemble(NVT)is an ensemble of systems, each of which
321 + can share its energy with a large heat reservoir. The distribution
322 + of the total energy amongst the possible dynamical states is given
323 + by the partition function,
324 + \begin{equation}
325 + \Omega (N,V,T) = e^{ - \beta A}
326 + \label{introEquation:NVTPartition}
327 + \end{equation}
328 + Here, $A$ is the Helmholtz free energy which is defined as $ A = U -
329 + TS$. Since most experiment are carried out under constant pressure
330 + condition, isothermal-isobaric ensemble(NPT) play a very important
331 + role in molecular simulation. The isothermal-isobaric ensemble allow
332 + the system to exchange energy with a heat bath of temperature $T$
333 + and to change the volume as well. Its partition function is given as
334 + \begin{equation}
335 + \Delta (N,P,T) =  - e^{\beta G}.
336 + \label{introEquation:NPTPartition}
337 + \end{equation}
338 + Here, $G = U - TS + PV$, and $G$ is called Gibbs free energy.
339 +
340 + \subsection{\label{introSection:liouville}Liouville's theorem}
341 +
342 + The Liouville's theorem is the foundation on which statistical
343 + mechanics rests. It describes the time evolution of phase space
344 + distribution function. In order to calculate the rate of change of
345 + $\rho$, we begin from Equation(\ref{introEquation:deltaN}). If we
346 + consider the two faces perpendicular to the $q_1$ axis, which are
347 + located at $q_1$ and $q_1 + \delta q_1$, the number of phase points
348 + leaving the opposite face is given by the expression,
349 + \begin{equation}
350 + \left( {\rho  + \frac{{\partial \rho }}{{\partial q_1 }}\delta q_1 }
351 + \right)\left( {\dot q_1  + \frac{{\partial \dot q_1 }}{{\partial q_1
352 + }}\delta q_1 } \right)\delta q_2  \ldots \delta q_f \delta p_1
353 + \ldots \delta p_f .
354 + \end{equation}
355 + Summing all over the phase space, we obtain
356 + \begin{equation}
357 + \frac{{d(\delta N)}}{{dt}} =  - \sum\limits_{i = 1}^f {\left[ {\rho
358 + \left( {\frac{{\partial \dot q_i }}{{\partial q_i }} +
359 + \frac{{\partial \dot p_i }}{{\partial p_i }}} \right) + \left(
360 + {\frac{{\partial \rho }}{{\partial q_i }}\dot q_i  + \frac{{\partial
361 + \rho }}{{\partial p_i }}\dot p_i } \right)} \right]} \delta q_1
362 + \ldots \delta q_f \delta p_1  \ldots \delta p_f .
363 + \end{equation}
364 + Differentiating the equations of motion in Hamiltonian formalism
365 + (\ref{introEquation:motionHamiltonianCoordinate},
366 + \ref{introEquation:motionHamiltonianMomentum}), we can show,
367 + \begin{equation}
368 + \sum\limits_i {\left( {\frac{{\partial \dot q_i }}{{\partial q_i }}
369 + + \frac{{\partial \dot p_i }}{{\partial p_i }}} \right)}  = 0 ,
370 + \end{equation}
371 + which cancels the first terms of the right hand side. Furthermore,
372 + divining $ \delta q_1  \ldots \delta q_f \delta p_1  \ldots \delta
373 + p_f $ in both sides, we can write out Liouville's theorem in a
374 + simple form,
375 + \begin{equation}
376 + \frac{{\partial \rho }}{{\partial t}} + \sum\limits_{i = 1}^f
377 + {\left( {\frac{{\partial \rho }}{{\partial q_i }}\dot q_i  +
378 + \frac{{\partial \rho }}{{\partial p_i }}\dot p_i } \right)}  = 0 .
379 + \label{introEquation:liouvilleTheorem}
380 + \end{equation}
381 +
382 + Liouville's theorem states that the distribution function is
383 + constant along any trajectory in phase space. In classical
384 + statistical mechanics, since the number of particles in the system
385 + is huge, we may be able to believe the system is stationary,
386 + \begin{equation}
387 + \frac{{\partial \rho }}{{\partial t}} = 0.
388 + \label{introEquation:stationary}
389 + \end{equation}
390 + In such stationary system, the density of distribution $\rho$ can be
391 + connected to the Hamiltonian $H$ through Maxwell-Boltzmann
392 + distribution,
393 + \begin{equation}
394 + \rho  \propto e^{ - \beta H}
395 + \label{introEquation:densityAndHamiltonian}
396 + \end{equation}
397 +
398 + \subsubsection{\label{introSection:phaseSpaceConservation}Conservation of Phase Space}
399 + Lets consider a region in the phase space,
400 + \begin{equation}
401 + \delta v = \int { \ldots \int {dq_1 } ...dq_f dp_1 } ..dp_f .
402 + \end{equation}
403 + If this region is small enough, the density $\rho$ can be regarded
404 + as uniform over the whole phase space. Thus, the number of phase
405 + points inside this region is given by,
406 + \begin{equation}
407 + \delta N = \rho \delta v = \rho \int { \ldots \int {dq_1 } ...dq_f
408 + dp_1 } ..dp_f.
409 + \end{equation}
410 +
411 + \begin{equation}
412 + \frac{{d(\delta N)}}{{dt}} = \frac{{d\rho }}{{dt}}\delta v + \rho
413 + \frac{d}{{dt}}(\delta v) = 0.
414 + \end{equation}
415 + With the help of stationary assumption
416 + (\ref{introEquation:stationary}), we obtain the principle of the
417 + \emph{conservation of extension in phase space},
418 + \begin{equation}
419 + \frac{d}{{dt}}(\delta v) = \frac{d}{{dt}}\int { \ldots \int {dq_1 }
420 + ...dq_f dp_1 } ..dp_f  = 0.
421 + \label{introEquation:volumePreserving}
422 + \end{equation}
423 +
424 + \subsubsection{\label{introSection:liouvilleInOtherForms}Liouville's Theorem in Other Forms}
425 +
426 + Liouville's theorem can be expresses in a variety of different forms
427 + which are convenient within different contexts. For any two function
428 + $F$ and $G$ of the coordinates and momenta of a system, the Poisson
429 + bracket ${F, G}$ is defined as
430 + \begin{equation}
431 + \left\{ {F,G} \right\} = \sum\limits_i {\left( {\frac{{\partial
432 + F}}{{\partial q_i }}\frac{{\partial G}}{{\partial p_i }} -
433 + \frac{{\partial F}}{{\partial p_i }}\frac{{\partial G}}{{\partial
434 + q_i }}} \right)}.
435 + \label{introEquation:poissonBracket}
436 + \end{equation}
437 + Substituting equations of motion in Hamiltonian formalism(
438 + \ref{introEquation:motionHamiltonianCoordinate} ,
439 + \ref{introEquation:motionHamiltonianMomentum} ) into
440 + (\ref{introEquation:liouvilleTheorem}), we can rewrite Liouville's
441 + theorem using Poisson bracket notion,
442 + \begin{equation}
443 + \left( {\frac{{\partial \rho }}{{\partial t}}} \right) =  - \left\{
444 + {\rho ,H} \right\}.
445 + \label{introEquation:liouvilleTheromInPoissin}
446 + \end{equation}
447 + Moreover, the Liouville operator is defined as
448 + \begin{equation}
449 + iL = \sum\limits_{i = 1}^f {\left( {\frac{{\partial H}}{{\partial
450 + p_i }}\frac{\partial }{{\partial q_i }} - \frac{{\partial
451 + H}}{{\partial q_i }}\frac{\partial }{{\partial p_i }}} \right)}
452 + \label{introEquation:liouvilleOperator}
453 + \end{equation}
454 + In terms of Liouville operator, Liouville's equation can also be
455 + expressed as
456 + \begin{equation}
457 + \left( {\frac{{\partial \rho }}{{\partial t}}} \right) =  - iL\rho
458 + \label{introEquation:liouvilleTheoremInOperator}
459 + \end{equation}
460 +
461   \subsection{\label{introSection:ergodic}The Ergodic Hypothesis}
462  
463   Various thermodynamic properties can be calculated from Molecular
# Line 239 | Line 472 | statistical ensemble are identical \cite{Frenkel1996,
472   ensemble average. It states that time average and average over the
473   statistical ensemble are identical \cite{Frenkel1996, leach01:mm}.
474   \begin{equation}
475 < \langle A \rangle_t = \mathop {\lim }\limits_{t \to \infty }
476 < \frac{1}{t}\int\limits_0^t {A(p(t),q(t))dt = \int\limits_\Gamma
477 < {A(p(t),q(t))} } \rho (p(t), q(t)) dpdq
475 > \langle A(q , p) \rangle_t = \mathop {\lim }\limits_{t \to \infty }
476 > \frac{1}{t}\int\limits_0^t {A(q(t),p(t))dt = \int\limits_\Gamma
477 > {A(q(t),p(t))} } \rho (q(t), p(t)) dqdp
478   \end{equation}
479 < where $\langle A \rangle_t$ is an equilibrium value of a physical
480 < quantity and $\rho (p(t), q(t))$ is the equilibrium distribution
481 < function. If an observation is averaged over a sufficiently long
482 < time (longer than relaxation time), all accessible microstates in
483 < phase space are assumed to be equally probed, giving a properly
484 < weighted statistical average. This allows the researcher freedom of
485 < choice when deciding how best to measure a given observable. In case
486 < an ensemble averaged approach sounds most reasonable, the Monte
487 < Carlo techniques\cite{metropolis:1949} can be utilized. Or if the
488 < system lends itself to a time averaging approach, the Molecular
489 < Dynamics techniques in Sec.~\ref{introSection:molecularDynamics}
490 < will be the best choice\cite{Frenkel1996}.
479 > where $\langle  A(q , p) \rangle_t$ is an equilibrium value of a
480 > physical quantity and $\rho (p(t), q(t))$ is the equilibrium
481 > distribution function. If an observation is averaged over a
482 > sufficiently long time (longer than relaxation time), all accessible
483 > microstates in phase space are assumed to be equally probed, giving
484 > a properly weighted statistical average. This allows the researcher
485 > freedom of choice when deciding how best to measure a given
486 > observable. In case an ensemble averaged approach sounds most
487 > reasonable, the Monte Carlo techniques\cite{metropolis:1949} can be
488 > utilized. Or if the system lends itself to a time averaging
489 > approach, the Molecular Dynamics techniques in
490 > Sec.~\ref{introSection:molecularDynamics} will be the best
491 > choice\cite{Frenkel1996}.
492  
493   \section{\label{introSection:geometricIntegratos}Geometric Integrators}
494   A variety of numerical integrators were proposed to simulate the
# Line 336 | Line 570 | The most obvious change being that matrix $J$ now depe
570   \dot x = J(x)\nabla _x H \label{introEquation:poissonHamiltonian}
571   \end{equation}
572   The most obvious change being that matrix $J$ now depends on $x$.
339 The free rigid body is an example of Poisson system (actually a
340 Lie-Poisson system) with Hamiltonian function of angular kinetic
341 energy.
342 \begin{equation}
343 J(\pi ) = \left( {\begin{array}{*{20}c}
344   0 & {\pi _3 } & { - \pi _2 }  \\
345   { - \pi _3 } & 0 & {\pi _1 }  \\
346   {\pi _2 } & { - \pi _1 } & 0  \\
347 \end{array}} \right)
348 \end{equation}
573  
574 < \begin{equation}
351 < H = \frac{1}{2}\left( {\frac{{\pi _1^2 }}{{I_1 }} + \frac{{\pi _2^2
352 < }}{{I_2 }} + \frac{{\pi _3^2 }}{{I_3 }}} \right)
353 < \end{equation}
574 > \subsection{\label{introSection:exactFlow}Exact Flow}
575  
355 \subsection{\label{introSection:geometricProperties}Geometric Properties}
576   Let $x(t)$ be the exact solution of the ODE system,
577   \begin{equation}
578   \frac{{dx}}{{dt}} = f(x) \label{introEquation:ODE}
# Line 362 | Line 582 | where $\tau$ is a fixed time step and $\varphi$ is a m
582   x(t+\tau) =\varphi_\tau(x(t))
583   \]
584   where $\tau$ is a fixed time step and $\varphi$ is a map from phase
585 < space to itself. In most cases, it is not easy to find the exact
366 < flow $\varphi_\tau$. Instead, we use a approximate map, $\psi_\tau$,
367 < which is usually called integrator. The order of an integrator
368 < $\psi_\tau$ is $p$, if the Taylor series of $\psi_\tau$ agree to
369 < order $p$,
585 > space to itself. The flow has the continuous group property,
586   \begin{equation}
587 + \varphi _{\tau _1 }  \circ \varphi _{\tau _2 }  = \varphi _{\tau _1
588 + + \tau _2 } .
589 + \end{equation}
590 + In particular,
591 + \begin{equation}
592 + \varphi _\tau   \circ \varphi _{ - \tau }  = I
593 + \end{equation}
594 + Therefore, the exact flow is self-adjoint,
595 + \begin{equation}
596 + \varphi _\tau   = \varphi _{ - \tau }^{ - 1}.
597 + \end{equation}
598 + The exact flow can also be written in terms of the of an operator,
599 + \begin{equation}
600 + \varphi _\tau  (x) = e^{\tau \sum\limits_i {f_i (x)\frac{\partial
601 + }{{\partial x_i }}} } (x) \equiv \exp (\tau f)(x).
