| 914 |
|
\end{enumerate} |
| 915 |
|
These three individual steps will be covered in the following |
| 916 |
|
sections. Sec.~\ref{introSec:initialSystemSettings} deals with the |
| 917 |
< |
initialization of a simulation. Sec.~\ref{introSec:production} will |
| 918 |
< |
discusses issues in production run. Sec.~\ref{introSection:Analysis} |
| 919 |
< |
provides the theoretical tools for trajectory analysis. |
| 917 |
> |
initialization of a simulation. Sec.~\ref{introSection:production} |
| 918 |
> |
will discusses issues in production run. |
| 919 |
> |
Sec.~\ref{introSection:Analysis} provides the theoretical tools for |
| 920 |
> |
trajectory analysis. |
| 921 |
|
|
| 922 |
|
\subsection{\label{introSec:initialSystemSettings}Initialization} |
| 923 |
|
|
| 1376 |
|
|
| 1377 |
|
If there is not external forces exerted on the rigid body, the only |
| 1378 |
|
contribution to the rotational is from the kinetic potential (the |
| 1379 |
< |
first term of \ref{ introEquation:bodyAngularMotion}). The free |
| 1380 |
< |
rigid body is an example of Lie-Poisson system with Hamiltonian |
| 1380 |
< |
function |
| 1379 |
> |
first term of \ref{introEquation:bodyAngularMotion}). The free rigid |
| 1380 |
> |
body is an example of Lie-Poisson system with Hamiltonian function |
| 1381 |
|
\begin{equation} |
| 1382 |
|
T^r (\pi ) = T_1 ^r (\pi _1 ) + T_2^r (\pi _2 ) + T_3^r (\pi _3 ) |
| 1383 |
|
\label{introEquation:rotationalKineticRB} |