ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/tengDissertation/Introduction.tex
(Generate patch)

Comparing trunk/tengDissertation/Introduction.tex (file contents):
Revision 2700 by tim, Tue Apr 11 03:38:09 2006 UTC vs.
Revision 2801 by tim, Tue Jun 6 14:56:36 2006 UTC

# Line 27 | Line 27 | acceleration along the direction of the force acting o
27   \end{equation}
28   A point mass interacting with other bodies moves with the
29   acceleration along the direction of the force acting on it. Let
30 < $F_ij$ be the force that particle $i$ exerts on particle $j$, and
31 < $F_ji$ be the force that particle $j$ exerts on particle $i$.
30 > $F_{ij}$ be the force that particle $i$ exerts on particle $j$, and
31 > $F_{ji}$ be the force that particle $j$ exerts on particle $i$.
32   Newton¡¯s third law states that
33   \begin{equation}
34 < F_ij = -F_ji
34 > F_{ij} = -F_{ji}
35   \label{introEquation:newtonThirdLaw}
36   \end{equation}
37  
# Line 93 | Line 93 | the path which minimizes the time integral of the diff
93   The actual trajectory, along which a dynamical system may move from
94   one point to another within a specified time, is derived by finding
95   the path which minimizes the time integral of the difference between
96 < the kinetic, $K$, and potential energies, $U$ \cite{tolman79}.
96 > the kinetic, $K$, and potential energies, $U$ \cite{Tolman1979}.
97   \begin{equation}
98   \delta \int_{t_1 }^{t_2 } {(K - U)dt = 0} ,
99   \label{introEquation:halmitonianPrinciple1}
# Line 189 | Line 189 | equation of motion. Due to their symmetrical formula,
189   Eq.~\ref{introEquation:motionHamiltonianCoordinate} and
190   Eq.~\ref{introEquation:motionHamiltonianMomentum} are Hamilton's
191   equation of motion. Due to their symmetrical formula, they are also
192 < known as the canonical equations of motions \cite{Goldstein01}.
192 > known as the canonical equations of motions \cite{Goldstein2001}.
193  
194   An important difference between Lagrangian approach and the
195   Hamiltonian approach is that the Lagrangian is considered to be a
# Line 200 | Line 200 | independent variables and it only works with 1st-order
200   appropriate for application to statistical mechanics and quantum
201   mechanics, since it treats the coordinate and its time derivative as
202   independent variables and it only works with 1st-order differential
203 < equations\cite{Marion90}.
203 > equations\cite{Marion1990}.
204  
205   In Newtonian Mechanics, a system described by conservative forces
206   conserves the total energy \ref{introEquation:energyConservation}.
# Line 315 | Line 315 | partition function like,
315   isolated and conserve energy, Microcanonical ensemble(NVE) has a
316   partition function like,
317   \begin{equation}
318 < \Omega (N,V,E) = e^{\beta TS}
319 < \label{introEqaution:NVEPartition}.
318 > \Omega (N,V,E) = e^{\beta TS} \label{introEquation:NVEPartition}.
319   \end{equation}
320   A canonical ensemble(NVT)is an ensemble of systems, each of which
321   can share its energy with a large heat reservoir. The distribution
# Line 396 | Line 395 | distribution,
395   \label{introEquation:densityAndHamiltonian}
396   \end{equation}
397  
398 + \subsubsection{\label{introSection:phaseSpaceConservation}Conservation of Phase Space}
399 + Lets consider a region in the phase space,
400 + \begin{equation}
401 + \delta v = \int { \ldots \int {dq_1 } ...dq_f dp_1 } ..dp_f .
402 + \end{equation}
403 + If this region is small enough, the density $\rho$ can be regarded
404 + as uniform over the whole phase space. Thus, the number of phase
405 + points inside this region is given by,
406 + \begin{equation}
407 + \delta N = \rho \delta v = \rho \int { \ldots \int {dq_1 } ...dq_f
408 + dp_1 } ..dp_f.
409 + \end{equation}
410 +
411 + \begin{equation}
412 + \frac{{d(\delta N)}}{{dt}} = \frac{{d\rho }}{{dt}}\delta v + \rho
413 + \frac{d}{{dt}}(\delta v) = 0.
414 + \end{equation}
415 + With the help of stationary assumption
416 + (\ref{introEquation:stationary}), we obtain the principle of the
417 + \emph{conservation of extension in phase space},
418 + \begin{equation}
419 + \frac{d}{{dt}}(\delta v) = \frac{d}{{dt}}\int { \ldots \int {dq_1 }
420 + ...dq_f dp_1 } ..dp_f  = 0.
421 + \label{introEquation:volumePreserving}
422 + \end{equation}
423 +
424 + \subsubsection{\label{introSection:liouvilleInOtherForms}Liouville's Theorem in Other Forms}
425 +
426   Liouville's theorem can be expresses in a variety of different forms
427   which are convenient within different contexts. For any two function
428   $F$ and $G$ of the coordinates and momenta of a system, the Poisson
# Line 431 | Line 458 | expressed as
458   \label{introEquation:liouvilleTheoremInOperator}
459   \end{equation}
460  
434
461   \subsection{\label{introSection:ergodic}The Ergodic Hypothesis}
462  
463   Various thermodynamic properties can be calculated from Molecular
# Line 444 | Line 470 | ensemble average. It states that time average and aver
470   many-body system in Statistical Mechanics. Fortunately, Ergodic
471   Hypothesis is proposed to make a connection between time average and
472   ensemble average. It states that time average and average over the
473 < statistical ensemble are identical \cite{Frenkel1996, leach01:mm}.
473 > statistical ensemble are identical \cite{Frenkel1996, Leach2001}.
474   \begin{equation}
475   \langle A(q , p) \rangle_t = \mathop {\lim }\limits_{t \to \infty }
476   \frac{1}{t}\int\limits_0^t {A(q(t),p(t))dt = \int\limits_\Gamma
# Line 458 | Line 484 | observable. In case an ensemble averaged approach soun
484   a properly weighted statistical average. This allows the researcher
485   freedom of choice when deciding how best to measure a given
486   observable. In case an ensemble averaged approach sounds most
487 < reasonable, the Monte Carlo techniques\cite{metropolis:1949} can be
487 > reasonable, the Monte Carlo techniques\cite{Metropolis1949} can be
488   utilized. Or if the system lends itself to a time averaging
489   approach, the Molecular Dynamics techniques in
490   Sec.~\ref{introSection:molecularDynamics} will be the best
# Line 472 | Line 498 | volume and time reversal symmetry, are developed to ad
498   within the equations. Since 1990, geometric integrators, which
499   preserve various phase-flow invariants such as symplectic structure,
500   volume and time reversal symmetry, are developed to address this
501 < issue. The velocity verlet method, which happens to be a simple
502 < example of symplectic integrator, continues to gain its popularity
503 < in molecular dynamics community. This fact can be partly explained
504 < by its geometric nature.
501 > issue\cite{Dullweber1997, McLachlan1998, Leimkuhler1999}. The
502 > velocity verlet method, which happens to be a simple example of
503 > symplectic integrator, continues to gain its popularity in molecular
504 > dynamics community. This fact can be partly explained by its
505 > geometric nature.
506  
507   \subsection{\label{introSection:symplecticManifold}Symplectic Manifold}
508   A \emph{manifold} is an abstract mathematical space. It locally
# Line 539 | Line 566 | called a \emph{Hamiltonian vector field}.
566   \end{equation}In this case, $f$ is
567   called a \emph{Hamiltonian vector field}.
568  
569 < Another generalization of Hamiltonian dynamics is Poisson Dynamics,
569 > Another generalization of Hamiltonian dynamics is Poisson
570 > Dynamics\cite{Olver1986},
571   \begin{equation}
572   \dot x = J(x)\nabla _x H \label{introEquation:poissonHamiltonian}
573   \end{equation}
574   The most obvious change being that matrix $J$ now depends on $x$.
547 The free rigid body is an example of Poisson system (actually a
548 Lie-Poisson system) with Hamiltonian function of angular kinetic
549 energy.
550 \begin{equation}
551 J(\pi ) = \left( {\begin{array}{*{20}c}
552   0 & {\pi _3 } & { - \pi _2 }  \\
553   { - \pi _3 } & 0 & {\pi _1 }  \\
554   {\pi _2 } & { - \pi _1 } & 0  \\
555 \end{array}} \right)
556 \end{equation}
575  
576 < \begin{equation}
559 < H = \frac{1}{2}\left( {\frac{{\pi _1^2 }}{{I_1 }} + \frac{{\pi _2^2
560 < }}{{I_2 }} + \frac{{\pi _3^2 }}{{I_3 }}} \right)
561 < \end{equation}
576 > \subsection{\label{introSection:exactFlow}Exact Flow}
577  
563 \subsection{\label{introSection:geometricProperties}Geometric Properties}
578   Let $x(t)$ be the exact solution of the ODE system,
579   \begin{equation}
580   \frac{{dx}}{{dt}} = f(x) \label{introEquation:ODE}
# Line 570 | Line 584 | where $\tau$ is a fixed time step and $\varphi$ is a m
584   x(t+\tau) =\varphi_\tau(x(t))
585   \]
586   where $\tau$ is a fixed time step and $\varphi$ is a map from phase
587 < space to itself. In most cases, it is not easy to find the exact
574 < flow $\varphi_\tau$. Instead, we use a approximate map, $\psi_\tau$,
575 < which is usually called integrator. The order of an integrator
576 < $\psi_\tau$ is $p$, if the Taylor series of $\psi_\tau$ agree to
577 < order $p$,
587 > space to itself. The flow has the continuous group property,
588   \begin{equation}
589 + \varphi _{\tau _1 }  \circ \varphi _{\tau _2 }  = \varphi _{\tau _1
590 + + \tau _2 } .
591 + \end{equation}
592 + In particular,
593 + \begin{equation}
594 + \varphi _\tau   \circ \varphi _{ - \tau }  = I
595 + \end{equation}
596 + Therefore, the exact flow is self-adjoint,
597 + \begin{equation}
598 + \varphi _\tau   = \varphi _{ - \tau }^{ - 1}.
599 + \end{equation}
600 + The exact flow can also be written in terms of the of an operator,
601 + \begin{equation}
602 + \varphi _\tau  (x) = e^{\tau \sum\limits_i {f_i (x)\frac{\partial
603 + }{{\partial x_i }}} } (x) \equiv \exp (\tau f)(x).
604 + \label{introEquation:exponentialOperator}
605 + \end{equation}
606 +
607 + In most cases, it is not easy to find the exact flow $\varphi_\tau$.
608 + Instead, we use a approximate map, $\psi_\tau$, which is usually
609 + called integrator. The order of an integrator $\psi_\tau$ is $p$, if
610 + the Taylor series of $\psi_\tau$ agree to order $p$,
611 + \begin{equation}
612   \psi_tau(x) = x + \tau f(x) + O(\tau^{p+1})
613   \end{equation}
614  
615 < The hidden geometric properties of ODE and its flow play important
616 < roles in numerical studies. Let $\varphi$ be the flow of Hamiltonian
617 < vector field, $\varphi$ is a \emph{symplectic} flow if it satisfies,
615 > \subsection{\label{introSection:geometricProperties}Geometric Properties}
616 >
617 > The hidden geometric properties\cite{Budd1999, Marsden1998} of ODE
618 > and its flow play important roles in numerical studies. Many of them
619 > can be found in systems which occur naturally in applications.
620 >
621 > Let $\varphi$ be the flow of Hamiltonian vector field, $\varphi$ is
622 > a \emph{symplectic} flow if it satisfies,
623   \begin{equation}
624 < '\varphi^T J '\varphi = J.
624 > {\varphi '}^T J \varphi ' = J.
625   \end{equation}
626   According to Liouville's theorem, the symplectic volume is invariant
627   under a Hamiltonian flow, which is the basis for classical
# Line 591 | Line 629 | symplectomorphism. As to the Poisson system,
629   field on a symplectic manifold can be shown to be a
630   symplectomorphism. As to the Poisson system,
631   \begin{equation}
632 < '\varphi ^T J '\varphi  = J \circ \varphi
632 > {\varphi '}^T J \varphi ' = J \circ \varphi
633   \end{equation}
634 < is the property must be preserved by the integrator. It is possible
635 < to construct a \emph{volume-preserving} flow for a source free($
636 < \nabla \cdot f = 0 $) ODE, if the flow satisfies $ \det d\varphi  =
637 < 1$. Changing the variables $y = h(x)$ in a
638 < ODE\ref{introEquation:ODE} will result in a new system,
634 > is the property must be preserved by the integrator.
635 >
636 > It is possible to construct a \emph{volume-preserving} flow for a
637 > source free($ \nabla \cdot f = 0 $) ODE, if the flow satisfies $
638 > \det d\varphi  = 1$. One can show easily that a symplectic flow will
639 > be volume-preserving.
640 >
641 > Changing the variables $y = h(x)$ in a ODE\ref{introEquation:ODE}
642 > will result in a new system,
643   \[
644   \dot y = \tilde f(y) = ((dh \cdot f)h^{ - 1} )(y).
645   \]
646   The vector filed $f$ has reversing symmetry $h$ if $f = - \tilde f$.
647   In other words, the flow of this vector field is reversible if and
648 < only if $ h \circ \varphi ^{ - 1}  = \varphi  \circ h $. When
607 < designing any numerical methods, one should always try to preserve
608 < the structural properties of the original ODE and its flow.
648 > only if $ h \circ \varphi ^{ - 1}  = \varphi  \circ h $.