602 + \label{introEquation:exponentialOperator}
603 + \end{equation}
604 +
605 + In most cases, it is not easy to find the exact flow $\varphi_\tau$.
606 + Instead, we use a approximate map, $\psi_\tau$, which is usually
607 + called integrator. The order of an integrator $\psi_\tau$ is $p$, if
608 + the Taylor series of $\psi_\tau$ agree to order $p$,
609 + \begin{equation}
610   \psi_tau(x) = x + \tau f(x) + O(\tau^{p+1})
611   \end{equation}
612  
613 + \subsection{\label{introSection:geometricProperties}Geometric Properties}
614 +
615   The hidden geometric properties of ODE and its flow play important
616 < roles in numerical studies. Let $\varphi$ be the flow of Hamiltonian
617 < vector field, $\varphi$ is a \emph{symplectic} flow if it satisfies,
616 > roles in numerical studies. Many of them can be found in systems
617 > which occur naturally in applications.
618 >
619 > Let $\varphi$ be the flow of Hamiltonian vector field, $\varphi$ is
620 > a \emph{symplectic} flow if it satisfies,
621   \begin{equation}
622 < '\varphi^T J '\varphi = J.
622 > {\varphi '}^T J \varphi ' = J.
623   \end{equation}
624   According to Liouville's theorem, the symplectic volume is invariant
625   under a Hamiltonian flow, which is the basis for classical
# Line 383 | Line 627 | symplectomorphism. As to the Poisson system,
627   field on a symplectic manifold can be shown to be a
628   symplectomorphism. As to the Poisson system,
629   \begin{equation}
630 < '\varphi ^T J '\varphi  = J \circ \varphi
630 > {\varphi '}^T J \varphi ' = J \circ \varphi
631   \end{equation}
632 < is the property must be preserved by the integrator. It is possible
633 < to construct a \emph{volume-preserving} flow for a source free($
634 < \nabla \cdot f = 0 $) ODE, if the flow satisfies $ \det d\varphi  =
635 < 1$. Changing the variables $y = h(x)$ in a
636 < ODE\ref{introEquation:ODE} will result in a new system,
632 > is the property must be preserved by the integrator.
633 >
634 > It is possible to construct a \emph{volume-preserving} flow for a
635 > source free($ \nabla \cdot f = 0 $) ODE, if the flow satisfies $
636 > \det d\varphi  = 1$. One can show easily that a symplectic flow will
637 > be volume-preserving.
638 >
639 > Changing the variables $y = h(x)$ in a ODE\ref{introEquation:ODE}
640 > will result in a new system,
641   \[
642   \dot y = \tilde f(y) = ((dh \cdot f)h^{ - 1} )(y).
643   \]
644   The vector filed $f$ has reversing symmetry $h$ if $f = - \tilde f$.
645   In other words, the flow of this vector field is reversible if and
646 < only if $ h \circ \varphi ^{ - 1}  = \varphi  \circ h $. When
399 < designing any numerical methods, one should always try to preserve
400 < the structural properties of the original ODE and its flow.
646 > only if $ h \circ \varphi ^{ - 1}  = \varphi  \circ h $.
647  
648 + A \emph{first integral}, or conserved quantity of a general
649 + differential function is a function $ G:R^{2d}  \to R^d $ which is
650 + constant for all solutions of the ODE $\frac{{dx}}{{dt}} = f(x)$ ,
651 + \[
652 + \frac{{dG(x(t))}}{{dt}} = 0.
653 + \]
654 + Using chain rule, one may obtain,
655 + \[
656 + \sum\limits_i {\frac{{dG}}{{dx_i }}} f_i (x) = f \bullet \nabla G,
657 + \]
658 + which is the condition for conserving \emph{first integral}. For a
659 + canonical Hamiltonian system, the time evolution of an arbitrary
660 + smooth function $G$ is given by,
661 + \begin{equation}
662 + \begin{array}{c}
663 + \frac{{dG(x(t))}}{{dt}} = [\nabla _x G(x(t))]^T \dot x(t) \\
664 +  = [\nabla _x G(x(t))]^T J\nabla _x H(x(t)). \\
665 + \end{array}
666 + \label{introEquation:firstIntegral1}
667 + \end{equation}
668 + Using poisson bracket notion, Equation
669 + \ref{introEquation:firstIntegral1} can be rewritten as
670 + \[
671 + \frac{d}{{dt}}G(x(t)) = \left\{ {G,H} \right\}(x(t)).
672 + \]
673 + Therefore, the sufficient condition for $G$ to be the \emph{first
674 + integral} of a Hamiltonian system is
675 + \[
676 + \left\{ {G,H} \right\} = 0.
677 + \]
678 + As well known, the Hamiltonian (or energy) H of a Hamiltonian system
679 + is a \emph{first integral}, which is due to the fact $\{ H,H\}  =
680 + 0$.
681 +
682 +
683 + When designing any numerical methods, one should always try to
684 + preserve the structural properties of the original ODE and its flow.
685 +
686   \subsection{\label{introSection:constructionSymplectic}Construction of Symplectic Methods}
687   A lot of well established and very effective numerical methods have
688   been successful precisely because of their symplecticities even
# Line 414 | Line 698 | Generating function tends to lead to methods which are
698   \end{enumerate}
699  
700   Generating function tends to lead to methods which are cumbersome
701 < and difficult to use\cite{}. In dissipative systems, variational
702 < methods can capture the decay of energy accurately\cite{}. Since
703 < their geometrically unstable nature against non-Hamiltonian
704 < perturbations, ordinary implicit Runge-Kutta methods are not
705 < suitable for Hamiltonian system. Recently, various high-order
706 < explicit Runge--Kutta methods have been developed to overcome this
707 < instability \cite{}. However, due to computational penalty involved
708 < in implementing the Runge-Kutta methods, they do not attract too
709 < much attention from Molecular Dynamics community. Instead, splitting
710 < have been widely accepted since they exploit natural decompositions
711 < of the system\cite{Tuckerman92}. The main idea behind splitting
712 < methods is to decompose the discrete $\varphi_h$ as a composition of
713 < simpler flows,
701 > and difficult to use. In dissipative systems, variational methods
702 > can capture the decay of energy accurately. Since their
703 > geometrically unstable nature against non-Hamiltonian perturbations,
704 > ordinary implicit Runge-Kutta methods are not suitable for
705 > Hamiltonian system. Recently, various high-order explicit
706 > Runge--Kutta methods have been developed to overcome this
707 > instability. However, due to computational penalty involved in
708 > implementing the Runge-Kutta methods, they do not attract too much
709 > attention from Molecular Dynamics community. Instead, splitting have
710 > been widely accepted since they exploit natural decompositions of
711 > the system\cite{Tuckerman92}.
712 >
713 > \subsubsection{\label{introSection:splittingMethod}Splitting Method}
714 >
715 > The main idea behind splitting methods is to decompose the discrete
716 > $\varphi_h$ as a composition of simpler flows,
717   \begin{equation}
718   \varphi _h  = \varphi _{h_1 }  \circ \varphi _{h_2 }  \ldots  \circ
719   \varphi _{h_n }
720   \label{introEquation:FlowDecomposition}
721   \end{equation}
722   where each of the sub-flow is chosen such that each represent a
723 < simpler integration of the system. Let $\phi$ and $\psi$ both be
724 < symplectic maps, it is easy to show that any composition of
725 < symplectic flows yields a symplectic map,
723 > simpler integration of the system.
724 >
725 > Suppose that a Hamiltonian system takes the form,
726 > \[
727 > H = H_1 + H_2.
728 > \]
729 > Here, $H_1$ and $H_2$ may represent different physical processes of
730 > the system. For instance, they may relate to kinetic and potential
731 > energy respectively, which is a natural decomposition of the
732 > problem. If $H_1$ and $H_2$ can be integrated using exact flows
733 > $\varphi_1(t)$ and $\varphi_2(t)$, respectively, a simple first
734 > order is then given by the Lie-Trotter formula
735   \begin{equation}
736 + \varphi _h  = \varphi _{1,h}  \circ \varphi _{2,h},
737 + \label{introEquation:firstOrderSplitting}
738 + \end{equation}
739 + where $\varphi _h$ is the result of applying the corresponding
740 + continuous $\varphi _i$ over a time $h$. By definition, as
741 + $\varphi_i(t)$ is the exact solution of a Hamiltonian system, it
742 + must follow that each operator $\varphi_i(t)$ is a symplectic map.
743 + It is easy to show that any composition of symplectic flows yields a
744 + symplectic map,
745 + \begin{equation}
746   (\varphi '\phi ')^T J\varphi '\phi ' = \phi '^T \varphi '^T J\varphi
747 < '\phi ' = \phi '^T J\phi ' = J.
747 > '\phi ' = \phi '^T J\phi ' = J,
748   \label{introEquation:SymplecticFlowComposition}
749   \end{equation}
750 < Suppose that a Hamiltonian system has a form with $H = T + V$
750 > where $\phi$ and $\psi$ both are symplectic maps. Thus operator
751 > splitting in this context automatically generates a symplectic map.
752  
753 + The Lie-Trotter splitting(\ref{introEquation:firstOrderSplitting})
754 + introduces local errors proportional to $h^2$, while Strang
755 + splitting gives a second-order decomposition,
756 + \begin{equation}
757 + \varphi _h  = \varphi _{1,h/2}  \circ \varphi _{2,h}  \circ \varphi
758 + _{1,h/2} , \label{introEquation:secondOrderSplitting}
759 + \end{equation}
760 + which has a local error proportional to $h^3$. Sprang splitting's
761 + popularity in molecular simulation community attribute to its
762 + symmetric property,
763 + \begin{equation}
764 + \varphi _h^{ - 1} = \varphi _{ - h}.
765 + \label{introEquation:timeReversible}
766 + \end{equation}
767  
768 + \subsubsection{\label{introSection:exampleSplittingMethod}Example of Splitting Method}
769 + The classical equation for a system consisting of interacting
770 + particles can be written in Hamiltonian form,
771 + \[
772 + H = T + V
773 + \]
774 + where $T$ is the kinetic energy and $V$ is the potential energy.
775 + Setting $H_1 = T, H_2 = V$ and applying Strang splitting, one
776 + obtains the following:
777 + \begin{align}
778 + q(\Delta t) &= q(0) + \dot{q}(0)\Delta t +
779 +    \frac{F[q(0)]}{m}\frac{\Delta t^2}{2}, %
780 + \label{introEquation:Lp10a} \\%
781 + %
782 + \dot{q}(\Delta t) &= \dot{q}(0) + \frac{\Delta t}{2m}
783 +    \biggl [F[q(0)] + F[q(\Delta t)] \biggr]. %
784 + \label{introEquation:Lp10b}
785 + \end{align}
786 + where $F(t)$ is the force at time $t$. This integration scheme is
787 + known as \emph{velocity verlet} which is
788 + symplectic(\ref{introEquation:SymplecticFlowComposition}),
789 + time-reversible(\ref{introEquation:timeReversible}) and
790 + volume-preserving (\ref{introEquation:volumePreserving}). These
791 + geometric properties attribute to its long-time stability and its
792 + popularity in the community. However, the most commonly used
793 + velocity verlet integration scheme is written as below,
794 + \begin{align}
795 + \dot{q}\biggl (\frac{\Delta t}{2}\biggr ) &=
796 +    \dot{q}(0) + \frac{\Delta t}{2m}\, F[q(0)], \label{introEquation:Lp9a}\\%
797 + %
798 + q(\Delta t) &= q(0) + \Delta t\, \dot{q}\biggl (\frac{\Delta t}{2}\biggr ),%
799 +    \label{introEquation:Lp9b}\\%
800 + %
801 + \dot{q}(\Delta t) &= \dot{q}\biggl (\frac{\Delta t}{2}\biggr ) +
802 +    \frac{\Delta t}{2m}\, F[q(0)]. \label{introEquation:Lp9c}
803 + \end{align}
804 + From the preceding splitting, one can see that the integration of
805 + the equations of motion would follow:
806 + \begin{enumerate}
807 + \item calculate the velocities at the half step, $\frac{\Delta t}{2}$, from the forces calculated at the initial position.
808  
809 + \item Use the half step velocities to move positions one whole step, $\Delta t$.
810 +
811 + \item Evaluate the forces at the new positions, $\mathbf{r}(\Delta t)$, and use the new forces to complete the velocity move.
812 +
813 + \item Repeat from step 1 with the new position, velocities, and forces assuming the roles of the initial values.
814 + \end{enumerate}
815 +
816 + Simply switching the order of splitting and composing, a new
817 + integrator, the \emph{position verlet} integrator, can be generated,
818 + \begin{align}
819 + \dot q(\Delta t) &= \dot q(0) + \Delta tF(q(0))\left[ {q(0) +
820 + \frac{{\Delta t}}{{2m}}\dot q(0)} \right], %
821 + \label{introEquation:positionVerlet1} \\%
822 + %
823 + q(\Delta t) &= q(0) + \frac{{\Delta t}}{2}\left[ {\dot q(0) + \dot
824 + q(\Delta t)} \right]. %
825 + \label{introEquation:positionVerlet2}
826 + \end{align}
827 +
828 + \subsubsection{\label{introSection:errorAnalysis}Error Analysis and Higher Order Methods}
829 +
830 + Baker-Campbell-Hausdorff formula can be used to determine the local
831 + error of splitting method in terms of commutator of the
832 + operators(\ref{introEquation:exponentialOperator}) associated with
833 + the sub-flow. For operators $hX$ and $hY$ which are associate to
834 + $\varphi_1(t)$ and $\varphi_2(t)$ respectively , we have
835 + \begin{equation}
836 + \exp (hX + hY) = \exp (hZ)
837 + \end{equation}
838 + where
839 + \begin{equation}
840 + hZ = hX + hY + \frac{{h^2 }}{2}[X,Y] + \frac{{h^3 }}{2}\left(
841 + {[X,[X,Y]] + [Y,[Y,X]]} \right) +  \ldots .
842 + \end{equation}
843 + Here, $[X,Y]$ is the commutators of operator $X$ and $Y$ given by
844 + \[
845 + [X,Y] = XY - YX .
846 + \]
847 + Applying Baker-Campbell-Hausdorff formula to Sprang splitting, we
848 + can obtain
849 + \begin{equation}
850 + \exp (h X/2)\exp (h Y)\exp (h X/2) & = & \exp (h X + h Y + h^2
851 + [X,Y]/4 + h^2 [Y,X]/4 \\ & & \mbox{} + h^2 [X,X]/8 + h^2 [Y,Y]/8 \\
852 + & & \mbox{} + h^3 [Y,[Y,X]]/12 - h^3 [X,[X,Y]]/24 & & \mbox{} +
853 + \ldots )
854 + \end{equation}
855 + Since \[ [X,Y] + [Y,X] = 0\] and \[ [X,X] = 0\], the dominant local
856 + error of Spring splitting is proportional to $h^3$. The same
857 + procedure can be applied to general splitting,  of the form
858 + \begin{equation}
859 + \varphi _{b_m h}^2  \circ \varphi _{a_m h}^1  \circ \varphi _{b_{m -
860 + 1} h}^2  \circ  \ldots  \circ \varphi _{a_1 h}^1 .
861 + \end{equation}
862 + Careful choice of coefficient $a_1 ,\ldot , b_m$ will lead to higher
863 + order method. Yoshida proposed an elegant way to compose higher
864 + order methods based on symmetric splitting. Given a symmetric second
865 + order base method $ \varphi _h^{(2)} $, a fourth-order symmetric
866 + method can be constructed by composing,
867 + \[
868 + \varphi _h^{(4)}  = \varphi _{\alpha h}^{(2)}  \circ \varphi _{\beta
869 + h}^{(2)}  \circ \varphi _{\alpha h}^{(2)}
870 + \]
871 + where $ \alpha  =  - \frac{{2^{1/3} }}{{2 - 2^{1/3} }}$ and $ \beta
872 + = \frac{{2^{1/3} }}{{2 - 2^{1/3} }}$. Moreover, a symmetric
873 + integrator $ \varphi _h^{(2n + 2)}$ can be composed by
874 + \begin{equation}
875 + \varphi _h^{(2n + 2)}  = \varphi _{\alpha h}^{(2n)}  \circ \varphi
876 + _{\beta h}^{(2n)}  \circ \varphi _{\alpha h}^{(2n)}
877 + \end{equation}
878 + , if the weights are chosen as
879 + \[
880 + \alpha  =  - \frac{{2^{1/(2n + 1)} }}{{2 - 2^{1/(2n + 1)} }},\beta =
881 + \frac{{2^{1/(2n + 1)} }}{{2 - 2^{1/(2n + 1)} }} .
882 + \]
883 +
884   \section{\label{introSection:molecularDynamics}Molecular Dynamics}
885  
886 < As a special discipline of molecular modeling, Molecular dynamics
887 < has proven to be a powerful tool for studying the functions of
888 < biological systems, providing structural, thermodynamic and
889 < dynamical information.
886 > As one of the principal tools of molecular modeling, Molecular
887 > dynamics has proven to be a powerful tool for studying the functions
888 > of biological systems, providing structural, thermodynamic and
889 > dynamical information. The basic idea of molecular dynamics is that
890 > macroscopic properties are related to microscopic behavior and
891 > microscopic behavior can be calculated from the trajectories in
892 > simulations. For instance, instantaneous temperature of an
893 > Hamiltonian system of $N$ particle can be measured by
894 > \[
895 > T = \sum\limits_{i = 1}^N {\frac{{m_i v_i^2 }}{{fk_B }}}
896 > \]
897 > where $m_i$ and $v_i$ are the mass and velocity of $i$th particle
898 > respectively, $f$ is the number of degrees of freedom, and $k_B$ is
899 > the boltzman constant.
900  
901 < \subsection{\label{introSec:mdInit}Initialization}
901 > A typical molecular dynamics run consists of three essential steps:
902 > \begin{enumerate}
903 >  \item Initialization
904 >    \begin{enumerate}
905 >    \item Preliminary preparation
906 >    \item Minimization
907 >    \item Heating
908 >    \item Equilibration
909 >    \end{enumerate}
910 >  \item Production
911 >  \item Analysis
912 > \end{enumerate}
913 > These three individual steps will be covered in the following
914 > sections. Sec.~\ref{introSec:initialSystemSettings} deals with the
915 > initialization of a simulation. Sec.~\ref{introSec:production} will
916 > discusses issues in production run. Sec.~\ref{introSection:Analysis}
917 > provides the theoretical tools for trajectory analysis.
918  
919 < \subsection{\label{introSection:mdIntegration} Integration of the Equations of Motion}
919 > \subsection{\label{introSec:initialSystemSettings}Initialization}
920  
921 < \section{\label{introSection:rigidBody}Dynamics of Rigid Bodies}
921 > \subsubsection{Preliminary preparation}
922  
923 < A rigid body is a body in which the distance between any two given
924 < points of a rigid body remains constant regardless of external
925 < forces exerted on it. A rigid body therefore conserves its shape
926 < during its motion.
923 > When selecting the starting structure of a molecule for molecular
924 > simulation, one may retrieve its Cartesian coordinates from public
925 > databases, such as RCSB Protein Data Bank \textit{etc}. Although
926 > thousands of crystal structures of molecules are discovered every
927 > year, many more remain unknown due to the difficulties of
928 > purification and crystallization. Even for the molecule with known
929 > structure, some important information is missing. For example, the
930 > missing hydrogen atom which acts as donor in hydrogen bonding must
931 > be added. Moreover, in order to include electrostatic interaction,
932 > one may need to specify the partial charges for individual atoms.
933 > Under some circumstances, we may even need to prepare the system in
934 > a special setup. For instance, when studying transport phenomenon in
935 > membrane system, we may prepare the lipids in bilayer structure
936 > instead of placing lipids randomly in solvent, since we are not
937 > interested in self-aggregation and it takes a long time to happen.
938  
939 < Applications of dynamics of rigid bodies.
939 > \subsubsection{Minimization}
940  
941 < \subsection{\label{introSection:lieAlgebra}Lie Algebra}
941 > It is quite possible that some of molecules in the system from
942 > preliminary preparation may be overlapped with each other. This
943 > close proximity leads to high potential energy which consequently
944 > jeopardizes any molecular dynamics simulations. To remove these
945 > steric overlaps, one typically performs energy minimization to find
946 > a more reasonable conformation. Several energy minimization methods
947 > have been developed to exploit the energy surface and to locate the
948 > local minimum. While converging slowly near the minimum, steepest
949 > descent method is extremely robust when systems are far from
950 > harmonic. Thus, it is often used to refine structure from
951 > crystallographic data. Relied on the gradient or hessian, advanced
952 > methods like conjugate gradient and Newton-Raphson converge rapidly
953 > to a local minimum, while become unstable if the energy surface is
954 > far from quadratic. Another factor must be taken into account, when
955 > choosing energy minimization method, is the size of the system.
956 > Steepest descent and conjugate gradient can deal with models of any
957 > size. Because of the limit of computation power to calculate hessian
958 > matrix and insufficient storage capacity to store them, most
959 > Newton-Raphson methods can not be used with very large models.
960  
961 < \subsection{\label{introSection:DLMMotionEquation}The Euler Equations of Rigid Body Motion}
961 > \subsubsection{Heating}
962  
963 < \subsection{\label{introSection:otherRBMotionEquation}Other Formulations for Rigid Body Motion}
963 > Typically, Heating is performed by assigning random velocities
964 > according to a Gaussian distribution for a temperature. Beginning at
965 > a lower temperature and gradually increasing the temperature by
966 > assigning greater random velocities, we end up with setting the
967 > temperature of the system to a final temperature at which the
968 > simulation will be conducted. In heating phase, we should also keep
969 > the system from drifting or rotating as a whole. Equivalently, the
970 > net linear momentum and angular momentum of the system should be
971 > shifted to zero.
972  
973 < %\subsection{\label{introSection:poissonBrackets}Poisson Brackets}
973 > \subsubsection{Equilibration}
974  
975 < \section{\label{introSection:correlationFunctions}Correlation Functions}
975 > The purpose of equilibration is to allow the system to evolve
976 > spontaneously for a period of time and reach equilibrium. The
977 > procedure is continued until various statistical properties, such as
978 > temperature, pressure, energy, volume and other structural
979 > properties \textit{etc}, become independent of time. Strictly
980 > speaking, minimization and heating are not necessary, provided the
981 > equilibration process is long enough. However, these steps can serve
982 > as a means to arrive at an equilibrated structure in an effective
983 > way.
984  
985 < \section{\label{introSection:langevinDynamics}Langevin Dynamics}
985 > \subsection{\label{introSection:production}Production}
986  
987 < \subsection{\label{introSection:LDIntroduction}Introduction and application of Langevin Dynamics}
987 > Production run is the most important steps of the simulation, in
988 > which the equilibrated structure is used as a starting point and the
989 > motions of the molecules are collected for later analysis. In order
990 > to capture the macroscopic properties of the system, the molecular
991 > dynamics simulation must be performed in correct and efficient way.
992  
993 < \subsection{\label{introSection:generalizedLangevinDynamics}Generalized Langevin Dynamics}
993 > The most expensive part of a molecular dynamics simulation is the
994 > calculation of non-bonded forces, such as van der Waals force and
995 > Coulombic forces \textit{etc}. For a system of $N$ particles, the
996 > complexity of the algorithm for pair-wise interactions is $O(N^2 )$,
997 > which making large simulations prohibitive in the absence of any
998 > computation saving techniques.
999  
1000 + A natural approach to avoid system size issue is to represent the
1001 + bulk behavior by a finite number of the particles. However, this
1002 + approach will suffer from the surface effect. To offset this,
1003 + \textit{Periodic boundary condition} is developed to simulate bulk
1004 + properties with a relatively small number of particles. In this
1005 + method, the simulation box is replicated throughout space to form an
1006 + infinite lattice. During the simulation, when a particle moves in
1007 + the primary cell, its image in other cells move in exactly the same
1008 + direction with exactly the same orientation. Thus, as a particle
1009 + leaves the primary cell, one of its images will enter through the
1010 + opposite face.
1011 + %\begin{figure}
1012 + %\centering
1013 + %\includegraphics[width=\linewidth]{pbcFig.eps}
1014 + %\caption[An illustration of periodic boundary conditions]{A 2-D
1015 + %illustration of periodic boundary conditions. As one particle leaves
1016 + %the right of the simulation box, an image of it enters the left.}
1017 + %\label{introFig:pbc}
1018 + %\end{figure}
1019 +
1020 + %cutoff and minimum image convention
1021 + Another important technique to improve the efficiency of force
1022 + evaluation is to apply cutoff where particles farther than a
1023 + predetermined distance, are not included in the calculation
1024 + \cite{Frenkel1996}. The use of a cutoff radius will cause a
1025 + discontinuity in the potential energy curve. Fortunately, one can
1026 + shift the potential to ensure the potential curve go smoothly to
1027 + zero at the cutoff radius. Cutoff strategy works pretty well for
1028 + Lennard-Jones interaction because of its short range nature.
1029 + However, simply truncating the electrostatic interaction with the
1030 + use of cutoff has been shown to lead to severe artifacts in
1031 + simulations. Ewald summation, in which the slowly conditionally
1032 + convergent Coulomb potential is transformed into direct and
1033 + reciprocal sums with rapid and absolute convergence, has proved to
1034 + minimize the periodicity artifacts in liquid simulations. Taking the
1035 + advantages of the fast Fourier transform (FFT) for calculating
1036 + discrete Fourier transforms, the particle mesh-based methods are
1037 + accelerated from $O(N^{3/2})$ to $O(N logN)$. An alternative
1038 + approach is \emph{fast multipole method}, which treats Coulombic
1039 + interaction exactly at short range, and approximate the potential at
1040 + long range through multipolar expansion. In spite of their wide
1041 + acceptances at the molecular simulation community, these two methods
1042 + are hard to be implemented correctly and efficiently. Instead, we
1043 + use a damped and charge-neutralized Coulomb potential method
1044 + developed by Wolf and his coworkers. The shifted Coulomb potential
1045 + for particle $i$ and particle $j$ at distance $r_{rj}$ is given by:
1046   \begin{equation}
1047 < H = \frac{{p^2 }}{{2m}} + U(x) + H_B  + \Delta U(x,x_1 , \ldots x_N)
1048 < \label{introEquation:bathGLE}
1047 > V(r_{ij})= \frac{q_i q_j \textrm{erfc}(\alpha
1048 > r_{ij})}{r_{ij}}-\lim_{r_{ij}\rightarrow
1049 > R_\textrm{c}}\left\{\frac{q_iq_j \textrm{erfc}(\alpha
1050 > r_{ij})}{r_{ij}}\right\}. \label{introEquation:shiftedCoulomb}
1051   \end{equation}
1052 < where $H_B$ is harmonic bath Hamiltonian,
1052 > where $\alpha$ is the convergence parameter. Due to the lack of
1053 > inherent periodicity and rapid convergence,this method is extremely
1054 > efficient and easy to implement.
1055 > %\begin{figure}
1056 > %\centering
1057 > %\includegraphics[width=\linewidth]{pbcFig.eps}
1058 > %\caption[An illustration of shifted Coulomb potential]{An illustration of shifted Coulomb potential.}
1059 > %\label{introFigure:shiftedCoulomb}
1060 > %\end{figure}
1061 >
1062 > %multiple time step
1063 >
1064 > \subsection{\label{introSection:Analysis} Analysis}
1065 >
1066 > Recently, advanced visualization technique are widely applied to
1067 > monitor the motions of molecules. Although the dynamics of the
1068 > system can be described qualitatively from animation, quantitative
1069 > trajectory analysis are more appreciable. According to the
1070 > principles of Statistical Mechanics,
1071 > Sec.~\ref{introSection:statisticalMechanics}, one can compute
1072 > thermodynamics properties, analyze fluctuations of structural
1073 > parameters, and investigate time-dependent processes of the molecule
1074 > from the trajectories.
1075 >
1076 > \subsubsection{\label{introSection:thermodynamicsProperties}Thermodynamics Properties}
1077 >
1078 > Thermodynamics properties, which can be expressed in terms of some
1079 > function of the coordinates and momenta of all particles in the
1080 > system, can be directly computed from molecular dynamics. The usual
1081 > way to measure the pressure is based on virial theorem of Clausius
1082 > which states that the virial is equal to $-3Nk_BT$. For a system
1083 > with forces between particles, the total virial, $W$, contains the
1084 > contribution from external pressure and interaction between the
1085 > particles:
1086   \[
1087 < H_B  =\sum\limits_{\alpha  = 1}^N {\left\{ {\frac{{p_\alpha ^2
1088 < }}{{2m_\alpha  }} + \frac{1}{2}m_\alpha  w_\alpha ^2 } \right\}}
1087 > W =  - 3PV + \left\langle {\sum\limits_{i < j} {r{}_{ij} \cdot
1088 > f_{ij} } } \right\rangle
1089   \]
1090 < and $\Delta U$ is bilinear system-bath coupling,
1090 > where $f_{ij}$ is the force between particle $i$ and $j$ at a
1091 > distance $r_{ij}$. Thus, the expression for the pressure is given
1092 > by:
1093 > \begin{equation}
1094 > P = \frac{{Nk_B T}}{V} - \frac{1}{{3V}}\left\langle {\sum\limits_{i
1095 > < j} {r{}_{ij} \cdot f_{ij} } } \right\rangle
1096 > \end{equation}
1097 >
1098 > \subsubsection{\label{introSection:structuralProperties}Structural Properties}
1099 >
1100 > Structural Properties of a simple fluid can be described by a set of
1101 > distribution functions. Among these functions,\emph{pair
1102 > distribution function}, also known as \emph{radial distribution
1103 > function}, is of most fundamental importance to liquid-state theory.
1104 > Pair distribution function can be gathered by Fourier transforming
1105 > raw data from a series of neutron diffraction experiments and
1106 > integrating over the surface factor \cite{Powles73}. The experiment
1107 > result can serve as a criterion to justify the correctness of the
1108 > theory. Moreover, various equilibrium thermodynamic and structural
1109 > properties can also be expressed in terms of radial distribution
1110 > function \cite{allen87:csl}.
1111 >
1112 > A pair distribution functions $g(r)$ gives the probability that a
1113 > particle $i$ will be located at a distance $r$ from a another
1114 > particle $j$ in the system
1115   \[
1116 < \Delta U =  - \sum\limits_{\alpha  = 1}^N {g_\alpha  x_\alpha  x}
1116 > g(r) = \frac{V}{{N^2 }}\left\langle {\sum\limits_i {\sum\limits_{j
1117 > \ne i} {\delta (r - r_{ij} )} } } \right\rangle.
1118   \]
1119 < Completing the square,
1119 > Note that the delta function can be replaced by a histogram in
1120 > computer simulation. Figure
1121 > \ref{introFigure:pairDistributionFunction} shows a typical pair
1122 > distribution function for the liquid argon system. The occurrence of
1123 > several peaks in the plot of $g(r)$ suggests that it is more likely
1124 > to find particles at certain radial values than at others. This is a
1125 > result of the attractive interaction at such distances. Because of
1126 > the strong repulsive forces at short distance, the probability of
1127 > locating particles at distances less than about 2.5{\AA} from each
1128 > other is essentially zero.
1129 >
1130 > %\begin{figure}
1131 > %\centering
1132 > %\includegraphics[width=\linewidth]{pdf.eps}
1133 > %\caption[Pair distribution function for the liquid argon
1134 > %]{Pair distribution function for the liquid argon}
1135 > %\label{introFigure:pairDistributionFunction}
1136 > %\end{figure}
1137 >
1138 > \subsubsection{\label{introSection:timeDependentProperties}Time-dependent
1139 > Properties}
1140 >
1141 > Time-dependent properties are usually calculated using \emph{time
1142 > correlation function}, which correlates random variables $A$ and $B$
1143 > at two different time
1144 > \begin{equation}
1145 > C_{AB} (t) = \left\langle {A(t)B(0)} \right\rangle.
1146 > \label{introEquation:timeCorrelationFunction}
1147 > \end{equation}
1148 > If $A$ and $B$ refer to same variable, this kind of correlation
1149 > function is called \emph{auto correlation function}. One example of
1150 > auto correlation function is velocity auto-correlation function
1151 > which is directly related to transport properties of molecular
1152 > liquids:
1153   \[
1154 < H_B  + \Delta U = \sum\limits_{\alpha  = 1}^N {\left\{
1155 < {\frac{{p_\alpha ^2 }}{{2m_\alpha  }} + \frac{1}{2}m_\alpha
501 < w_\alpha ^2 \left( {x_\alpha   - \frac{{g_\alpha  }}{{m_\alpha
502 < w_\alpha ^2 }}x} \right)^2 } \right\}}  - \sum\limits_{\alpha  =
503 < 1}^N {\frac{{g_\alpha ^2 }}{{2m_\alpha  w_\alpha ^2 }}} x^2
1154 > D = \frac{1}{3}\int\limits_0^\infty  {\left\langle {v(t) \cdot v(0)}
1155 > \right\rangle } dt
1156   \]
1157 < and putting it back into Eq.~\ref{introEquation:bathGLE},
1157 > where $D$ is diffusion constant. Unlike velocity autocorrelation
1158 > function which is averaging over time origins and over all the
1159 > atoms, dipole autocorrelation are calculated for the entire system.
1160 > The dipole autocorrelation function is given by:
1161   \[
1162 < H = \frac{{p^2 }}{{2m}} + W(x) + \sum\limits_{\alpha  = 1}^N
1163 < {\left\{ {\frac{{p_\alpha ^2 }}{{2m_\alpha  }} + \frac{1}{2}m_\alpha
509 < w_\alpha ^2 \left( {x_\alpha   - \frac{{g_\alpha  }}{{m_\alpha
510 < w_\alpha ^2 }}x} \right)^2 } \right\}}
1162 > c_{dipole}  = \left\langle {u_{tot} (t) \cdot u_{tot} (t)}
1163 > \right\rangle
1164   \]
1165 < where
1165 > Here $u_{tot}$ is the net dipole of the entire system and is given
1166 > by
1167 > \[
1168 > u_{tot} (t) = \sum\limits_i {u_i (t)}
1169 > \]
1170 > In principle, many time correlation functions can be related with
1171 > Fourier transforms of the infrared, Raman, and inelastic neutron
1172 > scattering spectra of molecular liquids. In practice, one can
1173 > extract the IR spectrum from the intensity of dipole fluctuation at
1174 > each frequency using the following relationship:
1175 > \[
1176 > \hat c_{dipole} (v) = \int_{ - \infty }^\infty  {c_{dipole} (t)e^{ -
1177 > i2\pi vt} dt}
1178 > \]
1179 >
1180 > \section{\label{introSection:rigidBody}Dynamics of Rigid Bodies}
1181 >
1182 > Rigid bodies are frequently involved in the modeling of different
1183 > areas, from engineering, physics, to chemistry. For example,
1184 > missiles and vehicle are usually modeled by rigid bodies.  The
1185 > movement of the objects in 3D gaming engine or other physics
1186 > simulator is governed by the rigid body dynamics. In molecular
1187 > simulation, rigid body is used to simplify the model in
1188 > protein-protein docking study{\cite{Gray03}}.
1189 >
1190 > It is very important to develop stable and efficient methods to
1191 > integrate the equations of motion of orientational degrees of
1192 > freedom. Euler angles are the nature choice to describe the
1193 > rotational degrees of freedom. However, due to its singularity, the
1194 > numerical integration of corresponding equations of motion is very
1195 > inefficient and inaccurate. Although an alternative integrator using
1196 > different sets of Euler angles can overcome this difficulty\cite{},
1197 > the computational penalty and the lost of angular momentum
1198 > conservation still remain. A singularity free representation
1199 > utilizing quaternions was developed by Evans in 1977. Unfortunately,
1200 > this approach suffer from the nonseparable Hamiltonian resulted from
1201 > quaternion representation, which prevents the symplectic algorithm
1202 > to be utilized. Another different approach is to apply holonomic
1203 > constraints to the atoms belonging to the rigid body. Each atom
1204 > moves independently under the normal forces deriving from potential
1205 > energy and constraint forces which are used to guarantee the
1206 > rigidness. However, due to their iterative nature, SHAKE and Rattle
1207 > algorithm converge very slowly when the number of constraint
1208 > increases.
1209 >
1210 > The break through in geometric literature suggests that, in order to
1211 > develop a long-term integration scheme, one should preserve the
1212 > symplectic structure of the flow. Introducing conjugate momentum to
1213 > rotation matrix $Q$ and re-formulating Hamiltonian's equation, a
1214 > symplectic integrator, RSHAKE, was proposed to evolve the
1215 > Hamiltonian system in a constraint manifold by iteratively
1216 > satisfying the orthogonality constraint $Q_T Q = 1$. An alternative
1217 > method using quaternion representation was developed by Omelyan.
1218 > However, both of these methods are iterative and inefficient. In
1219 > this section, we will present a symplectic Lie-Poisson integrator
1220 > for rigid body developed by Dullweber and his
1221 > coworkers\cite{Dullweber1997} in depth.
1222 >
1223 > \subsection{\label{introSection:constrainedHamiltonianRB}Constrained Hamiltonian for Rigid Body}
1224 > The motion of the rigid body is Hamiltonian with the Hamiltonian
1225 > function
1226 > \begin{equation}
1227 > H = \frac{1}{2}(p^T m^{ - 1} p) + \frac{1}{2}tr(PJ^{ - 1} P) +
1228 > V(q,Q) + \frac{1}{2}tr[(QQ^T  - 1)\Lambda ].
1229 > \label{introEquation:RBHamiltonian}
1230 > \end{equation}
1231 > Here, $q$ and $Q$  are the position and rotation matrix for the
1232 > rigid-body, $p$ and $P$  are conjugate momenta to $q$  and $Q$ , and
1233 > $J$, a diagonal matrix, is defined by
1234   \[
1235 < W(x) = U(x) - \sum\limits_{\alpha  = 1}^N {\frac{{g_\alpha ^2
515 < }}{{2m_\alpha  w_\alpha ^2 }}} x^2
1235 > I_{ii}^{ - 1}  = \frac{1}{2}\sum\limits_{i \ne j} {J_{jj}^{ - 1} }
1236   \]
1237 < Since the first two terms of the new Hamiltonian depend only on the
1238 < system coordinates, we can get the equations of motion for
1239 < Generalized Langevin Dynamics by Hamilton's equations
1240 < \ref{introEquation:motionHamiltonianCoordinate,
1241 < introEquation:motionHamiltonianMomentum},
1242 < \begin{align}
1243 < \dot p &=  - \frac{{\partial H}}{{\partial x}}
1244 <       &= m\ddot x
1245 <       &= - \frac{{\partial W(x)}}{{\partial x}} - \sum\limits_{\alpha  = 1}^N {g_\alpha  \left( {x_\alpha   - \frac{{g_\alpha  }}{{m_\alpha  w_\alpha ^2 }}x} \right)}
1246 < \label{introEq:Lp5}
1247 < \end{align}
1248 < , and
529 < \begin{align}
530 < \dot p_\alpha   &=  - \frac{{\partial H}}{{\partial x_\alpha  }}
531 <                &= m\ddot x_\alpha
532 <                &= \- m_\alpha  w_\alpha ^2 \left( {x_\alpha   - \frac{{g_\alpha}}{{m_\alpha  w_\alpha ^2 }}x} \right)
533 < \end{align}
1237 > where $I_{ii}$ is the diagonal element of the inertia tensor. This
1238 > constrained Hamiltonian equation subjects to a holonomic constraint,
1239 > \begin{equation}
1240 > Q^T Q = 1, \label{introEquation:orthogonalConstraint}
1241 > \end{equation}
1242 > which is used to ensure rotation matrix's orthogonality.
1243 > Differentiating \ref{introEquation:orthogonalConstraint} and using
1244 > Equation \ref{introEquation:RBMotionMomentum}, one may obtain,
1245 > \begin{equation}
1246 > Q^T PJ^{ - 1}  + J^{ - 1} P^T Q = 0 . \\
1247 > \label{introEquation:RBFirstOrderConstraint}
1248 > \end{equation}
1249  
1250 < \subsection{\label{introSection:laplaceTransform}The Laplace Transform}
1250 > Using Equation (\ref{introEquation:motionHamiltonianCoordinate},
1251 > \ref{introEquation:motionHamiltonianMomentum}), one can write down
1252 > the equations of motion,
1253 > \[
1254 > \begin{array}{c}
1255 > \frac{{dq}}{{dt}} = \frac{p}{m} \label{introEquation:RBMotionPosition}\\
1256 > \frac{{dp}}{{dt}} =  - \nabla _q V(q,Q) \label{introEquation:RBMotionMomentum}\\
1257 > \frac{{dQ}}{{dt}} = PJ^{ - 1}  \label{introEquation:RBMotionRotation}\\
1258 > \frac{{dP}}{{dt}} =  - \nabla _Q V(q,Q) - 2Q\Lambda . \label{introEquation:RBMotionP}\\
1259 > \end{array}
1260 > \]
1261  
1262 + In general, there are two ways to satisfy the holonomic constraints.
1263 + We can use constraint force provided by lagrange multiplier on the
1264 + normal manifold to keep the motion on constraint space. Or we can
1265 + simply evolve the system in constraint manifold. These two methods
1266 + are proved to be equivalent. The holonomic constraint and equations
1267 + of motions define a constraint manifold for rigid body
1268   \[
1269 < L(x) = \int_0^\infty  {x(t)e^{ - pt} dt}
1269 > M = \left\{ {(Q,P):Q^T Q = 1,Q^T PJ^{ - 1}  + J^{ - 1} P^T Q = 0}
1270 > \right\}.
1271   \]
1272  
1273 + Unfortunately, this constraint manifold is not the cotangent bundle
1274 + $T_{\star}SO(3)$. However, it turns out that under symplectic
1275 + transformation, the cotangent space and the phase space are
1276 + diffeomorphic. Introducing
1277   \[
1278 < L(x + y) = L(x) + L(y)
1278 > \tilde Q = Q,\tilde P = \frac{1}{2}\left( {P - QP^T Q} \right),
1279   \]
1280 + the mechanical system subject to a holonomic constraint manifold $M$
1281 + can be re-formulated as a Hamiltonian system on the cotangent space
1282 + \[
1283 + T^* SO(3) = \left\{ {(\tilde Q,\tilde P):\tilde Q^T \tilde Q =
1284 + 1,\tilde Q^T \tilde PJ^{ - 1}  + J^{ - 1} P^T \tilde Q = 0} \right\}
1285 + \]
1286  
1287 + For a body fixed vector $X_i$ with respect to the center of mass of
1288 + the rigid body, its corresponding lab fixed vector $X_0^{lab}$  is
1289 + given as
1290 + \begin{equation}
1291 + X_i^{lab} = Q X_i + q.
1292 + \end{equation}
1293 + Therefore, potential energy $V(q,Q)$ is defined by
1294   \[
1295 < L(ax) = aL(x)
1295 > V(q,Q) = V(Q X_0 + q).
1296   \]
1297 + Hence, the force and torque are given by
1298 + \[
1299 + \nabla _q V(q,Q) = F(q,Q) = \sum\limits_i {F_i (q,Q)},
1300 + \]
1301 + and
1302 + \[
1303 + \nabla _Q V(q,Q) = F(q,Q)X_i^t
1304 + \]
1305 + respectively.
1306  
1307 + As a common choice to describe the rotation dynamics of the rigid
1308 + body, angular momentum on body frame $\Pi  = Q^t P$ is introduced to
1309 + rewrite the equations of motion,
1310 + \begin{equation}
1311 + \begin{array}{l}
1312 + \mathop \Pi \limits^ \bullet   = J^{ - 1} \Pi ^T \Pi  + Q^T \sum\limits_i {F_i (q,Q)X_i^T }  - \Lambda  \\
1313 + \mathop Q\limits^{{\rm{   }} \bullet }  = Q\Pi {\rm{ }}J^{ - 1}  \\
1314 + \end{array}
1315 + \label{introEqaution:RBMotionPI}
1316 + \end{equation}
1317 + , as well as holonomic constraints,
1318   \[
1319 < L(\dot x) = pL(x) - px(0)
1319 > \begin{array}{l}
1320 > \Pi J^{ - 1}  + J^{ - 1} \Pi ^t  = 0 \\
1321 > Q^T Q = 1 \\
1322 > \end{array}
1323   \]
1324  
1325 + For a vector $v(v_1 ,v_2 ,v_3 ) \in R^3$ and a matrix $\hat v \in
1326 + so(3)^ \star$, the hat-map isomorphism,
1327 + \begin{equation}
1328 + v(v_1 ,v_2 ,v_3 ) \Leftrightarrow \hat v = \left(
1329 + {\begin{array}{*{20}c}
1330 +   0 & { - v_3 } & {v_2 }  \\
1331 +   {v_3 } & 0 & { - v_1 }  \\
1332 +   { - v_2 } & {v_1 } & 0  \\
1333 + \end{array}} \right),
1334 + \label{introEquation:hatmapIsomorphism}
1335 + \end{equation}
1336 + will let us associate the matrix products with traditional vector
1337 + operations
1338   \[
1339 < L(\ddot x) = p^2 L(x) - px(0) - \dot x(0)
1339 > \hat vu = v \times u
1340   \]
1341  
1342 + Using \ref{introEqaution:RBMotionPI}, one can construct a skew
1343 + matrix,
1344 + \begin{equation}
1345 + (\mathop \Pi \limits^ \bullet   - \mathop \Pi \limits^ \bullet  ^T
1346 + ){\rm{ }} = {\rm{ }}(\Pi  - \Pi ^T ){\rm{ }}(J^{ - 1} \Pi  + \Pi J^{
1347 + - 1} ) + \sum\limits_i {[Q^T F_i (r,Q)X_i^T  - X_i F_i (r,Q)^T Q]} -
1348 + (\Lambda  - \Lambda ^T ) . \label{introEquation:skewMatrixPI}
1349 + \end{equation}
1350 + Since $\Lambda$ is symmetric, the last term of Equation
1351 + \ref{introEquation:skewMatrixPI} is zero, which implies the Lagrange
1352 + multiplier $\Lambda$ is absent from the equations of motion. This
1353 + unique property eliminate the requirement of iterations which can
1354 + not be avoided in other methods\cite{}.
1355 +
1356 + Applying hat-map isomorphism, we obtain the equation of motion for
1357 + angular momentum on body frame
1358 + \begin{equation}
1359 + \dot \pi  = \pi  \times I^{ - 1} \pi  + \sum\limits_i {\left( {Q^T
1360 + F_i (r,Q)} \right) \times X_i }.
1361 + \label{introEquation:bodyAngularMotion}
1362 + \end{equation}
1363 + In the same manner, the equation of motion for rotation matrix is
1364 + given by
1365   \[
1366 < L\left( {\int_0^t {g(t - \tau )h(\tau )d\tau } } \right) = G(p)H(p)
1366 > \dot Q = Qskew(I^{ - 1} \pi )
1367   \]
1368  
1369 < Some relatively important transformation,
1369 > \subsection{\label{introSection:SymplecticFreeRB}Symplectic
1370 > Lie-Poisson Integrator for Free Rigid Body}
1371 >
1372 > If there is not external forces exerted on the rigid body, the only
1373 > contribution to the rotational is from the kinetic potential (the
1374 > first term of \ref{ introEquation:bodyAngularMotion}). The free
1375 > rigid body is an example of Lie-Poisson system with Hamiltonian
1376 > function
1377 > \begin{equation}
1378 > T^r (\pi ) = T_1 ^r (\pi _1 ) + T_2^r (\pi _2 ) + T_3^r (\pi _3 )
1379 > \label{introEquation:rotationalKineticRB}
1380 > \end{equation}
1381 > where $T_i^r (\pi _i ) = \frac{{\pi _i ^2 }}{{2I_i }}$ and
1382 > Lie-Poisson structure matrix,
1383 > \begin{equation}
1384 > J(\pi ) = \left( {\begin{array}{*{20}c}
1385 >   0 & {\pi _3 } & { - \pi _2 }  \\
1386 >   { - \pi _3 } & 0 & {\pi _1 }  \\
1387 >   {\pi _2 } & { - \pi _1 } & 0  \\
1388 > \end{array}} \right)
1389 > \end{equation}
1390 > Thus, the dynamics of free rigid body is governed by
1391 > \begin{equation}
1392 > \frac{d}{{dt}}\pi  = J(\pi )\nabla _\pi  T^r (\pi )
1393 > \end{equation}
1394 >
1395 > One may notice that each $T_i^r$ in Equation
1396 > \ref{introEquation:rotationalKineticRB} can be solved exactly. For
1397 > instance, the equations of motion due to $T_1^r$ are given by
1398 > \begin{equation}
1399 > \frac{d}{{dt}}\pi  = R_1 \pi ,\frac{d}{{dt}}Q = QR_1
1400 > \label{introEqaution:RBMotionSingleTerm}
1401 > \end{equation}
1402 > where
1403 > \[ R_1  = \left( {\begin{array}{*{20}c}
1404 >   0 & 0 & 0  \\
1405 >   0 & 0 & {\pi _1 }  \\
1406 >   0 & { - \pi _1 } & 0  \\
1407 > \end{array}} \right).
1408 > \]
1409 > The solutions of Equation \ref{introEqaution:RBMotionSingleTerm} is
1410   \[
1411 < L(\cos at) = \frac{p}{{p^2  + a^2 }}
1411 > \pi (\Delta t) = e^{\Delta tR_1 } \pi (0),Q(\Delta t) =
1412 > Q(0)e^{\Delta tR_1 }
1413   \]
1414 + with
1415 + \[
1416 + e^{\Delta tR_1 }  = \left( {\begin{array}{*{20}c}
1417 +   0 & 0 & 0  \\
1418 +   0 & {\cos \theta _1 } & {\sin \theta _1 }  \\
1419 +   0 & { - \sin \theta _1 } & {\cos \theta _1 }  \\
1420 + \end{array}} \right),\theta _1  = \frac{{\pi _1 }}{{I_1 }}\Delta t.
1421 + \]
1422 + To reduce the cost of computing expensive functions in $e^{\Delta
1423 + tR_1 }$, we can use Cayley transformation,
1424 + \[
1425 + e^{\Delta tR_1 }  \approx (1 - \Delta tR_1 )^{ - 1} (1 + \Delta tR_1
1426 + )
1427 + \]
1428 + The flow maps for $T_2^r$ and $T_3^r$ can be found in the same
1429 + manner.
1430  
1431 + In order to construct a second-order symplectic method, we split the
1432 + angular kinetic Hamiltonian function can into five terms
1433   \[
1434 < L(\sin at) = \frac{a}{{p^2  + a^2 }}
1434 > T^r (\pi ) = \frac{1}{2}T_1 ^r (\pi _1 ) + \frac{1}{2}T_2^r (\pi _2
1435 > ) + T_3^r (\pi _3 ) + \frac{1}{2}T_2^r (\pi _2 ) + \frac{1}{2}T_1 ^r
1436 > (\pi _1 )
1437 > \].
1438 > Concatenating flows corresponding to these five terms, we can obtain
1439 > an symplectic integrator,
1440 > \[
1441 > \varphi _{\Delta t,T^r }  = \varphi _{\Delta t/2,\pi _1 }  \circ
1442 > \varphi _{\Delta t/2,\pi _2 }  \circ \varphi _{\Delta t,\pi _3 }
1443 > \circ \varphi _{\Delta t/2,\pi _2 }  \circ \varphi _{\Delta t/2,\pi
1444 > _1 }.
1445   \]
1446  
1447 + The non-canonical Lie-Poisson bracket ${F, G}$ of two function
1448 + $F(\pi )$ and $G(\pi )$ is defined by
1449   \[
1450 < L(1) = \frac{1}{p}
1450 > \{ F,G\} (\pi ) = [\nabla _\pi  F(\pi )]^T J(\pi )\nabla _\pi  G(\pi
1451 > )
1452   \]
1453 + If the Poisson bracket of a function $F$ with an arbitrary smooth
1454 + function $G$ is zero, $F$ is a \emph{Casimir}, which is the
1455 + conserved quantity in Poisson system. We can easily verify that the
1456 + norm of the angular momentum, $\parallel \pi
1457 + \parallel$, is a \emph{Casimir}. Let$ F(\pi ) = S(\frac{{\parallel
1458 + \pi \parallel ^2 }}{2})$ for an arbitrary function $ S:R \to R$ ,
1459 + then by the chain rule
1460 + \[
1461 + \nabla _\pi  F(\pi ) = S'(\frac{{\parallel \pi \parallel ^2
1462 + }}{2})\pi
1463 + \]
1464 + Thus $ [\nabla _\pi  F(\pi )]^T J(\pi ) =  - S'(\frac{{\parallel \pi
1465 + \parallel ^2 }}{2})\pi  \times \pi  = 0 $. This explicit
1466 + Lie-Poisson integrator is found to be extremely efficient and stable
1467 + which can be explained by the fact the small angle approximation is
1468 + used and the norm of the angular momentum is conserved.
1469  
1470 < First, the bath coordinates,
1470 > \subsection{\label{introSection:RBHamiltonianSplitting} Hamiltonian
1471 > Splitting for Rigid Body}
1472 >
1473 > The Hamiltonian of rigid body can be separated in terms of kinetic
1474 > energy and potential energy,
1475   \[
1476 < p^2 L(x_\alpha  ) - px_\alpha  (0) - \dot x_\alpha  (0) =  - \omega
577 < _\alpha ^2 L(x_\alpha  ) + \frac{{g_\alpha  }}{{\omega _\alpha
578 < }}L(x)
1476 > H = T(p,\pi ) + V(q,Q)
1477   \]
1478 + The equations of motion corresponding to potential energy and
1479 + kinetic energy are listed in the below table,
1480 + \begin{table}
1481 + \caption{Equations of motion due to Potential and Kinetic Energies}
1482 + \begin{center}
1483 + \begin{tabular}{|l|l|}
1484 +  \hline
1485 +  % after \\: \hline or \cline{col1-col2} \cline{col3-col4} ...
1486 +  Potential & Kinetic \\
1487 +  $\frac{{dq}}{{dt}} = \frac{p}{m}$ & $\frac{d}{{dt}}q = p$ \\
1488 +  $\frac{d}{{dt}}p =  - \frac{{\partial V}}{{\partial q}}$ & $ \frac{d}{{dt}}p = 0$ \\
1489 +  $\frac{d}{{dt}}Q = 0$ & $ \frac{d}{{dt}}Q = Qskew(I^{ - 1} j)$ \\
1490 +  $ \frac{d}{{dt}}\pi  = \sum\limits_i {\left( {Q^T F_i (r,Q)} \right) \times X_i }$ & $\frac{d}{{dt}}\pi  = \pi  \times I^{ - 1} \pi$\\
1491 +  \hline
1492 + \end{tabular}
1493 + \end{center}
1494 + \end{table}
1495 + A second-order symplectic method is now obtained by the
1496 + composition of the flow maps,
1497   \[
1498 < L(x_\alpha  ) = \frac{{\frac{{g_\alpha  }}{{\omega _\alpha  }}L(x) +
1499 < px_\alpha  (0) + \dot x_\alpha  (0)}}{{p^2  + \omega _\alpha ^2 }}
1498 > \varphi _{\Delta t}  = \varphi _{\Delta t/2,V}  \circ \varphi
1499 > _{\Delta t,T}  \circ \varphi _{\Delta t/2,V}.
1500   \]
1501 < Then, the system coordinates,
1502 < \begin{align}
1503 < mL(\ddot x) &=  - \frac{1}{p}\frac{{\partial W(x)}}{{\partial x}} -
1504 < \sum\limits_{\alpha  = 1}^N {\left\{ {\frac{{\frac{{g_\alpha
1505 < }}{{\omega _\alpha  }}L(x) + px_\alpha  (0) + \dot x_\alpha
1506 < (0)}}{{p^2  + \omega _\alpha ^2 }} - \frac{{g_\alpha ^2 }}{{m_\alpha
1507 < }}\omega _\alpha ^2 L(x)} \right\}}
1508 < %
1509 < &= - \frac{1}{p}\frac{{\partial W(x)}}{{\partial x}} -
593 < \sum\limits_{\alpha  = 1}^N {\left\{ { - \frac{{g_\alpha ^2 }}{{m_\alpha  \omega _\alpha ^2 }}\frac{p}{{p^2  + \omega _\alpha ^2 }}pL(x)
594 < - \frac{p}{{p^2  + \omega _\alpha ^2 }}g_\alpha  x_\alpha  (0)
595 < - \frac{1}{{p^2  + \omega _\alpha ^2 }}g_\alpha  \dot x_\alpha  (0)} \right\}}
596 < \end{align}
597 < Then, the inverse transform,
1501 > Moreover, $\varphi _{\Delta t/2,V}$ can be divided into two
1502 > sub-flows which corresponding to force and torque respectively,
1503 > \[
1504 > \varphi _{\Delta t/2,V}  = \varphi _{\Delta t/2,F}  \circ \varphi
1505 > _{\Delta t/2,\tau }.
1506 > \]
1507 > Since the associated operators of $\varphi _{\Delta t/2,F} $ and
1508 > $\circ \varphi _{\Delta t/2,\tau }$ are commuted, the composition
1509 > order inside $\varphi _{\Delta t/2,V}$ does not matter.
1510  
1511 + Furthermore, kinetic potential can be separated to translational
1512 + kinetic term, $T^t (p)$, and rotational kinetic term, $T^r (\pi )$,
1513 + \begin{equation}
1514 + T(p,\pi ) =T^t (p) + T^r (\pi ).
1515 + \end{equation}
1516 + where $ T^t (p) = \frac{1}{2}p^T m^{ - 1} p $ and $T^r (\pi )$ is
1517 + defined by \ref{introEquation:rotationalKineticRB}. Therefore, the
1518 + corresponding flow maps are given by
1519 + \[
1520 + \varphi _{\Delta t,T}  = \varphi _{\Delta t,T^t }  \circ \varphi
1521 + _{\Delta t,T^r }.
1522 + \]
1523 + Finally, we obtain the overall symplectic flow maps for free moving
1524 + rigid body
1525 + \begin{equation}
1526 + \begin{array}{c}
1527 + \varphi _{\Delta t}  = \varphi _{\Delta t/2,F}  \circ \varphi _{\Delta t/2,\tau }  \\
1528 +  \circ \varphi _{\Delta t,T^t }  \circ \varphi _{\Delta t/2,\pi _1 }  \circ \varphi _{\Delta t/2,\pi _2 }  \circ \varphi _{\Delta t,\pi _3 }  \circ \varphi _{\Delta t/2,\pi _2 }  \circ \varphi _{\Delta t/2,\pi _1 }  \\
1529 +  \circ \varphi _{\Delta t/2,\tau }  \circ \varphi _{\Delta t/2,F}  .\\
1530 + \end{array}
1531 + \label{introEquation:overallRBFlowMaps}
1532 + \end{equation}
1533 +
1534 + \section{\label{introSection:langevinDynamics}Langevin Dynamics}
1535 + As an alternative to newtonian dynamics, Langevin dynamics, which
1536 + mimics a simple heat bath with stochastic and dissipative forces,
1537 + has been applied in a variety of studies. This section will review
1538 + the theory of Langevin dynamics simulation. A brief derivation of
1539 + generalized Langevin equation will be given first. Follow that, we
1540 + will discuss the physical meaning of the terms appearing in the
1541 + equation as well as the calculation of friction tensor from
1542 + hydrodynamics theory.
1543 +
1544 + \subsection{\label{introSection:generalizedLangevinDynamics}Derivation of Generalized Langevin Equation}
1545 +
1546 + Harmonic bath model, in which an effective set of harmonic
1547 + oscillators are used to mimic the effect of a linearly responding
1548 + environment, has been widely used in quantum chemistry and
1549 + statistical mechanics. One of the successful applications of
1550 + Harmonic bath model is the derivation of Deriving Generalized
1551 + Langevin Dynamics. Lets consider a system, in which the degree of
1552 + freedom $x$ is assumed to couple to the bath linearly, giving a
1553 + Hamiltonian of the form
1554 + \begin{equation}
1555 + H = \frac{{p^2 }}{{2m}} + U(x) + H_B  + \Delta U(x,x_1 , \ldots x_N)
1556 + \label{introEquation:bathGLE}.
1557 + \end{equation}
1558 + Here $p$ is a momentum conjugate to $q$, $m$ is the mass associated
1559 + with this degree of freedom, $H_B$ is harmonic bath Hamiltonian,
1560 + \[
1561 + H_B  = \sum\limits_{\alpha  = 1}^N {\left\{ {\frac{{p_\alpha ^2
1562 + }}{{2m_\alpha  }} + \frac{1}{2}m_\alpha  \omega _\alpha ^2 }
1563 + \right\}}
1564 + \]
1565 + where the index $\alpha$ runs over all the bath degrees of freedom,
1566 + $\omega _\alpha$ are the harmonic bath frequencies, $m_\alpha$ are
1567 + the harmonic bath masses, and $\Delta U$ is bilinear system-bath
1568 + coupling,
1569 + \[
1570 + \Delta U =  - \sum\limits_{\alpha  = 1}^N {g_\alpha  x_\alpha  x}
1571 + \]
1572 + where $g_\alpha$ are the coupling constants between the bath and the
1573 + coordinate $x$. Introducing
1574 + \[
1575 + W(x) = U(x) - \sum\limits_{\alpha  = 1}^N {\frac{{g_\alpha ^2
1576 + }}{{2m_\alpha  w_\alpha ^2 }}} x^2
1577 + \] and combining the last two terms in Equation
1578 + \ref{introEquation:bathGLE}, we may rewrite the Harmonic bath
1579 + Hamiltonian as
1580 + \[
1581 + H = \frac{{p^2 }}{{2m}} + W(x) + \sum\limits_{\alpha  = 1}^N
1582 + {\left\{ {\frac{{p_\alpha ^2 }}{{2m_\alpha  }} + \frac{1}{2}m_\alpha
1583 + w_\alpha ^2 \left( {x_\alpha   - \frac{{g_\alpha  }}{{m_\alpha
1584 + w_\alpha ^2 }}x} \right)^2 } \right\}}
1585 + \]
1586 + Since the first two terms of the new Hamiltonian depend only on the
1587 + system coordinates, we can get the equations of motion for
1588 + Generalized Langevin Dynamics by Hamilton's equations
1589 + \ref{introEquation:motionHamiltonianCoordinate,
1590 + introEquation:motionHamiltonianMomentum},
1591 + \begin{equation}
1592 + m\ddot x =  - \frac{{\partial W(x)}}{{\partial x}} -
1593 + \sum\limits_{\alpha  = 1}^N {g_\alpha  \left( {x_\alpha   -
1594 + \frac{{g_\alpha  }}{{m_\alpha  w_\alpha ^2 }}x} \right)},
1595 + \label{introEquation:coorMotionGLE}
1596 + \end{equation}
1597 + and
1598 + \begin{equation}
1599 + m\ddot x_\alpha   =  - m_\alpha  w_\alpha ^2 \left( {x_\alpha   -
1600 + \frac{{g_\alpha  }}{{m_\alpha  w_\alpha ^2 }}x} \right).
1601 + \label{introEquation:bathMotionGLE}
1602 + \end{equation}
1603 +
1604 + In order to derive an equation for $x$, the dynamics of the bath
1605 + variables $x_\alpha$ must be solved exactly first. As an integral
1606 + transform which is particularly useful in solving linear ordinary
1607 + differential equations, Laplace transform is the appropriate tool to
1608 + solve this problem. The basic idea is to transform the difficult
1609 + differential equations into simple algebra problems which can be
1610 + solved easily. Then applying inverse Laplace transform, also known
1611 + as the Bromwich integral, we can retrieve the solutions of the
1612 + original problems.
1613 +
1614 + Let $f(t)$ be a function defined on $ [0,\infty ) $. The Laplace
1615 + transform of f(t) is a new function defined as
1616 + \[
1617 + L(f(t)) \equiv F(p) = \int_0^\infty  {f(t)e^{ - pt} dt}
1618 + \]
1619 + where  $p$ is real and  $L$ is called the Laplace Transform
1620 + Operator. Below are some important properties of Laplace transform
1621 + \begin{equation}
1622 + \begin{array}{c}
1623 + L(x + y) = L(x) + L(y) \\
1624 + L(ax) = aL(x) \\
1625 + L(\dot x) = pL(x) - px(0) \\
1626 + L(\ddot x) = p^2 L(x) - px(0) - \dot x(0) \\
1627 + L\left( {\int_0^t {g(t - \tau )h(\tau )d\tau } } \right) = G(p)H(p) \\
1628 + \end{array}
1629 + \end{equation}
1630 +
1631 + Applying Laplace transform to the bath coordinates, we obtain
1632 + \[
1633 + \begin{array}{c}
1634 + p^2 L(x_\alpha  ) - px_\alpha  (0) - \dot x_\alpha  (0) =  - \omega _\alpha ^2 L(x_\alpha  ) + \frac{{g_\alpha  }}{{\omega _\alpha  }}L(x) \\
1635 + L(x_\alpha  ) = \frac{{\frac{{g_\alpha  }}{{\omega _\alpha  }}L(x) + px_\alpha  (0) + \dot x_\alpha  (0)}}{{p^2  + \omega _\alpha ^2 }} \\
1636 + \end{array}
1637 + \]
1638 + By the same way, the system coordinates become
1639 + \[
1640 + \begin{array}{c}
1641 + mL(\ddot x) =  - \frac{1}{p}\frac{{\partial W(x)}}{{\partial x}} \\
1642 +  - \sum\limits_{\alpha  = 1}^N {\left\{ { - \frac{{g_\alpha ^2 }}{{m_\alpha  \omega _\alpha ^2 }}\frac{p}{{p^2  + \omega _\alpha ^2 }}pL(x) - \frac{p}{{p^2  + \omega _\alpha ^2 }}g_\alpha  x_\alpha  (0) - \frac{1}{{p^2  + \omega _\alpha ^2 }}g_\alpha  \dot x_\alpha  (0)} \right\}}  \\
1643 + \end{array}
1644 + \]
1645 +
1646 + With the help of some relatively important inverse Laplace
1647 + transformations:
1648 + \[
1649 + \begin{array}{c}
1650 + L(\cos at) = \frac{p}{{p^2  + a^2 }} \\
1651 + L(\sin at) = \frac{a}{{p^2  + a^2 }} \\
1652 + L(1) = \frac{1}{p} \\
1653 + \end{array}
1654 + \]
1655 + , we obtain
1656   \begin{align}
1657   m\ddot x &=  - \frac{{\partial W(x)}}{{\partial x}} -
1658   \sum\limits_{\alpha  = 1}^N {\left\{ {\left( { - \frac{{g_\alpha ^2
# Line 615 | Line 1672 | t)\dot x(t - \tau )d} \tau }  + \sum\limits_{\alpha  =
1672   (\omega _\alpha  t)} \right\}}
1673   \end{align}
1674  
1675 + Introducing a \emph{dynamic friction kernel}
1676   \begin{equation}
1677 + \xi (t) = \sum\limits_{\alpha  = 1}^N {\left( { - \frac{{g_\alpha ^2
1678 + }}{{m_\alpha  \omega _\alpha ^2 }}} \right)\cos (\omega _\alpha  t)}
1679 + \label{introEquation:dynamicFrictionKernelDefinition}
1680 + \end{equation}
1681 + and \emph{a random force}
1682 + \begin{equation}
1683 + R(t) = \sum\limits_{\alpha  = 1}^N {\left( {g_\alpha  x_\alpha  (0)
1684 + - \frac{{g_\alpha ^2 }}{{m_\alpha  \omega _\alpha ^2 }}x(0)}
1685 + \right)\cos (\omega _\alpha  t)}  + \frac{{\dot x_\alpha
1686 + (0)}}{{\omega _\alpha  }}\sin (\omega _\alpha  t),
1687 + \label{introEquation:randomForceDefinition}
1688 + \end{equation}
1689 + the equation of motion can be rewritten as
1690 + \begin{equation}
1691   m\ddot x =  - \frac{{\partial W}}{{\partial x}} - \int_0^t {\xi
1692   (t)\dot x(t - \tau )d\tau }  + R(t)
1693   \label{introEuqation:GeneralizedLangevinDynamics}
1694   \end{equation}
1695 < %where $ {\xi (t)}$ is friction kernel, $R(t)$ is random force and
1696 < %$W$ is the potential of mean force. $W(x) =  - kT\ln p(x)$
1695 > which is known as the \emph{generalized Langevin equation}.
1696 >
1697 > \subsubsection{\label{introSection:randomForceDynamicFrictionKernel}Random Force and Dynamic Friction Kernel}
1698 >
1699 > One may notice that $R(t)$ depends only on initial conditions, which
1700 > implies it is completely deterministic within the context of a
1701 > harmonic bath. However, it is easy to verify that $R(t)$ is totally
1702 > uncorrelated to $x$ and $\dot x$,
1703   \[
1704 < \xi (t) = \sum\limits_{\alpha  = 1}^N {\left( { - \frac{{g_\alpha ^2
1705 < }}{{m_\alpha  \omega _\alpha ^2 }}} \right)\cos (\omega _\alpha  t)}
1704 > \begin{array}{l}
1705 > \left\langle {x(t)R(t)} \right\rangle  = 0, \\
1706 > \left\langle {\dot x(t)R(t)} \right\rangle  = 0. \\
1707 > \end{array}
1708   \]
1709 < For an infinite harmonic bath, we can use the spectral density and
1710 < an integral over frequencies.
1709 > This property is what we expect from a truly random process. As long
1710 > as the model, which is gaussian distribution in general, chosen for
1711 > $R(t)$ is a truly random process, the stochastic nature of the GLE
1712 > still remains.
1713  
1714 + %dynamic friction kernel
1715 + The convolution integral
1716   \[
1717 < R(t) = \sum\limits_{\alpha  = 1}^N {\left( {g_\alpha  x_\alpha  (0)
634 < - \frac{{g_\alpha ^2 }}{{m_\alpha  \omega _\alpha ^2 }}x(0)}
635 < \right)\cos (\omega _\alpha  t)}  + \frac{{\dot x_\alpha
636 < (0)}}{{\omega _\alpha  }}\sin (\omega _\alpha  t)
1717 > \int_0^t {\xi (t)\dot x(t - \tau )d\tau }
1718   \]
1719 < The random forces depend only on initial conditions.
1719 > depends on the entire history of the evolution of $x$, which implies
1720 > that the bath retains memory of previous motions. In other words,
1721 > the bath requires a finite time to respond to change in the motion
1722 > of the system. For a sluggish bath which responds slowly to changes
1723 > in the system coordinate, we may regard $\xi(t)$ as a constant
1724 > $\xi(t) = \Xi_0$. Hence, the convolution integral becomes
1725 > \[
1726 > \int_0^t {\xi (t)\dot x(t - \tau )d\tau }  = \xi _0 (x(t) - x(0))
1727 > \]
1728 > and Equation \ref{introEuqation:GeneralizedLangevinDynamics} becomes
1729 > \[
1730 > m\ddot x =  - \frac{\partial }{{\partial x}}\left( {W(x) +
1731 > \frac{1}{2}\xi _0 (x - x_0 )^2 } \right) + R(t),
1732 > \]
1733 > which can be used to describe dynamic caging effect. The other
1734 > extreme is the bath that responds infinitely quickly to motions in
1735 > the system. Thus, $\xi (t)$ can be taken as a $delta$ function in
1736 > time:
1737 > \[
1738 > \xi (t) = 2\xi _0 \delta (t)
1739 > \]
1740 > Hence, the convolution integral becomes
1741 > \[
1742 > \int_0^t {\xi (t)\dot x(t - \tau )d\tau }  = 2\xi _0 \int_0^t
1743 > {\delta (t)\dot x(t - \tau )d\tau }  = \xi _0 \dot x(t),
1744 > \]
1745 > and Equation \ref{introEuqation:GeneralizedLangevinDynamics} becomes
1746 > \begin{equation}
1747 > m\ddot x =  - \frac{{\partial W(x)}}{{\partial x}} - \xi _0 \dot
1748 > x(t) + R(t) \label{introEquation:LangevinEquation}
1749 > \end{equation}
1750 > which is known as the Langevin equation. The static friction
1751 > coefficient $\xi _0$ can either be calculated from spectral density
1752 > or be determined by Stokes' law for regular shaped particles.A
1753 > briefly review on calculating friction tensor for arbitrary shaped
1754 > particles is given in Sec.~\ref{introSection:frictionTensor}.
1755  
1756   \subsubsection{\label{introSection:secondFluctuationDissipation}The Second Fluctuation Dissipation Theorem}
1757 < So we can define a new set of coordinates,
1757 >
1758 > Defining a new set of coordinates,
1759   \[
1760   q_\alpha  (t) = x_\alpha  (t) - \frac{1}{{m_\alpha  \omega _\alpha
1761   ^2 }}x(0)
1762 < \]
1763 < This makes
1762 > \],
1763 > we can rewrite $R(T)$ as
1764   \[
1765 < R(t) = \sum\limits_{\alpha  = 1}^N {g_\alpha  q_\alpha  (t)}
1765 > R(t) = \sum\limits_{\alpha  = 1}^N {g_\alpha  q_\alpha  (t)}.
1766   \]
1767   And since the $q$ coordinates are harmonic oscillators,
1768   \[
1769 < \begin{array}{l}
1769 > \begin{array}{c}
1770 > \left\langle {q_\alpha ^2 } \right\rangle  = \frac{{kT}}{{m_\alpha  \omega _\alpha ^2 }} \\
1771   \left\langle {q_\alpha  (t)q_\alpha  (0)} \right\rangle  = \left\langle {q_\alpha ^2 (0)} \right\rangle \cos (\omega _\alpha  t) \\
1772   \left\langle {q_\alpha  (t)q_\beta  (0)} \right\rangle  = \delta _{\alpha \beta } \left\langle {q_\alpha  (t)q_\alpha  (0)} \right\rangle  \\
1773 + \left\langle {R(t)R(0)} \right\rangle  = \sum\limits_\alpha  {\sum\limits_\beta  {g_\alpha  g_\beta  \left\langle {q_\alpha  (t)q_\beta  (0)} \right\rangle } }  \\
1774 +  = \sum\limits_\alpha  {g_\alpha ^2 \left\langle {q_\alpha ^2 (0)} \right\rangle \cos (\omega _\alpha  t)}  \\
1775 +  = kT\xi (t) \\
1776   \end{array}
1777   \]
1778 <
658 < \begin{align}
659 < \left\langle {R(t)R(0)} \right\rangle  &= \sum\limits_\alpha
660 < {\sum\limits_\beta  {g_\alpha  g_\beta  \left\langle {q_\alpha
661 < (t)q_\beta  (0)} \right\rangle } }
662 < %
663 < &= \sum\limits_\alpha  {g_\alpha ^2 \left\langle {q_\alpha ^2 (0)}
664 < \right\rangle \cos (\omega _\alpha  t)}
665 < %
666 < &= kT\xi (t)
667 < \end{align}
668 <
1778 > Thus, we recover the \emph{second fluctuation dissipation theorem}
1779   \begin{equation}
1780   \xi (t) = \left\langle {R(t)R(0)} \right\rangle
1781 < \label{introEquation:secondFluctuationDissipation}
1781 > \label{introEquation:secondFluctuationDissipation}.
1782   \end{equation}
1783 + In effect, it acts as a constraint on the possible ways in which one
1784 + can model the random force and friction kernel.
1785  
674 \section{\label{introSection:hydroynamics}Hydrodynamics}
675
1786   \subsection{\label{introSection:frictionTensor} Friction Tensor}
1787 < \subsection{\label{introSection:analyticalApproach}Analytical
1788 < Approach}
1787 > Theoretically, the friction kernel can be determined using velocity
1788 > autocorrelation function. However, this approach become impractical
1789 > when the system become more and more complicate. Instead, various
1790 > approaches based on hydrodynamics have been developed to calculate
1791 > the friction coefficients. The friction effect is isotropic in
1792 > Equation, $\zeta$ can be taken as a scalar. In general, friction
1793 > tensor $\Xi$ is a $6\times 6$ matrix given by
1794 > \[
1795 > \Xi  = \left( {\begin{array}{*{20}c}
1796 >   {\Xi _{}^{tt} } & {\Xi _{}^{rt} }  \\
1797 >   {\Xi _{}^{tr} } & {\Xi _{}^{rr} }  \\
1798 > \end{array}} \right).
1799 > \]
1800 > Here, $ {\Xi^{tt} }$ and $ {\Xi^{rr} }$ are translational friction
1801 > tensor and rotational resistance (friction) tensor respectively,
1802 > while ${\Xi^{tr} }$ is translation-rotation coupling tensor and $
1803 > {\Xi^{rt} }$ is rotation-translation coupling tensor. When a
1804 > particle moves in a fluid, it may experience friction force or
1805 > torque along the opposite direction of the velocity or angular
1806 > velocity,
1807 > \[
1808 > \left( \begin{array}{l}
1809 > F_R  \\
1810 > \tau _R  \\
1811 > \end{array} \right) =  - \left( {\begin{array}{*{20}c}
1812 >   {\Xi ^{tt} } & {\Xi ^{rt} }  \\
1813 >   {\Xi ^{tr} } & {\Xi ^{rr} }  \\
1814 > \end{array}} \right)\left( \begin{array}{l}
1815 > v \\
1816 > w \\
1817 > \end{array} \right)
1818 > \]
1819 > where $F_r$ is the friction force and $\tau _R$ is the friction
1820 > toque.
1821  
1822 < \subsection{\label{introSection:approximationApproach}Approximation
681 < Approach}
1822 > \subsubsection{\label{introSection:resistanceTensorRegular}The Resistance Tensor for Regular Shape}
1823  
1824 < \subsection{\label{introSection:centersRigidBody}Centers of Rigid
1825 < Body}
1824 > For a spherical particle, the translational and rotational friction
1825 > constant can be calculated from Stoke's law,
1826 > \[
1827 > \Xi ^{tt}  = \left( {\begin{array}{*{20}c}
1828 >   {6\pi \eta R} & 0 & 0  \\
1829 >   0 & {6\pi \eta R} & 0  \\
1830 >   0 & 0 & {6\pi \eta R}  \\
1831 > \end{array}} \right)
1832 > \]
1833 > and
1834 > \[
1835 > \Xi ^{rr}  = \left( {\begin{array}{*{20}c}
1836 >   {8\pi \eta R^3 } & 0 & 0  \\
1837 >   0 & {8\pi \eta R^3 } & 0  \\
1838 >   0 & 0 & {8\pi \eta R^3 }  \\
1839 > \end{array}} \right)
1840 > \]
1841 > where $\eta$ is the viscosity of the solvent and $R$ is the
1842 > hydrodynamics radius.
1843 >
1844 > Other non-spherical shape, such as cylinder and ellipsoid
1845 > \textit{etc}, are widely used as reference for developing new
1846 > hydrodynamics theory, because their properties can be calculated
1847 > exactly. In 1936, Perrin extended Stokes's law to general ellipsoid,
1848 > also called a triaxial ellipsoid, which is given in Cartesian
1849 > coordinates by
1850 > \[
1851 > \frac{{x^2 }}{{a^2 }} + \frac{{y^2 }}{{b^2 }} + \frac{{z^2 }}{{c^2
1852 > }} = 1
1853 > \]
1854 > where the semi-axes are of lengths $a$, $b$, and $c$. Unfortunately,
1855 > due to the complexity of the elliptic integral, only the ellipsoid
1856 > with the restriction of two axes having to be equal, \textit{i.e.}
1857 > prolate($ a \ge b = c$) and oblate ($ a < b = c $), can be solved
1858 > exactly. Introducing an elliptic integral parameter $S$ for prolate,
1859 > \[
1860 > S = \frac{2}{{\sqrt {a^2  - b^2 } }}\ln \frac{{a + \sqrt {a^2  - b^2
1861 > } }}{b},
1862 > \]
1863 > and oblate,
1864 > \[
1865 > S = \frac{2}{{\sqrt {b^2  - a^2 } }}arctg\frac{{\sqrt {b^2  - a^2 }
1866 > }}{a}
1867 > \],
1868 > one can write down the translational and rotational resistance
1869 > tensors
1870 > \[
1871 > \begin{array}{l}
1872 > \Xi _a^{tt}  = 16\pi \eta \frac{{a^2  - b^2 }}{{(2a^2  - b^2 )S - 2a}} \\
1873 > \Xi _b^{tt}  = \Xi _c^{tt}  = 32\pi \eta \frac{{a^2  - b^2 }}{{(2a^2  - 3b^2 )S + 2a}} \\
1874 > \end{array},
1875 > \]
1876 > and
1877 > \[
1878 > \begin{array}{l}
1879 > \Xi _a^{rr}  = \frac{{32\pi }}{3}\eta \frac{{(a^2  - b^2 )b^2 }}{{2a - b^2 S}} \\
1880 > \Xi _b^{rr}  = \Xi _c^{rr}  = \frac{{32\pi }}{3}\eta \frac{{(a^4  - b^4 )}}{{(2a^2  - b^2 )S - 2a}} \\
1881 > \end{array}.
1882 > \]
1883 >
1884 > \subsubsection{\label{introSection:resistanceTensorRegularArbitrary}The Resistance Tensor for Arbitrary Shape}
1885 >
1886 > Unlike spherical and other regular shaped molecules, there is not
1887 > analytical solution for friction tensor of any arbitrary shaped
1888 > rigid molecules. The ellipsoid of revolution model and general
1889 > triaxial ellipsoid model have been used to approximate the
1890 > hydrodynamic properties of rigid bodies. However, since the mapping
1891 > from all possible ellipsoidal space, $r$-space, to all possible
1892 > combination of rotational diffusion coefficients, $D$-space is not
1893 > unique\cite{Wegener79} as well as the intrinsic coupling between
1894 > translational and rotational motion of rigid body\cite{}, general
1895 > ellipsoid is not always suitable for modeling arbitrarily shaped
1896 > rigid molecule. A number of studies have been devoted to determine
1897 > the friction tensor for irregularly shaped rigid bodies using more
1898 > advanced method\cite{} where the molecule of interest was modeled by
1899 > combinations of spheres(beads)\cite{} and the hydrodynamics
1900 > properties of the molecule can be calculated using the hydrodynamic
1901 > interaction tensor. Let us consider a rigid assembly of $N$ beads
1902 > immersed in a continuous medium. Due to hydrodynamics interaction,
1903 > the ``net'' velocity of $i$th bead, $v'_i$ is different than its
1904 > unperturbed velocity $v_i$,
1905 > \[
1906 > v'_i  = v_i  - \sum\limits_{j \ne i} {T_{ij} F_j }
1907 > \]
1908 > where $F_i$ is the frictional force, and $T_{ij}$ is the
1909 > hydrodynamic interaction tensor. The friction force of $i$th bead is
1910 > proportional to its ``net'' velocity
1911 > \begin{equation}
1912 > F_i  = \zeta _i v_i  - \zeta _i \sum\limits_{j \ne i} {T_{ij} F_j }.
1913 > \label{introEquation:tensorExpression}
1914 > \end{equation}
1915 > This equation is the basis for deriving the hydrodynamic tensor. In
1916 > 1930, Oseen and Burgers gave a simple solution to Equation
1917 > \ref{introEquation:tensorExpression}
1918 > \begin{equation}
1919 > T_{ij}  = \frac{1}{{8\pi \eta r_{ij} }}\left( {I + \frac{{R_{ij}
1920 > R_{ij}^T }}{{R_{ij}^2 }}} \right).
1921 > \label{introEquation:oseenTensor}
1922 > \end{equation}
1923 > Here $R_{ij}$ is the distance vector between bead $i$ and bead $j$.
1924 > A second order expression for element of different size was
1925 > introduced by Rotne and Prager\cite{} and improved by Garc\'{i}a de
1926 > la Torre and Bloomfield,
1927 > \begin{equation}
1928 > T_{ij}  = \frac{1}{{8\pi \eta R_{ij} }}\left[ {\left( {I +
1929 > \frac{{R_{ij} R_{ij}^T }}{{R_{ij}^2 }}} \right) + R\frac{{\sigma
1930 > _i^2  + \sigma _j^2 }}{{r_{ij}^2 }}\left( {\frac{I}{3} -
1931 > \frac{{R_{ij} R_{ij}^T }}{{R_{ij}^2 }}} \right)} \right].
1932 > \label{introEquation:RPTensorNonOverlapped}
1933 > \end{equation}
1934 > Both of the Equation \ref{introEquation:oseenTensor} and Equation
1935 > \ref{introEquation:RPTensorNonOverlapped} have an assumption $R_{ij}
1936 > \ge \sigma _i  + \sigma _j$. An alternative expression for
1937 > overlapping beads with the same radius, $\sigma$, is given by
1938 > \begin{equation}
1939 > T_{ij}  = \frac{1}{{6\pi \eta R_{ij} }}\left[ {\left( {1 -
1940 > \frac{2}{{32}}\frac{{R_{ij} }}{\sigma }} \right)I +
1941 > \frac{2}{{32}}\frac{{R_{ij} R_{ij}^T }}{{R_{ij} \sigma }}} \right]
1942 > \label{introEquation:RPTensorOverlapped}
1943 > \end{equation}
1944 >
1945 > To calculate the resistance tensor at an arbitrary origin $O$, we
1946 > construct a $3N \times 3N$ matrix consisting of $N \times N$
1947 > $B_{ij}$ blocks
1948 > \begin{equation}
1949 > B = \left( {\begin{array}{*{20}c}
1950 >   {B_{11} } &  \ldots  & {B_{1N} }  \\
1951 >    \vdots  &  \ddots  &  \vdots   \\
1952 >   {B_{N1} } &  \cdots  & {B_{NN} }  \\
1953 > \end{array}} \right),
1954 > \end{equation}
1955 > where $B_{ij}$ is given by
1956 > \[
1957 > B_{ij}  = \delta _{ij} \frac{I}{{6\pi \eta R}} + (1 - \delta _{ij}
1958 > )T_{ij}
1959 > \]
1960 > where $\delta _{ij}$ is Kronecker delta function. Inverting matrix
1961 > $B$, we obtain
1962 >
1963 > \[
1964 > C = B^{ - 1}  = \left( {\begin{array}{*{20}c}
1965 >   {C_{11} } &  \ldots  & {C_{1N} }  \\
1966 >    \vdots  &  \ddots  &  \vdots   \\
1967 >   {C_{N1} } &  \cdots  & {C_{NN} }  \\
1968 > \end{array}} \right)
1969 > \]
1970 > , which can be partitioned into $N \times N$ $3 \times 3$ block
1971 > $C_{ij}$. With the help of $C_{ij}$ and skew matrix $U_i$
1972 > \[
1973 > U_i  = \left( {\begin{array}{*{20}c}
1974 >   0 & { - z_i } & {y_i }  \\
1975 >   {z_i } & 0 & { - x_i }  \\
1976 >   { - y_i } & {x_i } & 0  \\
1977 > \end{array}} \right)
1978 > \]
1979 > where $x_i$, $y_i$, $z_i$ are the components of the vector joining
1980 > bead $i$ and origin $O$. Hence, the elements of resistance tensor at
1981 > arbitrary origin $O$ can be written as
1982 > \begin{equation}
1983 > \begin{array}{l}
1984 > \Xi _{}^{tt}  = \sum\limits_i {\sum\limits_j {C_{ij} } } , \\
1985 > \Xi _{}^{tr}  = \Xi _{}^{rt}  = \sum\limits_i {\sum\limits_j {U_i C_{ij} } } , \\
1986 > \Xi _{}^{rr}  =  - \sum\limits_i {\sum\limits_j {U_i C_{ij} } } U_j  \\
1987 > \end{array}
1988 > \label{introEquation:ResistanceTensorArbitraryOrigin}
1989 > \end{equation}
1990 >
1991 > The resistance tensor depends on the origin to which they refer. The
1992 > proper location for applying friction force is the center of
1993 > resistance (reaction), at which the trace of rotational resistance
1994 > tensor, $ \Xi ^{rr}$ reaches minimum. Mathematically, the center of
1995 > resistance is defined as an unique point of the rigid body at which
1996 > the translation-rotation coupling tensor are symmetric,
1997 > \begin{equation}
1998 > \Xi^{tr}  = \left( {\Xi^{tr} } \right)^T
1999 > \label{introEquation:definitionCR}
2000 > \end{equation}
2001 > Form Equation \ref{introEquation:ResistanceTensorArbitraryOrigin},
2002 > we can easily find out that the translational resistance tensor is
2003 > origin independent, while the rotational resistance tensor and
2004 > translation-rotation coupling resistance tensor depend on the
2005 > origin. Given resistance tensor at an arbitrary origin $O$, and a
2006 > vector ,$r_{OP}(x_{OP}, y_{OP}, z_{OP})$, from $O$ to $P$, we can
2007 > obtain the resistance tensor at $P$ by
2008 > \begin{equation}
2009 > \begin{array}{l}
2010 > \Xi _P^{tt}  = \Xi _O^{tt}  \\
2011 > \Xi _P^{tr}  = \Xi _P^{rt}  = \Xi _O^{tr}  - U_{OP} \Xi _O^{tt}  \\
2012 > \Xi _P^{rr}  = \Xi _O^{rr}  - U_{OP} \Xi _O^{tt} U_{OP}  + \Xi _O^{tr} U_{OP}  - U_{OP} \Xi _O^{tr} ^{^T }  \\
2013 > \end{array}
2014 > \label{introEquation:resistanceTensorTransformation}
2015 > \end{equation}
2016 > where
2017 > \[
2018 > U_{OP}  = \left( {\begin{array}{*{20}c}
2019 >   0 & { - z_{OP} } & {y_{OP} }  \\
2020 >   {z_i } & 0 & { - x_{OP} }  \\
2021 >   { - y_{OP} } & {x_{OP} } & 0  \\
2022 > \end{array}} \right)
2023 > \]
2024 > Using Equations \ref{introEquation:definitionCR} and
2025 > \ref{introEquation:resistanceTensorTransformation}, one can locate
2026 > the position of center of resistance,
2027 > \[
2028 > \left( \begin{array}{l}
2029 > x_{OR}  \\
2030 > y_{OR}  \\
2031 > z_{OR}  \\
2032 > \end{array} \right) = \left( {\begin{array}{*{20}c}
2033 >   {(\Xi _O^{rr} )_{yy}  + (\Xi _O^{rr} )_{zz} } & { - (\Xi _O^{rr} )_{xy} } & { - (\Xi _O^{rr} )_{xz} }  \\
2034 >   { - (\Xi _O^{rr} )_{xy} } & {(\Xi _O^{rr} )_{zz}  + (\Xi _O^{rr} )_{xx} } & { - (\Xi _O^{rr} )_{yz} }  \\
2035 >   { - (\Xi _O^{rr} )_{xz} } & { - (\Xi _O^{rr} )_{yz} } & {(\Xi _O^{rr} )_{xx}  + (\Xi _O^{rr} )_{yy} }  \\
2036 > \end{array}} \right)^{ - 1} \left( \begin{array}{l}
2037 > (\Xi _O^{tr} )_{yz}  - (\Xi _O^{tr} )_{zy}  \\
2038 > (\Xi _O^{tr} )_{zx}  - (\Xi _O^{tr} )_{xz}  \\
2039 > (\Xi _O^{tr} )_{xy}  - (\Xi _O^{tr} )_{yx}  \\
2040 > \end{array} \right).
2041 > \]
2042 > where $x_OR$, $y_OR$, $z_OR$ are the components of the vector
2043 > joining center of resistance $R$ and origin $O$.

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines