| 7 |
|
biological systems, providing structural, thermodynamic and |
| 8 |
|
dynamical information. |
| 9 |
|
|
| 10 |
< |
\subsection{\label{introSection:classicalMechanics}Classical Mechanics} |
| 10 |
> |
\section{\label{introSection:classicalMechanics}Classical |
| 11 |
> |
Mechanics} |
| 12 |
|
|
| 13 |
|
Closely related to Classical Mechanics, Molecular Dynamics |
| 14 |
|
simulations are carried out by integrating the equations of motion |
| 21 |
|
when further combine with the laws of mechanics will also be |
| 22 |
|
sufficient to predict the future behavior of the system. |
| 23 |
|
|
| 24 |
< |
\subsubsection{\label{introSection:newtonian}Newtonian Mechanics} |
| 24 |
> |
\subsection{\label{introSection:newtonian}Newtonian Mechanics} |
| 25 |
|
|
| 26 |
< |
\subsubsection{\label{introSection:lagrangian}Lagrangian Mechanics} |
| 26 |
> |
\subsection{\label{introSection:lagrangian}Lagrangian Mechanics} |
| 27 |
|
|
| 28 |
|
Newtonian Mechanics suffers from two important limitations: it |
| 29 |
|
describes their motion in special cartesian coordinate systems. |
| 36 |
|
which arise in attempts to apply Newton's equation to complex |
| 37 |
|
system, alternative procedures may be developed. |
| 38 |
|
|
| 39 |
< |
\subsubsubsection{\label{introSection:halmiltonPrinciple}Hamilton's |
| 39 |
> |
\subsection{\label{introSection:halmiltonPrinciple}Hamilton's |
| 40 |
|
Principle} |
| 41 |
|
|
| 42 |
|
Hamilton introduced the dynamical principle upon which it is |
| 49 |
|
the kinetic, $K$, and potential energies, $U$. |
| 50 |
|
\begin{equation} |
| 51 |
|
\delta \int_{t_1 }^{t_2 } {(K - U)dt = 0} , |
| 52 |
< |
\lable{introEquation:halmitonianPrinciple1} |
| 52 |
> |
\label{introEquation:halmitonianPrinciple1} |
| 53 |
|
\end{equation} |
| 54 |
|
|
| 55 |
|
For simple mechanical systems, where the forces acting on the |
| 63 |
|
\end{equation} |
| 64 |
|
then Eq.~\ref{introEquation:halmitonianPrinciple1} becomes |
| 65 |
|
\begin{equation} |
| 66 |
< |
\delta \int_{t_1 }^{t_2 } {K dt = 0} , |
| 67 |
< |
\lable{introEquation:halmitonianPrinciple2} |
| 66 |
> |
\delta \int_{t_1 }^{t_2 } {L dt = 0} , |
| 67 |
> |
\label{introEquation:halmitonianPrinciple2} |
| 68 |
|
\end{equation} |
| 69 |
|
|
| 70 |
< |
\subsubsubsection{\label{introSection:equationOfMotionLagrangian}The |
| 70 |
> |
\subsection{\label{introSection:equationOfMotionLagrangian}The |
| 71 |
|
Equations of Motion in Lagrangian Mechanics} |
| 72 |
|
|
| 73 |
|
for a holonomic system of $f$ degrees of freedom, the equations of |
| 75 |
|
\begin{equation} |
| 76 |
|
\frac{d}{{dt}}\frac{{\partial L}}{{\partial \dot q_i }} - |
| 77 |
|
\frac{{\partial L}}{{\partial q_i }} = 0,{\rm{ }}i = 1, \ldots,f |
| 78 |
< |
\lable{introEquation:eqMotionLagrangian} |
| 78 |
> |
\label{introEquation:eqMotionLagrangian} |
| 79 |
|
\end{equation} |
| 80 |
|
where $q_{i}$ is generalized coordinate and $\dot{q_{i}}$ is |
| 81 |
|
generalized velocity. |
| 82 |
|
|
| 83 |
< |
\subsubsection{\label{introSection:hamiltonian}Hamiltonian Mechanics} |
| 83 |
> |
\subsection{\label{introSection:hamiltonian}Hamiltonian Mechanics} |
| 84 |
|
|
| 85 |
|
Arising from Lagrangian Mechanics, Hamiltonian Mechanics was |
| 86 |
|
introduced by William Rowan Hamilton in 1833 as a re-formulation of |
| 91 |
|
p_i = \frac{\partial L}{\partial \dot q_i} |
| 92 |
|
\label{introEquation:generalizedMomenta} |
| 93 |
|
\end{equation} |
| 94 |
< |
With the help of these momenta, we may now define a new quantity $H$ |
| 94 |
< |
by the equation |
| 94 |
> |
The Lagrange equations of motion are then expressed by |
| 95 |
|
\begin{equation} |
| 96 |
< |
H = p_1 \dot q_1 + \ldots + p_f \dot q_f - L, |
| 96 |
> |
p_i = \frac{{\partial L}}{{\partial q_i }} |
| 97 |
> |
\label{introEquation:generalizedMomentaDot} |
| 98 |
> |
\end{equation} |
| 99 |
> |
|
| 100 |
> |
With the help of the generalized momenta, we may now define a new |
| 101 |
> |
quantity $H$ by the equation |
| 102 |
> |
\begin{equation} |
| 103 |
> |
H = \sum\limits_k {p_k \dot q_k } - L , |
| 104 |
|
\label{introEquation:hamiltonianDefByLagrangian} |
| 105 |
|
\end{equation} |
| 106 |
|
where $ \dot q_1 \ldots \dot q_f $ are generalized velocities and |
| 107 |
|
$L$ is the Lagrangian function for the system. |
| 108 |
|
|
| 109 |
+ |
Differentiating Eq.~\ref{introEquation:hamiltonianDefByLagrangian}, |
| 110 |
+ |
one can obtain |
| 111 |
+ |
\begin{equation} |
| 112 |
+ |
dH = \sum\limits_k {\left( {p_k d\dot q_k + \dot q_k dp_k - |
| 113 |
+ |
\frac{{\partial L}}{{\partial q_k }}dq_k - \frac{{\partial |
| 114 |
+ |
L}}{{\partial \dot q_k }}d\dot q_k } \right)} - \frac{{\partial |
| 115 |
+ |
L}}{{\partial t}}dt \label{introEquation:diffHamiltonian1} |
| 116 |
+ |
\end{equation} |
| 117 |
+ |
Making use of Eq.~\ref{introEquation:generalizedMomenta}, the |
| 118 |
+ |
second and fourth terms in the parentheses cancel. Therefore, |
| 119 |
+ |
Eq.~\ref{introEquation:diffHamiltonian1} can be rewritten as |
| 120 |
+ |
\begin{equation} |
| 121 |
+ |
dH = \sum\limits_k {\left( {\dot q_k dp_k - \dot p_k dq_k } |
| 122 |
+ |
\right)} - \frac{{\partial L}}{{\partial t}}dt |
| 123 |
+ |
\label{introEquation:diffHamiltonian2} |
| 124 |
+ |
\end{equation} |
| 125 |
+ |
By identifying the coefficients of $dq_k$, $dp_k$ and dt, we can |
| 126 |
+ |
find |
| 127 |
+ |
\begin{equation} |
| 128 |
+ |
\frac{{\partial H}}{{\partial p_k }} = q_k |
| 129 |
+ |
\label{introEquation:motionHamiltonianCoordinate} |
| 130 |
+ |
\end{equation} |
| 131 |
+ |
\begin{equation} |
| 132 |
+ |
\frac{{\partial H}}{{\partial q_k }} = - p_k |
| 133 |
+ |
\label{introEquation:motionHamiltonianMomentum} |
| 134 |
+ |
\end{equation} |
| 135 |
+ |
and |
| 136 |
+ |
\begin{equation} |
| 137 |
+ |
\frac{{\partial H}}{{\partial t}} = - \frac{{\partial L}}{{\partial |
| 138 |
+ |
t}} |
| 139 |
+ |
\label{introEquation:motionHamiltonianTime} |
| 140 |
+ |
\end{equation} |
| 141 |
+ |
|
| 142 |
+ |
Eq.~\ref{introEquation:motionHamiltonianCoordinate} and |
| 143 |
+ |
Eq.~\ref{introEquation:motionHamiltonianMomentum} are Hamilton's |
| 144 |
+ |
equation of motion. Due to their symmetrical formula, they are also |
| 145 |
+ |
known as the canonical equations of motions. |
| 146 |
+ |
|
| 147 |
|
An important difference between Lagrangian approach and the |
| 148 |
|
Hamiltonian approach is that the Lagrangian is considered to be a |
| 149 |
|
function of the generalized velocities $\dot q_i$ and the |
| 155 |
|
independent variables and it only works with 1st-order differential |
| 156 |
|
equations. |
| 157 |
|
|
| 158 |
+ |
\subsection{\label{introSection:poissonBrackets}Poisson Brackets} |
| 159 |
|
|
| 160 |
< |
\subsubsection{\label{introSection:canonicalTransformation}Canonical Transformation} |
| 160 |
> |
\subsection{\label{introSection:canonicalTransformation}Canonical |
| 161 |
> |
Transformation} |
| 162 |
|
|
| 163 |
< |
\subsection{\label{introSection:statisticalMechanics}Statistical Mechanics} |
| 163 |
> |
\section{\label{introSection:statisticalMechanics}Statistical |
| 164 |
> |
Mechanics} |
| 165 |
|
|
| 166 |
|
The thermodynamic behaviors and properties of Molecular Dynamics |
| 167 |
|
simulation are governed by the principle of Statistical Mechanics. |
| 168 |
|
The following section will give a brief introduction to some of the |
| 169 |
|
Statistical Mechanics concepts presented in this dissertation. |
| 170 |
|
|
| 171 |
< |
\subsubsection{\label{introSection::ensemble}Ensemble} |
| 171 |
> |
\subsection{\label{introSection::ensemble}Ensemble} |
| 172 |
|
|
| 173 |
< |
\subsubsection{\label{introSection:ergodic}The Ergodic Hypothesis} |
| 173 |
> |
\subsection{\label{introSection:ergodic}The Ergodic Hypothesis} |
| 174 |
|
|
| 175 |
< |
\subsection{\label{introSection:rigidBody}Dynamics of Rigid Bodies} |
| 175 |
> |
\section{\label{introSection:rigidBody}Dynamics of Rigid Bodies} |
| 176 |
|
|
| 177 |
< |
\subsection{\label{introSection:correlationFunctions}Correlation Functions} |
| 177 |
> |
\section{\label{introSection:correlationFunctions}Correlation Functions} |
| 178 |
|
|
| 179 |
|
\section{\label{introSection:langevinDynamics}Langevin Dynamics} |
| 180 |
|
|