649  
650 + A \emph{first integral}, or conserved quantity of a general
651 + differential function is a function $ G:R^{2d}  \to R^d $ which is
652 + constant for all solutions of the ODE $\frac{{dx}}{{dt}} = f(x)$ ,
653 + \[
654 + \frac{{dG(x(t))}}{{dt}} = 0.
655 + \]
656 + Using chain rule, one may obtain,
657 + \[
658 + \sum\limits_i {\frac{{dG}}{{dx_i }}} f_i (x) = f \bullet \nabla G,
659 + \]
660 + which is the condition for conserving \emph{first integral}. For a
661 + canonical Hamiltonian system, the time evolution of an arbitrary
662 + smooth function $G$ is given by,
663 +
664 + \begin{eqnarray}
665 + \frac{{dG(x(t))}}{{dt}} & = & [\nabla _x G(x(t))]^T \dot x(t) \\
666 +                        & = & [\nabla _x G(x(t))]^T J\nabla _x H(x(t)). \\
667 + \label{introEquation:firstIntegral1}
668 + \end{eqnarray}
669 +
670 +
671 + Using poisson bracket notion, Equation
672 + \ref{introEquation:firstIntegral1} can be rewritten as
673 + \[
674 + \frac{d}{{dt}}G(x(t)) = \left\{ {G,H} \right\}(x(t)).
675 + \]
676 + Therefore, the sufficient condition for $G$ to be the \emph{first
677 + integral} of a Hamiltonian system is
678 + \[
679 + \left\{ {G,H} \right\} = 0.
680 + \]
681 + As well known, the Hamiltonian (or energy) H of a Hamiltonian system
682 + is a \emph{first integral}, which is due to the fact $\{ H,H\}  =
683 + 0$.
684 +
685 + When designing any numerical methods, one should always try to
686 + preserve the structural properties of the original ODE and its flow.
687 +
688   \subsection{\label{introSection:constructionSymplectic}Construction of Symplectic Methods}
689   A lot of well established and very effective numerical methods have
690   been successful precisely because of their symplecticities even
# Line 621 | Line 699 | constructed using one of four different methods.
699   \item Splitting methods
700   \end{enumerate}
701  
702 < Generating function tends to lead to methods which are cumbersome
703 < and difficult to use\cite{}. In dissipative systems, variational
704 < methods can capture the decay of energy accurately\cite{}. Since
705 < their geometrically unstable nature against non-Hamiltonian
706 < perturbations, ordinary implicit Runge-Kutta methods are not
707 < suitable for Hamiltonian system. Recently, various high-order
708 < explicit Runge--Kutta methods have been developed to overcome this
709 < instability \cite{}. However, due to computational penalty involved
710 < in implementing the Runge-Kutta methods, they do not attract too
711 < much attention from Molecular Dynamics community. Instead, splitting
712 < have been widely accepted since they exploit natural decompositions
713 < of the system\cite{Tuckerman92}. The main idea behind splitting
714 < methods is to decompose the discrete $\varphi_h$ as a composition of
715 < simpler flows,
702 > Generating function\cite{Channell1990} tends to lead to methods
703 > which are cumbersome and difficult to use. In dissipative systems,
704 > variational methods can capture the decay of energy
705 > accurately\cite{Kane2000}. Since their geometrically unstable nature
706 > against non-Hamiltonian perturbations, ordinary implicit Runge-Kutta
707 > methods are not suitable for Hamiltonian system. Recently, various
708 > high-order explicit Runge-Kutta methods
709 > \cite{Owren1992,Chen2003}have been developed to overcome this
710 > instability. However, due to computational penalty involved in
711 > implementing the Runge-Kutta methods, they do not attract too much
712 > attention from Molecular Dynamics community. Instead, splitting have
713 > been widely accepted since they exploit natural decompositions of
714 > the system\cite{Tuckerman1992, McLachlan1998}.
715 >
716 > \subsubsection{\label{introSection:splittingMethod}Splitting Method}
717 >
718 > The main idea behind splitting methods is to decompose the discrete
719 > $\varphi_h$ as a composition of simpler flows,
720   \begin{equation}
721   \varphi _h  = \varphi _{h_1 }  \circ \varphi _{h_2 }  \ldots  \circ
722   \varphi _{h_n }
723   \label{introEquation:FlowDecomposition}
724   \end{equation}
725   where each of the sub-flow is chosen such that each represent a
726 < simpler integration of the system. Let $\phi$ and $\psi$ both be
727 < symplectic maps, it is easy to show that any composition of
728 < symplectic flows yields a symplectic map,
726 > simpler integration of the system.
727 >
728 > Suppose that a Hamiltonian system takes the form,
729 > \[
730 > H = H_1 + H_2.
731 > \]
732 > Here, $H_1$ and $H_2$ may represent different physical processes of
733 > the system. For instance, they may relate to kinetic and potential
734 > energy respectively, which is a natural decomposition of the
735 > problem. If $H_1$ and $H_2$ can be integrated using exact flows
736 > $\varphi_1(t)$ and $\varphi_2(t)$, respectively, a simple first
737 > order is then given by the Lie-Trotter formula
738 > \begin{equation}
739 > \varphi _h  = \varphi _{1,h}  \circ \varphi _{2,h},
740 > \label{introEquation:firstOrderSplitting}
741 > \end{equation}
742 > where $\varphi _h$ is the result of applying the corresponding
743 > continuous $\varphi _i$ over a time $h$. By definition, as
744 > $\varphi_i(t)$ is the exact solution of a Hamiltonian system, it
745 > must follow that each operator $\varphi_i(t)$ is a symplectic map.
746 > It is easy to show that any composition of symplectic flows yields a
747 > symplectic map,
748   \begin{equation}
749   (\varphi '\phi ')^T J\varphi '\phi ' = \phi '^T \varphi '^T J\varphi
750 < '\phi ' = \phi '^T J\phi ' = J.
750 > '\phi ' = \phi '^T J\phi ' = J,
751   \label{introEquation:SymplecticFlowComposition}
752   \end{equation}
753 < Suppose that a Hamiltonian system has a form with $H = T + V$
753 > where $\phi$ and $\psi$ both are symplectic maps. Thus operator
754 > splitting in this context automatically generates a symplectic map.
755  
756 < \section{\label{introSection:molecularDynamics}Molecular Dynamics}
756 > The Lie-Trotter splitting(\ref{introEquation:firstOrderSplitting})
757 > introduces local errors proportional to $h^2$, while Strang
758 > splitting gives a second-order decomposition,
759 > \begin{equation}
760 > \varphi _h  = \varphi _{1,h/2}  \circ \varphi _{2,h}  \circ \varphi
761 > _{1,h/2} , \label{introEquation:secondOrderSplitting}
762 > \end{equation}
763 > which has a local error proportional to $h^3$. Sprang splitting's
764 > popularity in molecular simulation community attribute to its
765 > symmetric property,
766 > \begin{equation}
767 > \varphi _h^{ - 1} = \varphi _{ - h}.
768 > \label{introEquation:timeReversible}
769 > \end{equation}
770  
771 < As a special discipline of molecular modeling, Molecular dynamics
772 < has proven to be a powerful tool for studying the functions of
773 < biological systems, providing structural, thermodynamic and
774 < dynamical information.
771 > \subsubsection{\label{introSection:exampleSplittingMethod}Example of Splitting Method}
772 > The classical equation for a system consisting of interacting
773 > particles can be written in Hamiltonian form,
774 > \[
775 > H = T + V
776 > \]
777 > where $T$ is the kinetic energy and $V$ is the potential energy.
778 > Setting $H_1 = T, H_2 = V$ and applying Strang splitting, one
779 > obtains the following:
780 > \begin{align}
781 > q(\Delta t) &= q(0) + \dot{q}(0)\Delta t +
782 >    \frac{F[q(0)]}{m}\frac{\Delta t^2}{2}, %
783 > \label{introEquation:Lp10a} \\%
784 > %
785 > \dot{q}(\Delta t) &= \dot{q}(0) + \frac{\Delta t}{2m}
786 >    \biggl [F[q(0)] + F[q(\Delta t)] \biggr]. %
787 > \label{introEquation:Lp10b}
788 > \end{align}
789 > where $F(t)$ is the force at time $t$. This integration scheme is
790 > known as \emph{velocity verlet} which is
791 > symplectic(\ref{introEquation:SymplecticFlowComposition}),
792 > time-reversible(\ref{introEquation:timeReversible}) and
793 > volume-preserving (\ref{introEquation:volumePreserving}). These
794 > geometric properties attribute to its long-time stability and its
795 > popularity in the community. However, the most commonly used
796 > velocity verlet integration scheme is written as below,
797 > \begin{align}
798 > \dot{q}\biggl (\frac{\Delta t}{2}\biggr ) &=
799 >    \dot{q}(0) + \frac{\Delta t}{2m}\, F[q(0)], \label{introEquation:Lp9a}\\%
800 > %
801 > q(\Delta t) &= q(0) + \Delta t\, \dot{q}\biggl (\frac{\Delta t}{2}\biggr ),%
802 >    \label{introEquation:Lp9b}\\%
803 > %
804 > \dot{q}(\Delta t) &= \dot{q}\biggl (\frac{\Delta t}{2}\biggr ) +
805 >    \frac{\Delta t}{2m}\, F[q(0)]. \label{introEquation:Lp9c}
806 > \end{align}
807 > From the preceding splitting, one can see that the integration of
808 > the equations of motion would follow:
809 > \begin{enumerate}
810 > \item calculate the velocities at the half step, $\frac{\Delta t}{2}$, from the forces calculated at the initial position.
811  
812 < \subsection{\label{introSec:mdInit}Initialization}
812 > \item Use the half step velocities to move positions one whole step, $\Delta t$.
813  
814 < \subsection{\label{introSection:mdIntegration} Integration of the Equations of Motion}
814 > \item Evaluate the forces at the new positions, $\mathbf{r}(\Delta t)$, and use the new forces to complete the velocity move.
815  
816 < \section{\label{introSection:rigidBody}Dynamics of Rigid Bodies}
816 > \item Repeat from step 1 with the new position, velocities, and forces assuming the roles of the initial values.
817 > \end{enumerate}
818  
819 < A rigid body is a body in which the distance between any two given
820 < points of a rigid body remains constant regardless of external
821 < forces exerted on it. A rigid body therefore conserves its shape
822 < during its motion.
819 > Simply switching the order of splitting and composing, a new
820 > integrator, the \emph{position verlet} integrator, can be generated,
821 > \begin{align}
822 > \dot q(\Delta t) &= \dot q(0) + \Delta tF(q(0))\left[ {q(0) +
823 > \frac{{\Delta t}}{{2m}}\dot q(0)} \right], %
824 > \label{introEquation:positionVerlet1} \\%
825 > %
826 > q(\Delta t) &= q(0) + \frac{{\Delta t}}{2}\left[ {\dot q(0) + \dot
827 > q(\Delta t)} \right]. %
828 > \label{introEquation:positionVerlet2}
829 > \end{align}
830  
831 < Applications of dynamics of rigid bodies.
831 > \subsubsection{\label{introSection:errorAnalysis}Error Analysis and Higher Order Methods}
832  
833 < \subsection{\label{introSection:lieAlgebra}Lie Algebra}
834 <
835 < \subsection{\label{introSection:DLMMotionEquation}The Euler Equations of Rigid Body Motion}
836 <
837 < \subsection{\label{introSection:otherRBMotionEquation}Other Formulations for Rigid Body Motion}
679 <
680 < %\subsection{\label{introSection:poissonBrackets}Poisson Brackets}
681 <
682 < \section{\label{introSection:correlationFunctions}Correlation Functions}
683 <
684 < \section{\label{introSection:langevinDynamics}Langevin Dynamics}
685 <
686 < \subsection{\label{introSection:LDIntroduction}Introduction and application of Langevin Dynamics}
687 <
688 < \subsection{\label{introSection:generalizedLangevinDynamics}Generalized Langevin Dynamics}
689 <
833 > Baker-Campbell-Hausdorff formula can be used to determine the local
834 > error of splitting method in terms of commutator of the
835 > operators(\ref{introEquation:exponentialOperator}) associated with
836 > the sub-flow. For operators $hX$ and $hY$ which are associate to
837 > $\varphi_1(t)$ and $\varphi_2(t)$ respectively , we have
838   \begin{equation}
839 < H = \frac{{p^2 }}{{2m}} + U(x) + H_B  + \Delta U(x,x_1 , \ldots x_N)
692 < \label{introEquation:bathGLE}
839 > \exp (hX + hY) = \exp (hZ)
840   \end{equation}
841 < where $H_B$ is harmonic bath Hamiltonian,
841 > where
842 > \begin{equation}
843 > hZ = hX + hY + \frac{{h^2 }}{2}[X,Y] + \frac{{h^3 }}{2}\left(
844 > {[X,[X,Y]] + [Y,[Y,X]]} \right) +  \ldots .
845 > \end{equation}
846 > Here, $[X,Y]$ is the commutators of operator $X$ and $Y$ given by
847   \[
848 < H_B  =\sum\limits_{\alpha  = 1}^N {\left\{ {\frac{{p_\alpha ^2
697 < }}{{2m_\alpha  }} + \frac{1}{2}m_\alpha  w_\alpha ^2 } \right\}}
848 > [X,Y] = XY - YX .
849   \]
850 < and $\Delta U$ is bilinear system-bath coupling,
850 > Applying Baker-Campbell-Hausdorff formula\cite{Varadarajan1974} to
851 > Sprang splitting, we can obtain
852 > \begin{eqnarray*}
853 > \exp (h X/2)\exp (h Y)\exp (h X/2) & = & \exp (h X + h Y + h^2 [X,Y]/4 + h^2 [Y,X]/4 \\
854 >                                   &   & \mbox{} + h^2 [X,X]/8 + h^2 [Y,Y]/8 \\
855 >                                   &   & \mbox{} + h^3 [Y,[Y,X]]/12 - h^3[X,[X,Y]]/24 + \ldots )
856 > \end{eqnarray*}
857 > Since \[ [X,Y] + [Y,X] = 0\] and \[ [X,X] = 0\], the dominant local
858 > error of Spring splitting is proportional to $h^3$. The same
859 > procedure can be applied to general splitting,  of the form
860 > \begin{equation}
861 > \varphi _{b_m h}^2  \circ \varphi _{a_m h}^1  \circ \varphi _{b_{m -
862 > 1} h}^2  \circ  \ldots  \circ \varphi _{a_1 h}^1 .
863 > \end{equation}
864 > Careful choice of coefficient $a_1 \ldots b_m$ will lead to higher
865 > order method. Yoshida proposed an elegant way to compose higher
866 > order methods based on symmetric splitting\cite{Yoshida1990}. Given
867 > a symmetric second order base method $ \varphi _h^{(2)} $, a
868 > fourth-order symmetric method can be constructed by composing,
869   \[
870 < \Delta U =  - \sum\limits_{\alpha  = 1}^N {g_\alpha  x_\alpha  x}
870 > \varphi _h^{(4)}  = \varphi _{\alpha h}^{(2)}  \circ \varphi _{\beta
871 > h}^{(2)}  \circ \varphi _{\alpha h}^{(2)}
872   \]
873 < Completing the square,
873 > where $ \alpha  =  - \frac{{2^{1/3} }}{{2 - 2^{1/3} }}$ and $ \beta
874 > = \frac{{2^{1/3} }}{{2 - 2^{1/3} }}$. Moreover, a symmetric
875 > integrator $ \varphi _h^{(2n + 2)}$ can be composed by
876 > \begin{equation}
877 > \varphi _h^{(2n + 2)}  = \varphi _{\alpha h}^{(2n)}  \circ \varphi
878 > _{\beta h}^{(2n)}  \circ \varphi _{\alpha h}^{(2n)}
879 > \end{equation}
880 > , if the weights are chosen as
881   \[
882 < H_B  + \Delta U = \sum\limits_{\alpha  = 1}^N {\left\{
883 < {\frac{{p_\alpha ^2 }}{{2m_\alpha  }} + \frac{1}{2}m_\alpha
707 < w_\alpha ^2 \left( {x_\alpha   - \frac{{g_\alpha  }}{{m_\alpha
708 < w_\alpha ^2 }}x} \right)^2 } \right\}}  - \sum\limits_{\alpha  =
709 < 1}^N {\frac{{g_\alpha ^2 }}{{2m_\alpha  w_\alpha ^2 }}} x^2
882 > \alpha  =  - \frac{{2^{1/(2n + 1)} }}{{2 - 2^{1/(2n + 1)} }},\beta =
883 > \frac{{2^{1/(2n + 1)} }}{{2 - 2^{1/(2n + 1)} }} .
884   \]
711 and putting it back into Eq.~\ref{introEquation:bathGLE},
712 \[
713 H = \frac{{p^2 }}{{2m}} + W(x) + \sum\limits_{\alpha  = 1}^N
714 {\left\{ {\frac{{p_\alpha ^2 }}{{2m_\alpha  }} + \frac{1}{2}m_\alpha
715 w_\alpha ^2 \left( {x_\alpha   - \frac{{g_\alpha  }}{{m_\alpha
716 w_\alpha ^2 }}x} \right)^2 } \right\}}
717 \]
718 where
719 \[
720 W(x) = U(x) - \sum\limits_{\alpha  = 1}^N {\frac{{g_\alpha ^2
721 }}{{2m_\alpha  w_\alpha ^2 }}} x^2
722 \]
723 Since the first two terms of the new Hamiltonian depend only on the
724 system coordinates, we can get the equations of motion for
725 Generalized Langevin Dynamics by Hamilton's equations
726 \ref{introEquation:motionHamiltonianCoordinate,
727 introEquation:motionHamiltonianMomentum},
728 \begin{align}
729 \dot p &=  - \frac{{\partial H}}{{\partial x}}
730       &= m\ddot x
731       &= - \frac{{\partial W(x)}}{{\partial x}} - \sum\limits_{\alpha  = 1}^N {g_\alpha  \left( {x_\alpha   - \frac{{g_\alpha  }}{{m_\alpha  w_\alpha ^2 }}x} \right)}
732 \label{introEq:Lp5}
733 \end{align}
734 , and
735 \begin{align}
736 \dot p_\alpha   &=  - \frac{{\partial H}}{{\partial x_\alpha  }}
737                &= m\ddot x_\alpha
738                &= \- m_\alpha  w_\alpha ^2 \left( {x_\alpha   - \frac{{g_\alpha}}{{m_\alpha  w_\alpha ^2 }}x} \right)
739 \end{align}
885  
886 < \subsection{\label{introSection:laplaceTransform}The Laplace Transform}
886 > \section{\label{introSection:molecularDynamics}Molecular Dynamics}
887  
888 + As one of the principal tools of molecular modeling, Molecular
889 + dynamics has proven to be a powerful tool for studying the functions
890 + of biological systems, providing structural, thermodynamic and
891 + dynamical information. The basic idea of molecular dynamics is that
892 + macroscopic properties are related to microscopic behavior and
893 + microscopic behavior can be calculated from the trajectories in
894 + simulations. For instance, instantaneous temperature of an
895 + Hamiltonian system of $N$ particle can be measured by
896   \[
897 < L(x) = \int_0^\infty  {x(t)e^{ - pt} dt}
897 > T = \sum\limits_{i = 1}^N {\frac{{m_i v_i^2 }}{{fk_B }}}
898   \]
899 + where $m_i$ and $v_i$ are the mass and velocity of $i$th particle
900 + respectively, $f$ is the number of degrees of freedom, and $k_B$ is
901 + the boltzman constant.
902  
903 + A typical molecular dynamics run consists of three essential steps:
904 + \begin{enumerate}
905 +  \item Initialization
906 +    \begin{enumerate}
907 +    \item Preliminary preparation
908 +    \item Minimization
909 +    \item Heating
910 +    \item Equilibration
911 +    \end{enumerate}
912 +  \item Production
913 +  \item Analysis
914 + \end{enumerate}
915 + These three individual steps will be covered in the following
916 + sections. Sec.~\ref{introSec:initialSystemSettings} deals with the
917 + initialization of a simulation. Sec.~\ref{introSection:production}
918 + will discusses issues in production run.
919 + Sec.~\ref{introSection:Analysis} provides the theoretical tools for
920 + trajectory analysis.
921 +
922 + \subsection{\label{introSec:initialSystemSettings}Initialization}
923 +
924 + \subsubsection{Preliminary preparation}
925 +
926 + When selecting the starting structure of a molecule for molecular
927 + simulation, one may retrieve its Cartesian coordinates from public
928 + databases, such as RCSB Protein Data Bank \textit{etc}. Although
929 + thousands of crystal structures of molecules are discovered every
930 + year, many more remain unknown due to the difficulties of
931 + purification and crystallization. Even for the molecule with known
932 + structure, some important information is missing. For example, the
933 + missing hydrogen atom which acts as donor in hydrogen bonding must
934 + be added. Moreover, in order to include electrostatic interaction,
935 + one may need to specify the partial charges for individual atoms.
936 + Under some circumstances, we may even need to prepare the system in
937 + a special setup. For instance, when studying transport phenomenon in
938 + membrane system, we may prepare the lipids in bilayer structure
939 + instead of placing lipids randomly in solvent, since we are not
940 + interested in self-aggregation and it takes a long time to happen.
941 +
942 + \subsubsection{Minimization}
943 +
944 + It is quite possible that some of molecules in the system from
945 + preliminary preparation may be overlapped with each other. This
946 + close proximity leads to high potential energy which consequently
947 + jeopardizes any molecular dynamics simulations. To remove these
948 + steric overlaps, one typically performs energy minimization to find
949 + a more reasonable conformation. Several energy minimization methods
950 + have been developed to exploit the energy surface and to locate the
951 + local minimum. While converging slowly near the minimum, steepest
952 + descent method is extremely robust when systems are far from
953 + harmonic. Thus, it is often used to refine structure from
954 + crystallographic data. Relied on the gradient or hessian, advanced
955 + methods like conjugate gradient and Newton-Raphson converge rapidly
956 + to a local minimum, while become unstable if the energy surface is
957 + far from quadratic. Another factor must be taken into account, when
958 + choosing energy minimization method, is the size of the system.
959 + Steepest descent and conjugate gradient can deal with models of any
960 + size. Because of the limit of computation power to calculate hessian
961 + matrix and insufficient storage capacity to store them, most
962 + Newton-Raphson methods can not be used with very large models.
963 +
964 + \subsubsection{Heating}
965 +
966 + Typically, Heating is performed by assigning random velocities
967 + according to a Gaussian distribution for a temperature. Beginning at
968 + a lower temperature and gradually increasing the temperature by
969 + assigning greater random velocities, we end up with setting the
970 + temperature of the system to a final temperature at which the
971 + simulation will be conducted. In heating phase, we should also keep
972 + the system from drifting or rotating as a whole. Equivalently, the
973 + net linear momentum and angular momentum of the system should be
974 + shifted to zero.
975 +
976 + \subsubsection{Equilibration}
977 +
978 + The purpose of equilibration is to allow the system to evolve
979 + spontaneously for a period of time and reach equilibrium. The
980 + procedure is continued until various statistical properties, such as
981 + temperature, pressure, energy, volume and other structural
982 + properties \textit{etc}, become independent of time. Strictly
983 + speaking, minimization and heating are not necessary, provided the
984 + equilibration process is long enough. However, these steps can serve
985 + as a means to arrive at an equilibrated structure in an effective
986 + way.
987 +
988 + \subsection{\label{introSection:production}Production}
989 +
990 + Production run is the most important step of the simulation, in
991 + which the equilibrated structure is used as a starting point and the
992 + motions of the molecules are collected for later analysis. In order
993 + to capture the macroscopic properties of the system, the molecular
994 + dynamics simulation must be performed in correct and efficient way.
995 +
996 + The most expensive part of a molecular dynamics simulation is the
997 + calculation of non-bonded forces, such as van der Waals force and
998 + Coulombic forces \textit{etc}. For a system of $N$ particles, the
999 + complexity of the algorithm for pair-wise interactions is $O(N^2 )$,
1000 + which making large simulations prohibitive in the absence of any
1001 + computation saving techniques.
1002 +
1003 + A natural approach to avoid system size issue is to represent the
1004 + bulk behavior by a finite number of the particles. However, this
1005 + approach will suffer from the surface effect. To offset this,
1006 + \textit{Periodic boundary condition} (see Fig.~\ref{introFig:pbc})
1007 + is developed to simulate bulk properties with a relatively small
1008 + number of particles. In this method, the simulation box is
1009 + replicated throughout space to form an infinite lattice. During the
1010 + simulation, when a particle moves in the primary cell, its image in
1011 + other cells move in exactly the same direction with exactly the same
1012 + orientation. Thus, as a particle leaves the primary cell, one of its
1013 + images will enter through the opposite face.
1014 + \begin{figure}
1015 + \centering
1016 + \includegraphics[width=\linewidth]{pbc.eps}
1017 + \caption[An illustration of periodic boundary conditions]{A 2-D
1018 + illustration of periodic boundary conditions. As one particle leaves
1019 + the left of the simulation box, an image of it enters the right.}
1020 + \label{introFig:pbc}
1021 + \end{figure}
1022 +
1023 + %cutoff and minimum image convention
1024 + Another important technique to improve the efficiency of force
1025 + evaluation is to apply cutoff where particles farther than a
1026 + predetermined distance, are not included in the calculation
1027 + \cite{Frenkel1996}. The use of a cutoff radius will cause a
1028 + discontinuity in the potential energy curve. Fortunately, one can
1029 + shift the potential to ensure the potential curve go smoothly to
1030 + zero at the cutoff radius. Cutoff strategy works pretty well for
1031 + Lennard-Jones interaction because of its short range nature.
1032 + However, simply truncating the electrostatic interaction with the
1033 + use of cutoff has been shown to lead to severe artifacts in
1034 + simulations. Ewald summation, in which the slowly conditionally
1035 + convergent Coulomb potential is transformed into direct and
1036 + reciprocal sums with rapid and absolute convergence, has proved to
1037 + minimize the periodicity artifacts in liquid simulations. Taking the
1038 + advantages of the fast Fourier transform (FFT) for calculating
1039 + discrete Fourier transforms, the particle mesh-based
1040 + methods\cite{Hockney1981,Shimada1993, Luty1994} are accelerated from
1041 + $O(N^{3/2})$ to $O(N logN)$. An alternative approach is \emph{fast
1042 + multipole method}\cite{Greengard1987, Greengard1994}, which treats
1043 + Coulombic interaction exactly at short range, and approximate the
1044 + potential at long range through multipolar expansion. In spite of
1045 + their wide acceptances at the molecular simulation community, these
1046 + two methods are hard to be implemented correctly and efficiently.
1047 + Instead, we use a damped and charge-neutralized Coulomb potential
1048 + method developed by Wolf and his coworkers\cite{Wolf1999}. The
1049 + shifted Coulomb potential for particle $i$ and particle $j$ at
1050 + distance $r_{rj}$ is given by:
1051 + \begin{equation}
1052 + V(r_{ij})= \frac{q_i q_j \textrm{erfc}(\alpha
1053 + r_{ij})}{r_{ij}}-\lim_{r_{ij}\rightarrow
1054 + R_\textrm{c}}\left\{\frac{q_iq_j \textrm{erfc}(\alpha
1055 + r_{ij})}{r_{ij}}\right\}. \label{introEquation:shiftedCoulomb}
1056 + \end{equation}
1057 + where $\alpha$ is the convergence parameter. Due to the lack of
1058 + inherent periodicity and rapid convergence,this method is extremely
1059 + efficient and easy to implement.
1060 + \begin{figure}
1061 + \centering
1062 + \includegraphics[width=\linewidth]{shifted_coulomb.eps}
1063 + \caption[An illustration of shifted Coulomb potential]{An
1064 + illustration of shifted Coulomb potential.}
1065 + \label{introFigure:shiftedCoulomb}
1066 + \end{figure}
1067 +
1068 + %multiple time step
1069 +
1070 + \subsection{\label{introSection:Analysis} Analysis}
1071 +
1072 + Recently, advanced visualization technique are widely applied to
1073 + monitor the motions of molecules. Although the dynamics of the
1074 + system can be described qualitatively from animation, quantitative
1075 + trajectory analysis are more appreciable. According to the
1076 + principles of Statistical Mechanics,
1077 + Sec.~\ref{introSection:statisticalMechanics}, one can compute
1078 + thermodynamics properties, analyze fluctuations of structural
1079 + parameters, and investigate time-dependent processes of the molecule
1080 + from the trajectories.
1081 +
1082 + \subsubsection{\label{introSection:thermodynamicsProperties}Thermodynamics Properties}
1083 +
1084 + Thermodynamics properties, which can be expressed in terms of some
1085 + function of the coordinates and momenta of all particles in the
1086 + system, can be directly computed from molecular dynamics. The usual
1087 + way to measure the pressure is based on virial theorem of Clausius
1088 + which states that the virial is equal to $-3Nk_BT$. For a system
1089 + with forces between particles, the total virial, $W$, contains the
1090 + contribution from external pressure and interaction between the
1091 + particles:
1092   \[
1093 < L(x + y) = L(x) + L(y)
1093 > W =  - 3PV + \left\langle {\sum\limits_{i < j} {r{}_{ij} \cdot
1094 > f_{ij} } } \right\rangle
1095   \]
1096 + where $f_{ij}$ is the force between particle $i$ and $j$ at a
1097 + distance $r_{ij}$. Thus, the expression for the pressure is given
1098 + by:
1099 + \begin{equation}
1100 + P = \frac{{Nk_B T}}{V} - \frac{1}{{3V}}\left\langle {\sum\limits_{i
1101 + < j} {r{}_{ij} \cdot f_{ij} } } \right\rangle
1102 + \end{equation}
1103  
1104 + \subsubsection{\label{introSection:structuralProperties}Structural Properties}
1105 +
1106 + Structural Properties of a simple fluid can be described by a set of
1107 + distribution functions. Among these functions,\emph{pair
1108 + distribution function}, also known as \emph{radial distribution
1109 + function}, is of most fundamental importance to liquid-state theory.
1110 + Pair distribution function can be gathered by Fourier transforming
1111 + raw data from a series of neutron diffraction experiments and
1112 + integrating over the surface factor \cite{Powles1973}. The
1113 + experiment result can serve as a criterion to justify the
1114 + correctness of the theory. Moreover, various equilibrium
1115 + thermodynamic and structural properties can also be expressed in
1116 + terms of radial distribution function \cite{Allen1987}.
1117 +
1118 + A pair distribution functions $g(r)$ gives the probability that a
1119 + particle $i$ will be located at a distance $r$ from a another
1120 + particle $j$ in the system
1121   \[
1122 < L(ax) = aL(x)
1122 > g(r) = \frac{V}{{N^2 }}\left\langle {\sum\limits_i {\sum\limits_{j
1123 > \ne i} {\delta (r - r_{ij} )} } } \right\rangle.
1124   \]
1125 + Note that the delta function can be replaced by a histogram in
1126 + computer simulation. Figure
1127 + \ref{introFigure:pairDistributionFunction} shows a typical pair
1128 + distribution function for the liquid argon system. The occurrence of
1129 + several peaks in the plot of $g(r)$ suggests that it is more likely
1130 + to find particles at certain radial values than at others. This is a
1131 + result of the attractive interaction at such distances. Because of
1132 + the strong repulsive forces at short distance, the probability of
1133 + locating particles at distances less than about 2.5{\AA} from each
1134 + other is essentially zero.
1135  
1136 + %\begin{figure}
1137 + %\centering
1138 + %\includegraphics[width=\linewidth]{pdf.eps}
1139 + %\caption[Pair distribution function for the liquid argon
1140 + %]{Pair distribution function for the liquid argon}
1141 + %\label{introFigure:pairDistributionFunction}
1142 + %\end{figure}
1143 +
1144 + \subsubsection{\label{introSection:timeDependentProperties}Time-dependent
1145 + Properties}
1146 +
1147 + Time-dependent properties are usually calculated using \emph{time
1148 + correlation function}, which correlates random variables $A$ and $B$
1149 + at two different time
1150 + \begin{equation}
1151 + C_{AB} (t) = \left\langle {A(t)B(0)} \right\rangle.
1152 + \label{introEquation:timeCorrelationFunction}
1153 + \end{equation}
1154 + If $A$ and $B$ refer to same variable, this kind of correlation
1155 + function is called \emph{auto correlation function}. One example of
1156 + auto correlation function is velocity auto-correlation function
1157 + which is directly related to transport properties of molecular
1158 + liquids:
1159   \[
1160 < L(\dot x) = pL(x) - px(0)
1160 > D = \frac{1}{3}\int\limits_0^\infty  {\left\langle {v(t) \cdot v(0)}
1161 > \right\rangle } dt
1162   \]
1163 + where $D$ is diffusion constant. Unlike velocity autocorrelation
1164 + function which is averaging over time origins and over all the
1165 + atoms, dipole autocorrelation are calculated for the entire system.
1166 + The dipole autocorrelation function is given by:
1167 + \[
1168 + c_{dipole}  = \left\langle {u_{tot} (t) \cdot u_{tot} (t)}
1169 + \right\rangle
1170 + \]
1171 + Here $u_{tot}$ is the net dipole of the entire system and is given
1172 + by
1173 + \[
1174 + u_{tot} (t) = \sum\limits_i {u_i (t)}
1175 + \]
1176 + In principle, many time correlation functions can be related with
1177 + Fourier transforms of the infrared, Raman, and inelastic neutron
1178 + scattering spectra of molecular liquids. In practice, one can
1179 + extract the IR spectrum from the intensity of dipole fluctuation at
1180 + each frequency using the following relationship:
1181 + \[
1182 + \hat c_{dipole} (v) = \int_{ - \infty }^\infty  {c_{dipole} (t)e^{ -
1183 + i2\pi vt} dt}
1184 + \]
1185  
1186 + \section{\label{introSection:rigidBody}Dynamics of Rigid Bodies}
1187 +
1188 + Rigid bodies are frequently involved in the modeling of different
1189 + areas, from engineering, physics, to chemistry. For example,
1190 + missiles and vehicle are usually modeled by rigid bodies.  The
1191 + movement of the objects in 3D gaming engine or other physics
1192 + simulator is governed by the rigid body dynamics. In molecular
1193 + simulation, rigid body is used to simplify the model in
1194 + protein-protein docking study\cite{Gray2003}.
1195 +
1196 + It is very important to develop stable and efficient methods to
1197 + integrate the equations of motion of orientational degrees of
1198 + freedom. Euler angles are the nature choice to describe the
1199 + rotational degrees of freedom. However, due to its singularity, the
1200 + numerical integration of corresponding equations of motion is very
1201 + inefficient and inaccurate. Although an alternative integrator using
1202 + different sets of Euler angles can overcome this
1203 + difficulty\cite{Barojas1973}, the computational penalty and the lost
1204 + of angular momentum conservation still remain. A singularity free
1205 + representation utilizing quaternions was developed by Evans in
1206 + 1977\cite{Evans1977}. Unfortunately, this approach suffer from the
1207 + nonseparable Hamiltonian resulted from quaternion representation,
1208 + which prevents the symplectic algorithm to be utilized. Another
1209 + different approach is to apply holonomic constraints to the atoms
1210 + belonging to the rigid body. Each atom moves independently under the
1211 + normal forces deriving from potential energy and constraint forces
1212 + which are used to guarantee the rigidness. However, due to their
1213 + iterative nature, SHAKE and Rattle algorithm converge very slowly
1214 + when the number of constraint increases\cite{Ryckaert1977,
1215 + Andersen1983}.
1216 +
1217 + The break through in geometric literature suggests that, in order to
1218 + develop a long-term integration scheme, one should preserve the
1219 + symplectic structure of the flow. Introducing conjugate momentum to
1220 + rotation matrix $Q$ and re-formulating Hamiltonian's equation, a
1221 + symplectic integrator, RSHAKE\cite{Kol1997}, was proposed to evolve
1222 + the Hamiltonian system in a constraint manifold by iteratively
1223 + satisfying the orthogonality constraint $Q_T Q = 1$. An alternative
1224 + method using quaternion representation was developed by
1225 + Omelyan\cite{Omelyan1998}. However, both of these methods are
1226 + iterative and inefficient. In this section, we will present a
1227 + symplectic Lie-Poisson integrator for rigid body developed by
1228 + Dullweber and his coworkers\cite{Dullweber1997} in depth.
1229 +
1230 + \subsection{\label{introSection:constrainedHamiltonianRB}Constrained Hamiltonian for Rigid Body}
1231 + The motion of the rigid body is Hamiltonian with the Hamiltonian
1232 + function
1233 + \begin{equation}
1234 + H = \frac{1}{2}(p^T m^{ - 1} p) + \frac{1}{2}tr(PJ^{ - 1} P) +
1235 + V(q,Q) + \frac{1}{2}tr[(QQ^T  - 1)\Lambda ].
1236 + \label{introEquation:RBHamiltonian}
1237 + \end{equation}
1238 + Here, $q$ and $Q$  are the position and rotation matrix for the
1239 + rigid-body, $p$ and $P$  are conjugate momenta to $q$  and $Q$ , and
1240 + $J$, a diagonal matrix, is defined by
1241   \[
1242 < L(\ddot x) = p^2 L(x) - px(0) - \dot x(0)
1242 > I_{ii}^{ - 1}  = \frac{1}{2}\sum\limits_{i \ne j} {J_{jj}^{ - 1} }
1243   \]
1244 + where $I_{ii}$ is the diagonal element of the inertia tensor. This
1245 + constrained Hamiltonian equation subjects to a holonomic constraint,
1246 + \begin{equation}
1247 + Q^T Q = 1, \label{introEquation:orthogonalConstraint}
1248 + \end{equation}
1249 + which is used to ensure rotation matrix's orthogonality.
1250 + Differentiating \ref{introEquation:orthogonalConstraint} and using
1251 + Equation \ref{introEquation:RBMotionMomentum}, one may obtain,
1252 + \begin{equation}
1253 + Q^T PJ^{ - 1}  + J^{ - 1} P^T Q = 0 . \\
1254 + \label{introEquation:RBFirstOrderConstraint}
1255 + \end{equation}
1256  
1257 + Using Equation (\ref{introEquation:motionHamiltonianCoordinate},
1258 + \ref{introEquation:motionHamiltonianMomentum}), one can write down
1259 + the equations of motion,
1260 +
1261 + \begin{eqnarray}
1262 + \frac{{dq}}{{dt}} & = & \frac{p}{m} \label{introEquation:RBMotionPosition}\\
1263 + \frac{{dp}}{{dt}} & = & - \nabla _q V(q,Q) \label{introEquation:RBMotionMomentum}\\
1264 + \frac{{dQ}}{{dt}} & = & PJ^{ - 1}  \label{introEquation:RBMotionRotation}\\
1265 + \frac{{dP}}{{dt}} & = & - \nabla _Q V(q,Q) - 2Q\Lambda . \label{introEquation:RBMotionP}
1266 + \end{eqnarray}
1267 +
1268 + In general, there are two ways to satisfy the holonomic constraints.
1269 + We can use constraint force provided by lagrange multiplier on the
1270 + normal manifold to keep the motion on constraint space. Or we can
1271 + simply evolve the system in constraint manifold. These two methods
1272 + are proved to be equivalent. The holonomic constraint and equations
1273 + of motions define a constraint manifold for rigid body
1274   \[
1275 < L\left( {\int_0^t {g(t - \tau )h(\tau )d\tau } } \right) = G(p)H(p)
1275 > M = \left\{ {(Q,P):Q^T Q = 1,Q^T PJ^{ - 1}  + J^{ - 1} P^T Q = 0}
1276 > \right\}.
1277   \]
1278  
1279 < Some relatively important transformation,
1279 > Unfortunately, this constraint manifold is not the cotangent bundle
1280 > $T_{\star}SO(3)$. However, it turns out that under symplectic
1281 > transformation, the cotangent space and the phase space are
1282 > diffeomorphic. Introducing
1283   \[
1284 < L(\cos at) = \frac{p}{{p^2  + a^2 }}
1284 > \tilde Q = Q,\tilde P = \frac{1}{2}\left( {P - QP^T Q} \right),
1285   \]
1286 + the mechanical system subject to a holonomic constraint manifold $M$
1287 + can be re-formulated as a Hamiltonian system on the cotangent space
1288 + \[
1289 + T^* SO(3) = \left\{ {(\tilde Q,\tilde P):\tilde Q^T \tilde Q =
1290 + 1,\tilde Q^T \tilde PJ^{ - 1}  + J^{ - 1} P^T \tilde Q = 0} \right\}
1291 + \]
1292  
1293 + For a body fixed vector $X_i$ with respect to the center of mass of
1294 + the rigid body, its corresponding lab fixed vector $X_0^{lab}$  is
1295 + given as
1296 + \begin{equation}
1297 + X_i^{lab} = Q X_i + q.
1298 + \end{equation}
1299 + Therefore, potential energy $V(q,Q)$ is defined by
1300   \[
1301 < L(\sin at) = \frac{a}{{p^2  + a^2 }}
1301 > V(q,Q) = V(Q X_0 + q).
1302 > \]
1303 > Hence, the force and torque are given by
1304 > \[
1305 > \nabla _q V(q,Q) = F(q,Q) = \sum\limits_i {F_i (q,Q)},
1306 > \]
1307 > and
1308 > \[
1309 > \nabla _Q V(q,Q) = F(q,Q)X_i^t
1310   \]
1311 + respectively.
1312  
1313 + As a common choice to describe the rotation dynamics of the rigid
1314 + body, angular momentum on body frame $\Pi  = Q^t P$ is introduced to
1315 + rewrite the equations of motion,
1316 + \begin{equation}
1317 + \begin{array}{l}
1318 + \mathop \Pi \limits^ \bullet   = J^{ - 1} \Pi ^T \Pi  + Q^T \sum\limits_i {F_i (q,Q)X_i^T }  - \Lambda  \\
1319 + \mathop Q\limits^{{\rm{   }} \bullet }  = Q\Pi {\rm{ }}J^{ - 1}  \\
1320 + \end{array}
1321 + \label{introEqaution:RBMotionPI}
1322 + \end{equation}
1323 + , as well as holonomic constraints,
1324   \[
1325 < L(1) = \frac{1}{p}
1325 > \begin{array}{l}
1326 > \Pi J^{ - 1}  + J^{ - 1} \Pi ^t  = 0 \\
1327 > Q^T Q = 1 \\
1328 > \end{array}
1329   \]
1330  
1331 < First, the bath coordinates,
1331 > For a vector $v(v_1 ,v_2 ,v_3 ) \in R^3$ and a matrix $\hat v \in
1332 > so(3)^ \star$, the hat-map isomorphism,
1333 > \begin{equation}
1334 > v(v_1 ,v_2 ,v_3 ) \Leftrightarrow \hat v = \left(
1335 > {\begin{array}{*{20}c}
1336 >   0 & { - v_3 } & {v_2 }  \\
1337 >   {v_3 } & 0 & { - v_1 }  \\
1338 >   { - v_2 } & {v_1 } & 0  \\
1339 > \end{array}} \right),
1340 > \label{introEquation:hatmapIsomorphism}
1341 > \end{equation}
1342 > will let us associate the matrix products with traditional vector
1343 > operations
1344   \[
1345 < p^2 L(x_\alpha  ) - px_\alpha  (0) - \dot x_\alpha  (0) =  - \omega
783 < _\alpha ^2 L(x_\alpha  ) + \frac{{g_\alpha  }}{{\omega _\alpha
784 < }}L(x)
1345 > \hat vu = v \times u
1346   \]
1347 + Using \ref{introEqaution:RBMotionPI}, one can construct a skew
1348 + matrix,
1349 + \begin{equation}
1350 + (\mathop \Pi \limits^ \bullet   - \mathop \Pi \limits^ {\bullet  ^T}
1351 + ){\rm{ }} = {\rm{ }}(\Pi  - \Pi ^T ){\rm{ }}(J^{ - 1} \Pi  + \Pi J^{
1352 + - 1} ) + \sum\limits_i {[Q^T F_i (r,Q)X_i^T  - X_i F_i (r,Q)^T Q]} -
1353 + (\Lambda  - \Lambda ^T ) . \label{introEquation:skewMatrixPI}
1354 + \end{equation}
1355 + Since $\Lambda$ is symmetric, the last term of Equation
1356 + \ref{introEquation:skewMatrixPI} is zero, which implies the Lagrange
1357 + multiplier $\Lambda$ is absent from the equations of motion. This
1358 + unique property eliminate the requirement of iterations which can
1359 + not be avoided in other methods\cite{Kol1997, Omelyan1998}.
1360 +
1361 + Applying hat-map isomorphism, we obtain the equation of motion for
1362 + angular momentum on body frame
1363 + \begin{equation}
1364 + \dot \pi  = \pi  \times I^{ - 1} \pi  + \sum\limits_i {\left( {Q^T
1365 + F_i (r,Q)} \right) \times X_i }.
1366 + \label{introEquation:bodyAngularMotion}
1367 + \end{equation}
1368 + In the same manner, the equation of motion for rotation matrix is
1369 + given by
1370   \[
1371 < L(x_\alpha  ) = \frac{{\frac{{g_\alpha  }}{{\omega _\alpha  }}L(x) +
788 < px_\alpha  (0) + \dot x_\alpha  (0)}}{{p^2  + \omega _\alpha ^2 }}
1371 > \dot Q = Qskew(I^{ - 1} \pi )
1372   \]
790 Then, the system coordinates,
791 \begin{align}
792 mL(\ddot x) &=  - \frac{1}{p}\frac{{\partial W(x)}}{{\partial x}} -
793 \sum\limits_{\alpha  = 1}^N {\left\{ {\frac{{\frac{{g_\alpha
794 }}{{\omega _\alpha  }}L(x) + px_\alpha  (0) + \dot x_\alpha
795 (0)}}{{p^2  + \omega _\alpha ^2 }} - \frac{{g_\alpha ^2 }}{{m_\alpha
796 }}\omega _\alpha ^2 L(x)} \right\}}
797 %
798 &= - \frac{1}{p}\frac{{\partial W(x)}}{{\partial x}} -
799 \sum\limits_{\alpha  = 1}^N {\left\{ { - \frac{{g_\alpha ^2 }}{{m_\alpha  \omega _\alpha ^2 }}\frac{p}{{p^2  + \omega _\alpha ^2 }}pL(x)
800 - \frac{p}{{p^2  + \omega _\alpha ^2 }}g_\alpha  x_\alpha  (0)
801 - \frac{1}{{p^2  + \omega _\alpha ^2 }}g_\alpha  \dot x_\alpha  (0)} \right\}}
802 \end{align}
803 Then, the inverse transform,
1373  
1374 < \begin{align}
1375 < m\ddot x &=  - \frac{{\partial W(x)}}{{\partial x}} -
807 < \sum\limits_{\alpha  = 1}^N {\left\{ {\left( { - \frac{{g_\alpha ^2
808 < }}{{m_\alpha  \omega _\alpha ^2 }}} \right)\int_0^t {\cos (\omega
809 < _\alpha  t)\dot x(t - \tau )d\tau  - \left[ {g_\alpha  x_\alpha  (0)
810 < - \frac{{g_\alpha  }}{{m_\alpha  \omega _\alpha  }}} \right]\cos
811 < (\omega _\alpha  t) - \frac{{g_\alpha  \dot x_\alpha  (0)}}{{\omega
812 < _\alpha  }}\sin (\omega _\alpha  t)} } \right\}}
813 < %
814 < &= - \frac{{\partial W(x)}}{{\partial x}} - \int_0^t
815 < {\sum\limits_{\alpha  = 1}^N {\left( { - \frac{{g_\alpha ^2
816 < }}{{m_\alpha  \omega _\alpha ^2 }}} \right)\cos (\omega _\alpha
817 < t)\dot x(t - \tau )d} \tau }  + \sum\limits_{\alpha  = 1}^N {\left\{
818 < {\left[ {g_\alpha  x_\alpha  (0) - \frac{{g_\alpha  }}{{m_\alpha
819 < \omega _\alpha  }}} \right]\cos (\omega _\alpha  t) +
820 < \frac{{g_\alpha  \dot x_\alpha  (0)}}{{\omega _\alpha  }}\sin
821 < (\omega _\alpha  t)} \right\}}
822 < \end{align}
1374 > \subsection{\label{introSection:SymplecticFreeRB}Symplectic
1375 > Lie-Poisson Integrator for Free Rigid Body}
1376  
1377 + If there is not external forces exerted on the rigid body, the only
1378 + contribution to the rotational is from the kinetic potential (the
1379 + first term of \ref{introEquation:bodyAngularMotion}). The free rigid
1380 + body is an example of Lie-Poisson system with Hamiltonian function
1381   \begin{equation}
1382 < m\ddot x =  - \frac{{\partial W}}{{\partial x}} - \int_0^t {\xi
1383 < (t)\dot x(t - \tau )d\tau }  + R(t)
827 < \label{introEuqation:GeneralizedLangevinDynamics}
1382 > T^r (\pi ) = T_1 ^r (\pi _1 ) + T_2^r (\pi _2 ) + T_3^r (\pi _3 )
1383 > \label{introEquation:rotationalKineticRB}
1384   \end{equation}
1385 < %where $ {\xi (t)}$ is friction kernel, $R(t)$ is random force and
1386 < %$W$ is the potential of mean force. $W(x) =  - kT\ln p(x)$
1385 > where $T_i^r (\pi _i ) = \frac{{\pi _i ^2 }}{{2I_i }}$ and
1386 > Lie-Poisson structure matrix,
1387 > \begin{equation}
1388 > J(\pi ) = \left( {\begin{array}{*{20}c}
1389 >   0 & {\pi _3 } & { - \pi _2 }  \\
1390 >   { - \pi _3 } & 0 & {\pi _1 }  \\
1391 >   {\pi _2 } & { - \pi _1 } & 0  \\
1392 > \end{array}} \right)
1393 > \end{equation}
1394 > Thus, the dynamics of free rigid body is governed by
1395 > \begin{equation}
1396 > \frac{d}{{dt}}\pi  = J(\pi )\nabla _\pi  T^r (\pi )
1397 > \end{equation}
1398 >
1399 > One may notice that each $T_i^r$ in Equation
1400 > \ref{introEquation:rotationalKineticRB} can be solved exactly. For
1401 > instance, the equations of motion due to $T_1^r$ are given by
1402 > \begin{equation}
1403 > \frac{d}{{dt}}\pi  = R_1 \pi ,\frac{d}{{dt}}Q = QR_1
1404 > \label{introEqaution:RBMotionSingleTerm}
1405 > \end{equation}
1406 > where
1407 > \[ R_1  = \left( {\begin{array}{*{20}c}
1408 >   0 & 0 & 0  \\
1409 >   0 & 0 & {\pi _1 }  \\
1410 >   0 & { - \pi _1 } & 0  \\
1411 > \end{array}} \right).
1412 > \]
1413 > The solutions of Equation \ref{introEqaution:RBMotionSingleTerm} is
1414   \[
1415 < \xi (t) = \sum\limits_{\alpha  = 1}^N {\left( { - \frac{{g_\alpha ^2
1416 < }}{{m_\alpha  \omega _\alpha ^2 }}} \right)\cos (\omega _\alpha  t)}
1415 > \pi (\Delta t) = e^{\Delta tR_1 } \pi (0),Q(\Delta t) =
1416 > Q(0)e^{\Delta tR_1 }
1417   \]
1418 < For an infinite harmonic bath, we can use the spectral density and
1419 < an integral over frequencies.
1418 > with
1419 > \[
1420 > e^{\Delta tR_1 }  = \left( {\begin{array}{*{20}c}
1421 >   0 & 0 & 0  \\
1422 >   0 & {\cos \theta _1 } & {\sin \theta _1 }  \\
1423 >   0 & { - \sin \theta _1 } & {\cos \theta _1 }  \\
1424 > \end{array}} \right),\theta _1  = \frac{{\pi _1 }}{{I_1 }}\Delta t.
1425 > \]
1426 > To reduce the cost of computing expensive functions in $e^{\Delta
1427 > tR_1 }$, we can use Cayley transformation,
1428 > \[
1429 > e^{\Delta tR_1 }  \approx (1 - \Delta tR_1 )^{ - 1} (1 + \Delta tR_1
1430 > )
1431 > \]
1432 > The flow maps for $T_2^r$ and $T_3^r$ can be found in the same
1433 > manner.
1434  
1435 + In order to construct a second-order symplectic method, we split the
1436 + angular kinetic Hamiltonian function can into five terms
1437   \[
1438 < R(t) = \sum\limits_{\alpha  = 1}^N {\left( {g_\alpha  x_\alpha  (0)
1439 < - \frac{{g_\alpha ^2 }}{{m_\alpha  \omega _\alpha ^2 }}x(0)}
1440 < \right)\cos (\omega _\alpha  t)}  + \frac{{\dot x_\alpha
1441 < (0)}}{{\omega _\alpha  }}\sin (\omega _\alpha  t)
1438 > T^r (\pi ) = \frac{1}{2}T_1 ^r (\pi _1 ) + \frac{1}{2}T_2^r (\pi _2
1439 > ) + T_3^r (\pi _3 ) + \frac{1}{2}T_2^r (\pi _2 ) + \frac{1}{2}T_1 ^r
1440 > (\pi _1 )
1441 > \].
1442 > Concatenating flows corresponding to these five terms, we can obtain
1443 > an symplectic integrator,
1444 > \[
1445 > \varphi _{\Delta t,T^r }  = \varphi _{\Delta t/2,\pi _1 }  \circ
1446 > \varphi _{\Delta t/2,\pi _2 }  \circ \varphi _{\Delta t,\pi _3 }
1447 > \circ \varphi _{\Delta t/2,\pi _2 }  \circ \varphi _{\Delta t/2,\pi
1448 > _1 }.
1449   \]
844 The random forces depend only on initial conditions.
1450  
1451 < \subsubsection{\label{introSection:secondFluctuationDissipation}The Second Fluctuation Dissipation Theorem}
1452 < So we can define a new set of coordinates,
1451 > The non-canonical Lie-Poisson bracket ${F, G}$ of two function
1452 > $F(\pi )$ and $G(\pi )$ is defined by
1453   \[
1454 < q_\alpha  (t) = x_\alpha  (t) - \frac{1}{{m_\alpha  \omega _\alpha
1455 < ^2 }}x(0)
1454 > \{ F,G\} (\pi ) = [\nabla _\pi  F(\pi )]^T J(\pi )\nabla _\pi  G(\pi
1455 > )
1456   \]
1457 < This makes
1457 > If the Poisson bracket of a function $F$ with an arbitrary smooth
1458 > function $G$ is zero, $F$ is a \emph{Casimir}, which is the
1459 > conserved quantity in Poisson system. We can easily verify that the
1460 > norm of the angular momentum, $\parallel \pi
1461 > \parallel$, is a \emph{Casimir}. Let$ F(\pi ) = S(\frac{{\parallel
1462 > \pi \parallel ^2 }}{2})$ for an arbitrary function $ S:R \to R$ ,
1463 > then by the chain rule
1464   \[
1465 < R(t) = \sum\limits_{\alpha  = 1}^N {g_\alpha  q_\alpha  (t)}
1465 > \nabla _\pi  F(\pi ) = S'(\frac{{\parallel \pi \parallel ^2
1466 > }}{2})\pi
1467   \]
1468 < And since the $q$ coordinates are harmonic oscillators,
1468 > Thus $ [\nabla _\pi  F(\pi )]^T J(\pi ) =  - S'(\frac{{\parallel \pi
1469 > \parallel ^2 }}{2})\pi  \times \pi  = 0 $. This explicit
1470 > Lie-Poisson integrator is found to be extremely efficient and stable
1471 > which can be explained by the fact the small angle approximation is
1472 > used and the norm of the angular momentum is conserved.
1473 >
1474 > \subsection{\label{introSection:RBHamiltonianSplitting} Hamiltonian
1475 > Splitting for Rigid Body}
1476 >
1477 > The Hamiltonian of rigid body can be separated in terms of kinetic
1478 > energy and potential energy,
1479   \[
1480 < \begin{array}{l}
859 < \left\langle {q_\alpha  (t)q_\alpha  (0)} \right\rangle  = \left\langle {q_\alpha ^2 (0)} \right\rangle \cos (\omega _\alpha  t) \\
860 < \left\langle {q_\alpha  (t)q_\beta  (0)} \right\rangle  = \delta _{\alpha \beta } \left\langle {q_\alpha  (t)q_\alpha  (0)} \right\rangle  \\
861 < \end{array}
1480 > H = T(p,\pi ) + V(q,Q)
1481   \]
1482 + The equations of motion corresponding to potential energy and
1483 + kinetic energy are listed in the below table,
1484 + \begin{table}
1485 + \caption{Equations of motion due to Potential and Kinetic Energies}
1486 + \begin{center}
1487 + \begin{tabular}{|l|l|}
1488 +  \hline
1489 +  % after \\: \hline or \cline{col1-col2} \cline{col3-col4} ...
1490 +  Potential & Kinetic \\
1491 +  $\frac{{dq}}{{dt}} = \frac{p}{m}$ & $\frac{d}{{dt}}q = p$ \\
1492 +  $\frac{d}{{dt}}p =  - \frac{{\partial V}}{{\partial q}}$ & $ \frac{d}{{dt}}p = 0$ \\
1493 +  $\frac{d}{{dt}}Q = 0$ & $ \frac{d}{{dt}}Q = Qskew(I^{ - 1} j)$ \\
1494 +  $ \frac{d}{{dt}}\pi  = \sum\limits_i {\left( {Q^T F_i (r,Q)} \right) \times X_i }$ & $\frac{d}{{dt}}\pi  = \pi  \times I^{ - 1} \pi$\\
1495 +  \hline
1496 + \end{tabular}
1497 + \end{center}
1498 + \end{table}
1499 + A second-order symplectic method is now obtained by the
1500 + composition of the flow maps,
1501 + \[
1502 + \varphi _{\Delta t}  = \varphi _{\Delta t/2,V}  \circ \varphi
1503 + _{\Delta t,T}  \circ \varphi _{\Delta t/2,V}.
1504 + \]
1505 + Moreover, $\varphi _{\Delta t/2,V}$ can be divided into two
1506 + sub-flows which corresponding to force and torque respectively,
1507 + \[
1508 + \varphi _{\Delta t/2,V}  = \varphi _{\Delta t/2,F}  \circ \varphi
1509 + _{\Delta t/2,\tau }.
1510 + \]
1511 + Since the associated operators of $\varphi _{\Delta t/2,F} $ and
1512 + $\circ \varphi _{\Delta t/2,\tau }$ are commuted, the composition
1513 + order inside $\varphi _{\Delta t/2,V}$ does not matter.
1514  
1515 < \begin{align}
1516 < \left\langle {R(t)R(0)} \right\rangle  &= \sum\limits_\alpha
1517 < {\sum\limits_\beta  {g_\alpha  g_\beta  \left\langle {q_\alpha
1518 < (t)q_\beta  (0)} \right\rangle } }
1519 < %
1520 < &= \sum\limits_\alpha  {g_\alpha ^2 \left\langle {q_\alpha ^2 (0)}
1521 < \right\rangle \cos (\omega _\alpha  t)}
1522 < %
1523 < &= kT\xi (t)
1524 < \end{align}
1515 > Furthermore, kinetic potential can be separated to translational
1516 > kinetic term, $T^t (p)$, and rotational kinetic term, $T^r (\pi )$,
1517 > \begin{equation}
1518 > T(p,\pi ) =T^t (p) + T^r (\pi ).
1519 > \end{equation}
1520 > where $ T^t (p) = \frac{1}{2}p^T m^{ - 1} p $ and $T^r (\pi )$ is
1521 > defined by \ref{introEquation:rotationalKineticRB}. Therefore, the
1522 > corresponding flow maps are given by
1523 > \[
1524 > \varphi _{\Delta t,T}  = \varphi _{\Delta t,T^t }  \circ \varphi
1525 > _{\Delta t,T^r }.
1526 > \]
1527 > Finally, we obtain the overall symplectic flow maps for free moving
1528 > rigid body
1529 > \begin{equation}
1530 > \begin{array}{c}
1531 > \varphi _{\Delta t}  = \varphi _{\Delta t/2,F}  \circ \varphi _{\Delta t/2,\tau }  \\
1532 >  \circ \varphi _{\Delta t,T^t }  \circ \varphi _{\Delta t/2,\pi _1 }  \circ \varphi _{\Delta t/2,\pi _2 }  \circ \varphi _{\Delta t,\pi _3 }  \circ \varphi _{\Delta t/2,\pi _2 }  \circ \varphi _{\Delta t/2,\pi _1 }  \\
1533 >  \circ \varphi _{\Delta t/2,\tau }  \circ \varphi _{\Delta t/2,F}  .\\
1534 > \end{array}
1535 > \label{introEquation:overallRBFlowMaps}
1536 > \end{equation}
1537  
1538 + \section{\label{introSection:langevinDynamics}Langevin Dynamics}
1539 + As an alternative to newtonian dynamics, Langevin dynamics, which
1540 + mimics a simple heat bath with stochastic and dissipative forces,
1541 + has been applied in a variety of studies. This section will review
1542 + the theory of Langevin dynamics simulation. A brief derivation of
1543 + generalized Langevin equation will be given first. Follow that, we
1544 + will discuss the physical meaning of the terms appearing in the
1545 + equation as well as the calculation of friction tensor from
1546 + hydrodynamics theory.
1547 +
1548 + \subsection{\label{introSection:generalizedLangevinDynamics}Derivation of Generalized Langevin Equation}
1549 +
1550 + Harmonic bath model, in which an effective set of harmonic
1551 + oscillators are used to mimic the effect of a linearly responding
1552 + environment, has been widely used in quantum chemistry and
1553 + statistical mechanics. One of the successful applications of
1554 + Harmonic bath model is the derivation of Deriving Generalized
1555 + Langevin Dynamics. Lets consider a system, in which the degree of
1556 + freedom $x$ is assumed to couple to the bath linearly, giving a
1557 + Hamiltonian of the form
1558   \begin{equation}
1559 < \xi (t) = \left\langle {R(t)R(0)} \right\rangle
1560 < \label{introEquation:secondFluctuationDissipation}
1559 > H = \frac{{p^2 }}{{2m}} + U(x) + H_B  + \Delta U(x,x_1 , \ldots x_N)
1560 > \label{introEquation:bathGLE}.
1561   \end{equation}
1562 + Here $p$ is a momentum conjugate to $q$, $m$ is the mass associated
1563 + with this degree of freedom, $H_B$ is harmonic bath Hamiltonian,
1564 + \[
1565 + H_B  = \sum\limits_{\alpha  = 1}^N {\left\{ {\frac{{p_\alpha ^2
1566 + }}{{2m_\alpha  }} + \frac{1}{2}m_\alpha  \omega _\alpha ^2 }
1567 + \right\}}
1568 + \]
1569 + where the index $\alpha$ runs over all the bath degrees of freedom,
1570 + $\omega _\alpha$ are the harmonic bath frequencies, $m_\alpha$ are
1571 + the harmonic bath masses, and $\Delta U$ is bilinear system-bath
1572 + coupling,
1573 + \[
1574 + \Delta U =  - \sum\limits_{\alpha  = 1}^N {g_\alpha  x_\alpha  x}
1575 + \]
1576 + where $g_\alpha$ are the coupling constants between the bath and the
1577 + coordinate $x$. Introducing
1578 + \[
1579 + W(x) = U(x) - \sum\limits_{\alpha  = 1}^N {\frac{{g_\alpha ^2
1580 + }}{{2m_\alpha  w_\alpha ^2 }}} x^2
1581 + \] and combining the last two terms in Equation
1582 + \ref{introEquation:bathGLE}, we may rewrite the Harmonic bath
1583 + Hamiltonian as
1584 + \[
1585 + H = \frac{{p^2 }}{{2m}} + W(x) + \sum\limits_{\alpha  = 1}^N
1586 + {\left\{ {\frac{{p_\alpha ^2 }}{{2m_\alpha  }} + \frac{1}{2}m_\alpha
1587 + w_\alpha ^2 \left( {x_\alpha   - \frac{{g_\alpha  }}{{m_\alpha
1588 + w_\alpha ^2 }}x} \right)^2 } \right\}}
1589 + \]
1590 + Since the first two terms of the new Hamiltonian depend only on the
1591 + system coordinates, we can get the equations of motion for
1592 + Generalized Langevin Dynamics by Hamilton's equations
1593 + \ref{introEquation:motionHamiltonianCoordinate,
1594 + introEquation:motionHamiltonianMomentum},
1595 + \begin{equation}
1596 + m\ddot x =  - \frac{{\partial W(x)}}{{\partial x}} -
1597 + \sum\limits_{\alpha  = 1}^N {g_\alpha  \left( {x_\alpha   -
1598 + \frac{{g_\alpha  }}{{m_\alpha  w_\alpha ^2 }}x} \right)},
1599 + \label{introEquation:coorMotionGLE}
1600 + \end{equation}
1601 + and
1602 + \begin{equation}
1603 + m\ddot x_\alpha   =  - m_\alpha  w_\alpha ^2 \left( {x_\alpha   -
1604 + \frac{{g_\alpha  }}{{m_\alpha  w_\alpha ^2 }}x} \right).
1605 + \label{introEquation:bathMotionGLE}
1606 + \end{equation}
1607  
1608 < \section{\label{introSection:hydroynamics}Hydrodynamics}
1608 > In order to derive an equation for $x$, the dynamics of the bath
1609 > variables $x_\alpha$ must be solved exactly first. As an integral
1610 > transform which is particularly useful in solving linear ordinary
1611 > differential equations, Laplace transform is the appropriate tool to
1612 > solve this problem. The basic idea is to transform the difficult
1613 > differential equations into simple algebra problems which can be
1614 > solved easily. Then applying inverse Laplace transform, also known
1615 > as the Bromwich integral, we can retrieve the solutions of the
1616 > original problems.
1617  
1618 < \subsection{\label{introSection:frictionTensor} Friction Tensor}
1619 < \subsection{\label{introSection:analyticalApproach}Analytical
1620 < Approach}
1618 > Let $f(t)$ be a function defined on $ [0,\infty ) $. The Laplace
1619 > transform of f(t) is a new function defined as
1620 > \[
1621 > L(f(t)) \equiv F(p) = \int_0^\infty  {f(t)e^{ - pt} dt}
1622 > \]
1623 > where  $p$ is real and  $L$ is called the Laplace Transform
1624 > Operator. Below are some important properties of Laplace transform
1625  
1626 < \subsection{\label{introSection:approximationApproach}Approximation
1627 < Approach}
1626 > \begin{eqnarray*}
1627 > L(x + y)  & = & L(x) + L(y) \\
1628 > L(ax)     & = & aL(x) \\
1629 > L(\dot x) & = & pL(x) - px(0) \\
1630 > L(\ddot x)& = & p^2 L(x) - px(0) - \dot x(0) \\
1631 > L\left( {\int_0^t {g(t - \tau )h(\tau )d\tau } } \right)& = & G(p)H(p) \\
1632 > \end{eqnarray*}
1633  
1634 < \subsection{\label{introSection:centersRigidBody}Centers of Rigid
1635 < Body}
1634 >
1635 > Applying Laplace transform to the bath coordinates, we obtain
1636 > \begin{eqnarray*}
1637 > p^2 L(x_\alpha  ) - px_\alpha  (0) - \dot x_\alpha  (0) & = & - \omega _\alpha ^2 L(x_\alpha  ) + \frac{{g_\alpha  }}{{\omega _\alpha  }}L(x) \\
1638 > L(x_\alpha  ) & = & \frac{{\frac{{g_\alpha  }}{{\omega _\alpha  }}L(x) + px_\alpha  (0) + \dot x_\alpha  (0)}}{{p^2  + \omega _\alpha ^2 }} \\
1639 > \end{eqnarray*}
1640 >
1641 > By the same way, the system coordinates become
1642 > \begin{eqnarray*}
1643 > mL(\ddot x) & = & - \frac{1}{p}\frac{{\partial W(x)}}{{\partial x}} \\
1644 >  & & \mbox{} - \sum\limits_{\alpha  = 1}^N {\left\{ { - \frac{{g_\alpha ^2 }}{{m_\alpha  \omega _\alpha ^2 }}\frac{p}{{p^2  + \omega _\alpha ^2 }}pL(x) - \frac{p}{{p^2  + \omega _\alpha ^2 }}g_\alpha  x_\alpha  (0) - \frac{1}{{p^2  + \omega _\alpha ^2 }}g_\alpha  \dot x_\alpha  (0)} \right\}}  \\
1645 > \end{eqnarray*}
1646 >
1647 > With the help of some relatively important inverse Laplace
1648 > transformations:
1649 > \[
1650 > \begin{array}{c}
1651 > L(\cos at) = \frac{p}{{p^2  + a^2 }} \\
1652 > L(\sin at) = \frac{a}{{p^2  + a^2 }} \\
1653 > L(1) = \frac{1}{p} \\
1654 > \end{array}
1655 > \]
1656 > , we obtain
1657 > \begin{eqnarray*}
1658 > m\ddot x & =  & - \frac{{\partial W(x)}}{{\partial x}} -
1659 > \sum\limits_{\alpha  = 1}^N {\left\{ {\left( { - \frac{{g_\alpha ^2
1660 > }}{{m_\alpha  \omega _\alpha ^2 }}} \right)\int_0^t {\cos (\omega
1661 > _\alpha  t)\dot x(t - \tau )d\tau } } \right\}}  \\
1662 > & & + \sum\limits_{\alpha  = 1}^N {\left\{ {\left[ {g_\alpha
1663 > x_\alpha (0) - \frac{{g_\alpha  }}{{m_\alpha  \omega _\alpha  }}}
1664 > \right]\cos (\omega _\alpha  t) + \frac{{g_\alpha  \dot x_\alpha
1665 > (0)}}{{\omega _\alpha  }}\sin (\omega _\alpha  t)} \right\}}
1666 > \end{eqnarray*}
1667 > \begin{eqnarray*}
1668 > m\ddot x & = & - \frac{{\partial W(x)}}{{\partial x}} - \int_0^t
1669 > {\sum\limits_{\alpha  = 1}^N {\left( { - \frac{{g_\alpha ^2
1670 > }}{{m_\alpha  \omega _\alpha ^2 }}} \right)\cos (\omega _\alpha
1671 > t)\dot x(t - \tau )d} \tau }  \\
1672 > & & + \sum\limits_{\alpha  = 1}^N {\left\{ {\left[ {g_\alpha
1673 > x_\alpha (0) - \frac{{g_\alpha }}{{m_\alpha \omega _\alpha  }}}
1674 > \right]\cos (\omega _\alpha  t) + \frac{{g_\alpha  \dot x_\alpha
1675 > (0)}}{{\omega _\alpha  }}\sin (\omega _\alpha  t)} \right\}}
1676 > \end{eqnarray*}
1677 > Introducing a \emph{dynamic friction kernel}
1678 > \begin{equation}
1679 > \xi (t) = \sum\limits_{\alpha  = 1}^N {\left( { - \frac{{g_\alpha ^2
1680 > }}{{m_\alpha  \omega _\alpha ^2 }}} \right)\cos (\omega _\alpha  t)}
1681 > \label{introEquation:dynamicFrictionKernelDefinition}
1682 > \end{equation}
1683 > and \emph{a random force}
1684 > \begin{equation}
1685 > R(t) = \sum\limits_{\alpha  = 1}^N {\left( {g_\alpha  x_\alpha  (0)
1686 > - \frac{{g_\alpha ^2 }}{{m_\alpha  \omega _\alpha ^2 }}x(0)}
1687 > \right)\cos (\omega _\alpha  t)}  + \frac{{\dot x_\alpha
1688 > (0)}}{{\omega _\alpha  }}\sin (\omega _\alpha  t),
1689 > \label{introEquation:randomForceDefinition}
1690 > \end{equation}
1691 > the equation of motion can be rewritten as
1692 > \begin{equation}
1693 > m\ddot x =  - \frac{{\partial W}}{{\partial x}} - \int_0^t {\xi
1694 > (t)\dot x(t - \tau )d\tau }  + R(t)
1695 > \label{introEuqation:GeneralizedLangevinDynamics}
1696 > \end{equation}
1697 > which is known as the \emph{generalized Langevin equation}.
1698 >
1699 > \subsubsection{\label{introSection:randomForceDynamicFrictionKernel}Random Force and Dynamic Friction Kernel}
1700 >
1701 > One may notice that $R(t)$ depends only on initial conditions, which
1702 > implies it is completely deterministic within the context of a
1703 > harmonic bath. However, it is easy to verify that $R(t)$ is totally
1704 > uncorrelated to $x$ and $\dot x$,
1705 > \[
1706 > \begin{array}{l}
1707 > \left\langle {x(t)R(t)} \right\rangle  = 0, \\
1708 > \left\langle {\dot x(t)R(t)} \right\rangle  = 0. \\
1709 > \end{array}
1710 > \]
1711 > This property is what we expect from a truly random process. As long
1712 > as the model, which is gaussian distribution in general, chosen for
1713 > $R(t)$ is a truly random process, the stochastic nature of the GLE
1714 > still remains.
1715 >
1716 > %dynamic friction kernel
1717 > The convolution integral
1718 > \[
1719 > \int_0^t {\xi (t)\dot x(t - \tau )d\tau }
1720 > \]
1721 > depends on the entire history of the evolution of $x$, which implies
1722 > that the bath retains memory of previous motions. In other words,
1723 > the bath requires a finite time to respond to change in the motion
1724 > of the system. For a sluggish bath which responds slowly to changes
1725 > in the system coordinate, we may regard $\xi(t)$ as a constant
1726 > $\xi(t) = \Xi_0$. Hence, the convolution integral becomes
1727 > \[
1728 > \int_0^t {\xi (t)\dot x(t - \tau )d\tau }  = \xi _0 (x(t) - x(0))
1729 > \]
1730 > and Equation \ref{introEuqation:GeneralizedLangevinDynamics} becomes
1731 > \[
1732 > m\ddot x =  - \frac{\partial }{{\partial x}}\left( {W(x) +
1733 > \frac{1}{2}\xi _0 (x - x_0 )^2 } \right) + R(t),
1734 > \]
1735 > which can be used to describe dynamic caging effect. The other
1736 > extreme is the bath that responds infinitely quickly to motions in
1737 > the system. Thus, $\xi (t)$ can be taken as a $delta$ function in
1738 > time:
1739 > \[
1740 > \xi (t) = 2\xi _0 \delta (t)
1741 > \]
1742 > Hence, the convolution integral becomes
1743 > \[
1744 > \int_0^t {\xi (t)\dot x(t - \tau )d\tau }  = 2\xi _0 \int_0^t
1745 > {\delta (t)\dot x(t - \tau )d\tau }  = \xi _0 \dot x(t),
1746 > \]
1747 > and Equation \ref{introEuqation:GeneralizedLangevinDynamics} becomes
1748 > \begin{equation}
1749 > m\ddot x =  - \frac{{\partial W(x)}}{{\partial x}} - \xi _0 \dot
1750 > x(t) + R(t) \label{introEquation:LangevinEquation}
1751 > \end{equation}
1752 > which is known as the Langevin equation. The static friction
1753 > coefficient $\xi _0$ can either be calculated from spectral density
1754 > or be determined by Stokes' law for regular shaped particles.A
1755 > briefly review on calculating friction tensor for arbitrary shaped
1756 > particles is given in Sec.~\ref{introSection:frictionTensor}.
1757 >
1758 > \subsubsection{\label{introSection:secondFluctuationDissipation}The Second Fluctuation Dissipation Theorem}
1759 >
1760 > Defining a new set of coordinates,
1761 > \[
1762 > q_\alpha  (t) = x_\alpha  (t) - \frac{1}{{m_\alpha  \omega _\alpha
1763 > ^2 }}x(0)
1764 > \],
1765 > we can rewrite $R(T)$ as
1766 > \[
1767 > R(t) = \sum\limits_{\alpha  = 1}^N {g_\alpha  q_\alpha  (t)}.
1768 > \]
1769 > And since the $q$ coordinates are harmonic oscillators,
1770 >
1771 > \begin{eqnarray*}
1772 > \left\langle {q_\alpha ^2 } \right\rangle  & = & \frac{{kT}}{{m_\alpha  \omega _\alpha ^2 }} \\
1773 > \left\langle {q_\alpha  (t)q_\alpha  (0)} \right\rangle & = & \left\langle {q_\alpha ^2 (0)} \right\rangle \cos (\omega _\alpha  t) \\
1774 > \left\langle {q_\alpha  (t)q_\beta  (0)} \right\rangle & = &\delta _{\alpha \beta } \left\langle {q_\alpha  (t)q_\alpha  (0)} \right\rangle  \\
1775 > \left\langle {R(t)R(0)} \right\rangle & = & \sum\limits_\alpha  {\sum\limits_\beta  {g_\alpha  g_\beta  \left\langle {q_\alpha  (t)q_\beta  (0)} \right\rangle } }  \\
1776 >  & = &\sum\limits_\alpha  {g_\alpha ^2 \left\langle {q_\alpha ^2 (0)} \right\rangle \cos (\omega _\alpha  t)}  \\
1777 >  & = &kT\xi (t) \\
1778 > \end{eqnarray*}
1779 >
1780 > Thus, we recover the \emph{second fluctuation dissipation theorem}
1781 > \begin{equation}
1782 > \xi (t) = \left\langle {R(t)R(0)} \right\rangle
1783 > \label{introEquation:secondFluctuationDissipation}.
1784 > \end{equation}
1785 > In effect, it acts as a constraint on the possible ways in which one
1786 > can model the random force and friction kernel.
1787 >
1788 > \subsection{\label{introSection:frictionTensor} Friction Tensor}
1789 > Theoretically, the friction kernel can be determined using velocity
1790 > autocorrelation function. However, this approach become impractical
1791 > when the system become more and more complicate. Instead, various
1792 > approaches based on hydrodynamics have been developed to calculate
1793 > the friction coefficients. The friction effect is isotropic in
1794 > Equation, $\zeta$ can be taken as a scalar. In general, friction
1795 > tensor $\Xi$ is a $6\times 6$ matrix given by
1796 > \[
1797 > \Xi  = \left( {\begin{array}{*{20}c}
1798 >   {\Xi _{}^{tt} } & {\Xi _{}^{rt} }  \\
1799 >   {\Xi _{}^{tr} } & {\Xi _{}^{rr} }  \\
1800 > \end{array}} \right).
1801 > \]
1802 > Here, $ {\Xi^{tt} }$ and $ {\Xi^{rr} }$ are translational friction
1803 > tensor and rotational resistance (friction) tensor respectively,
1804 > while ${\Xi^{tr} }$ is translation-rotation coupling tensor and $
1805 > {\Xi^{rt} }$ is rotation-translation coupling tensor. When a
1806 > particle moves in a fluid, it may experience friction force or
1807 > torque along the opposite direction of the velocity or angular
1808 > velocity,
1809 > \[
1810 > \left( \begin{array}{l}
1811 > F_R  \\
1812 > \tau _R  \\
1813 > \end{array} \right) =  - \left( {\begin{array}{*{20}c}
1814 >   {\Xi ^{tt} } & {\Xi ^{rt} }  \\
1815 >   {\Xi ^{tr} } & {\Xi ^{rr} }  \\
1816 > \end{array}} \right)\left( \begin{array}{l}
1817 > v \\
1818 > w \\
1819 > \end{array} \right)
1820 > \]
1821 > where $F_r$ is the friction force and $\tau _R$ is the friction
1822 > toque.
1823 >
1824 > \subsubsection{\label{introSection:resistanceTensorRegular}The Resistance Tensor for Regular Shape}
1825 >
1826 > For a spherical particle, the translational and rotational friction
1827 > constant can be calculated from Stoke's law,
1828 > \[
1829 > \Xi ^{tt}  = \left( {\begin{array}{*{20}c}
1830 >   {6\pi \eta R} & 0 & 0  \\
1831 >   0 & {6\pi \eta R} & 0  \\
1832 >   0 & 0 & {6\pi \eta R}  \\
1833 > \end{array}} \right)
1834 > \]
1835 > and
1836 > \[
1837 > \Xi ^{rr}  = \left( {\begin{array}{*{20}c}
1838 >   {8\pi \eta R^3 } & 0 & 0  \\
1839 >   0 & {8\pi \eta R^3 } & 0  \\
1840 >   0 & 0 & {8\pi \eta R^3 }  \\
1841 > \end{array}} \right)
1842 > \]
1843 > where $\eta$ is the viscosity of the solvent and $R$ is the
1844 > hydrodynamics radius.
1845 >
1846 > Other non-spherical shape, such as cylinder and ellipsoid
1847 > \textit{etc}, are widely used as reference for developing new
1848 > hydrodynamics theory, because their properties can be calculated
1849 > exactly. In 1936, Perrin extended Stokes's law to general ellipsoid,
1850 > also called a triaxial ellipsoid, which is given in Cartesian
1851 > coordinates by\cite{Perrin1934, Perrin1936}
1852 > \[
1853 > \frac{{x^2 }}{{a^2 }} + \frac{{y^2 }}{{b^2 }} + \frac{{z^2 }}{{c^2
1854 > }} = 1
1855 > \]
1856 > where the semi-axes are of lengths $a$, $b$, and $c$. Unfortunately,
1857 > due to the complexity of the elliptic integral, only the ellipsoid
1858 > with the restriction of two axes having to be equal, \textit{i.e.}
1859 > prolate($ a \ge b = c$) and oblate ($ a < b = c $), can be solved
1860 > exactly. Introducing an elliptic integral parameter $S$ for prolate,
1861 > \[
1862 > S = \frac{2}{{\sqrt {a^2  - b^2 } }}\ln \frac{{a + \sqrt {a^2  - b^2
1863 > } }}{b},
1864 > \]
1865 > and oblate,
1866 > \[
1867 > S = \frac{2}{{\sqrt {b^2  - a^2 } }}arctg\frac{{\sqrt {b^2  - a^2 }
1868 > }}{a}
1869 > \],
1870 > one can write down the translational and rotational resistance
1871 > tensors
1872 > \[
1873 > \begin{array}{l}
1874 > \Xi _a^{tt}  = 16\pi \eta \frac{{a^2  - b^2 }}{{(2a^2  - b^2 )S - 2a}} \\
1875 > \Xi _b^{tt}  = \Xi _c^{tt}  = 32\pi \eta \frac{{a^2  - b^2 }}{{(2a^2  - 3b^2 )S + 2a}} \\
1876 > \end{array},
1877 > \]
1878 > and
1879 > \[
1880 > \begin{array}{l}
1881 > \Xi _a^{rr}  = \frac{{32\pi }}{3}\eta \frac{{(a^2  - b^2 )b^2 }}{{2a - b^2 S}} \\
1882 > \Xi _b^{rr}  = \Xi _c^{rr}  = \frac{{32\pi }}{3}\eta \frac{{(a^4  - b^4 )}}{{(2a^2  - b^2 )S - 2a}} \\
1883 > \end{array}.
1884 > \]
1885 >
1886 > \subsubsection{\label{introSection:resistanceTensorRegularArbitrary}The Resistance Tensor for Arbitrary Shape}
1887 >
1888 > Unlike spherical and other regular shaped molecules, there is not
1889 > analytical solution for friction tensor of any arbitrary shaped
1890 > rigid molecules. The ellipsoid of revolution model and general
1891 > triaxial ellipsoid model have been used to approximate the
1892 > hydrodynamic properties of rigid bodies. However, since the mapping
1893 > from all possible ellipsoidal space, $r$-space, to all possible
1894 > combination of rotational diffusion coefficients, $D$-space is not
1895 > unique\cite{Wegener1979} as well as the intrinsic coupling between
1896 > translational and rotational motion of rigid body, general ellipsoid
1897 > is not always suitable for modeling arbitrarily shaped rigid
1898 > molecule. A number of studies have been devoted to determine the
1899 > friction tensor for irregularly shaped rigid bodies using more
1900 > advanced method where the molecule of interest was modeled by
1901 > combinations of spheres(beads)\cite{Carrasco1999} and the
1902 > hydrodynamics properties of the molecule can be calculated using the
1903 > hydrodynamic interaction tensor. Let us consider a rigid assembly of
1904 > $N$ beads immersed in a continuous medium. Due to hydrodynamics
1905 > interaction, the ``net'' velocity of $i$th bead, $v'_i$ is different
1906 > than its unperturbed velocity $v_i$,
1907 > \[
1908 > v'_i  = v_i  - \sum\limits_{j \ne i} {T_{ij} F_j }
1909 > \]
1910 > where $F_i$ is the frictional force, and $T_{ij}$ is the
1911 > hydrodynamic interaction tensor. The friction force of $i$th bead is
1912 > proportional to its ``net'' velocity
1913 > \begin{equation}
1914 > F_i  = \zeta _i v_i  - \zeta _i \sum\limits_{j \ne i} {T_{ij} F_j }.
1915 > \label{introEquation:tensorExpression}
1916 > \end{equation}
1917 > This equation is the basis for deriving the hydrodynamic tensor. In
1918 > 1930, Oseen and Burgers gave a simple solution to Equation
1919 > \ref{introEquation:tensorExpression}
1920 > \begin{equation}
1921 > T_{ij}  = \frac{1}{{8\pi \eta r_{ij} }}\left( {I + \frac{{R_{ij}
1922 > R_{ij}^T }}{{R_{ij}^2 }}} \right).
1923 > \label{introEquation:oseenTensor}
1924 > \end{equation}
1925 > Here $R_{ij}$ is the distance vector between bead $i$ and bead $j$.
1926 > A second order expression for element of different size was
1927 > introduced by Rotne and Prager\cite{Rotne1969} and improved by
1928 > Garc\'{i}a de la Torre and Bloomfield\cite{Torre1977},
1929 > \begin{equation}
1930 > T_{ij}  = \frac{1}{{8\pi \eta R_{ij} }}\left[ {\left( {I +
1931 > \frac{{R_{ij} R_{ij}^T }}{{R_{ij}^2 }}} \right) + R\frac{{\sigma
1932 > _i^2  + \sigma _j^2 }}{{r_{ij}^2 }}\left( {\frac{I}{3} -
1933 > \frac{{R_{ij} R_{ij}^T }}{{R_{ij}^2 }}} \right)} \right].
1934 > \label{introEquation:RPTensorNonOverlapped}
1935 > \end{equation}
1936 > Both of the Equation \ref{introEquation:oseenTensor} and Equation
1937 > \ref{introEquation:RPTensorNonOverlapped} have an assumption $R_{ij}
1938 > \ge \sigma _i  + \sigma _j$. An alternative expression for
1939 > overlapping beads with the same radius, $\sigma$, is given by
1940 > \begin{equation}
1941 > T_{ij}  = \frac{1}{{6\pi \eta R_{ij} }}\left[ {\left( {1 -
1942 > \frac{2}{{32}}\frac{{R_{ij} }}{\sigma }} \right)I +
1943 > \frac{2}{{32}}\frac{{R_{ij} R_{ij}^T }}{{R_{ij} \sigma }}} \right]
1944 > \label{introEquation:RPTensorOverlapped}
1945 > \end{equation}
1946 >
1947 > To calculate the resistance tensor at an arbitrary origin $O$, we
1948 > construct a $3N \times 3N$ matrix consisting of $N \times N$
1949 > $B_{ij}$ blocks
1950 > \begin{equation}
1951 > B = \left( {\begin{array}{*{20}c}
1952 >   {B_{11} } &  \ldots  & {B_{1N} }  \\
1953 >    \vdots  &  \ddots  &  \vdots   \\
1954 >   {B_{N1} } &  \cdots  & {B_{NN} }  \\
1955 > \end{array}} \right),
1956 > \end{equation}
1957 > where $B_{ij}$ is given by
1958 > \[
1959 > B_{ij}  = \delta _{ij} \frac{I}{{6\pi \eta R}} + (1 - \delta _{ij}
1960 > )T_{ij}
1961 > \]
1962 > where $\delta _{ij}$ is Kronecker delta function. Inverting matrix
1963 > $B$, we obtain
1964 >
1965 > \[
1966 > C = B^{ - 1}  = \left( {\begin{array}{*{20}c}
1967 >   {C_{11} } &  \ldots  & {C_{1N} }  \\
1968 >    \vdots  &  \ddots  &  \vdots   \\
1969 >   {C_{N1} } &  \cdots  & {C_{NN} }  \\
1970 > \end{array}} \right)
1971 > \]
1972 > , which can be partitioned into $N \times N$ $3 \times 3$ block
1973 > $C_{ij}$. With the help of $C_{ij}$ and skew matrix $U_i$
1974 > \[
1975 > U_i  = \left( {\begin{array}{*{20}c}
1976 >   0 & { - z_i } & {y_i }  \\
1977 >   {z_i } & 0 & { - x_i }  \\
1978 >   { - y_i } & {x_i } & 0  \\
1979 > \end{array}} \right)
1980 > \]
1981 > where $x_i$, $y_i$, $z_i$ are the components of the vector joining
1982 > bead $i$ and origin $O$. Hence, the elements of resistance tensor at
1983 > arbitrary origin $O$ can be written as
1984 > \begin{equation}
1985 > \begin{array}{l}
1986 > \Xi _{}^{tt}  = \sum\limits_i {\sum\limits_j {C_{ij} } } , \\
1987 > \Xi _{}^{tr}  = \Xi _{}^{rt}  = \sum\limits_i {\sum\limits_j {U_i C_{ij} } } , \\
1988 > \Xi _{}^{rr}  =  - \sum\limits_i {\sum\limits_j {U_i C_{ij} } } U_j  \\
1989 > \end{array}
1990 > \label{introEquation:ResistanceTensorArbitraryOrigin}
1991 > \end{equation}
1992 >
1993 > The resistance tensor depends on the origin to which they refer. The
1994 > proper location for applying friction force is the center of
1995 > resistance (reaction), at which the trace of rotational resistance
1996 > tensor, $ \Xi ^{rr}$ reaches minimum. Mathematically, the center of
1997 > resistance is defined as an unique point of the rigid body at which
1998 > the translation-rotation coupling tensor are symmetric,
1999 > \begin{equation}
2000 > \Xi^{tr}  = \left( {\Xi^{tr} } \right)^T
2001 > \label{introEquation:definitionCR}
2002 > \end{equation}
2003 > Form Equation \ref{introEquation:ResistanceTensorArbitraryOrigin},
2004 > we can easily find out that the translational resistance tensor is
2005 > origin independent, while the rotational resistance tensor and
2006 > translation-rotation coupling resistance tensor depend on the
2007 > origin. Given resistance tensor at an arbitrary origin $O$, and a
2008 > vector ,$r_{OP}(x_{OP}, y_{OP}, z_{OP})$, from $O$ to $P$, we can
2009 > obtain the resistance tensor at $P$ by
2010 > \begin{equation}
2011 > \begin{array}{l}
2012 > \Xi _P^{tt}  = \Xi _O^{tt}  \\
2013 > \Xi _P^{tr}  = \Xi _P^{rt}  = \Xi _O^{tr}  - U_{OP} \Xi _O^{tt}  \\
2014 > \Xi _P^{rr}  = \Xi _O^{rr}  - U_{OP} \Xi _O^{tt} U_{OP}  + \Xi _O^{tr} U_{OP}  - U_{OP} \Xi _O^{{tr} ^{^T }}  \\
2015 > \end{array}
2016 > \label{introEquation:resistanceTensorTransformation}
2017 > \end{equation}
2018 > where
2019 > \[
2020 > U_{OP}  = \left( {\begin{array}{*{20}c}
2021 >   0 & { - z_{OP} } & {y_{OP} }  \\
2022 >   {z_i } & 0 & { - x_{OP} }  \\
2023 >   { - y_{OP} } & {x_{OP} } & 0  \\
2024 > \end{array}} \right)
2025 > \]
2026 > Using Equations \ref{introEquation:definitionCR} and
2027 > \ref{introEquation:resistanceTensorTransformation}, one can locate
2028 > the position of center of resistance,
2029 > \begin{eqnarray*}
2030 > \left( \begin{array}{l}
2031 > x_{OR}  \\
2032 > y_{OR}  \\
2033 > z_{OR}  \\
2034 > \end{array} \right) & = &\left( {\begin{array}{*{20}c}
2035 >   {(\Xi _O^{rr} )_{yy}  + (\Xi _O^{rr} )_{zz} } & { - (\Xi _O^{rr} )_{xy} } & { - (\Xi _O^{rr} )_{xz} }  \\
2036 >   { - (\Xi _O^{rr} )_{xy} } & {(\Xi _O^{rr} )_{zz}  + (\Xi _O^{rr} )_{xx} } & { - (\Xi _O^{rr} )_{yz} }  \\
2037 >   { - (\Xi _O^{rr} )_{xz} } & { - (\Xi _O^{rr} )_{yz} } & {(\Xi _O^{rr} )_{xx}  + (\Xi _O^{rr} )_{yy} }  \\
2038 > \end{array}} \right)^{ - 1}  \\
2039 >  & & \left( \begin{array}{l}
2040 > (\Xi _O^{tr} )_{yz}  - (\Xi _O^{tr} )_{zy}  \\
2041 > (\Xi _O^{tr} )_{zx}  - (\Xi _O^{tr} )_{xz}  \\
2042 > (\Xi _O^{tr} )_{xy}  - (\Xi _O^{tr} )_{yx}  \\
2043 > \end{array} \right) \\
2044 > \end{eqnarray*}
2045 >
2046 >
2047 >
2048 > where $x_OR$, $y_OR$, $z_OR$ are the components of the vector
2049 > joining center of resistance $R$ and origin $O$.

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines