ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/tengDissertation/Introduction.tex
(Generate patch)

Comparing trunk/tengDissertation/Introduction.tex (file contents):
Revision 2700 by tim, Tue Apr 11 03:38:09 2006 UTC vs.
Revision 2720 by tim, Wed Apr 19 19:46:53 2006 UTC

# Line 27 | Line 27 | acceleration along the direction of the force acting o
27   \end{equation}
28   A point mass interacting with other bodies moves with the
29   acceleration along the direction of the force acting on it. Let
30 < $F_ij$ be the force that particle $i$ exerts on particle $j$, and
31 < $F_ji$ be the force that particle $j$ exerts on particle $i$.
30 > $F_{ij}$ be the force that particle $i$ exerts on particle $j$, and
31 > $F_{ji}$ be the force that particle $j$ exerts on particle $i$.
32   Newton¡¯s third law states that
33   \begin{equation}
34 < F_ij = -F_ji
34 > F_{ij} = -F_{ji}
35   \label{introEquation:newtonThirdLaw}
36   \end{equation}
37  
# Line 315 | Line 315 | partition function like,
315   isolated and conserve energy, Microcanonical ensemble(NVE) has a
316   partition function like,
317   \begin{equation}
318 < \Omega (N,V,E) = e^{\beta TS}
319 < \label{introEqaution:NVEPartition}.
318 > \Omega (N,V,E) = e^{\beta TS} \label{introEquation:NVEPartition}.
319   \end{equation}
320   A canonical ensemble(NVT)is an ensemble of systems, each of which
321   can share its energy with a large heat reservoir. The distribution
# Line 394 | Line 393 | distribution,
393   \begin{equation}
394   \rho  \propto e^{ - \beta H}
395   \label{introEquation:densityAndHamiltonian}
396 + \end{equation}
397 +
398 + \subsubsection{\label{introSection:phaseSpaceConservation}Conservation of Phase Space}
399 + Lets consider a region in the phase space,
400 + \begin{equation}
401 + \delta v = \int { \ldots \int {dq_1 } ...dq_f dp_1 } ..dp_f .
402   \end{equation}
403 + If this region is small enough, the density $\rho$ can be regarded
404 + as uniform over the whole phase space. Thus, the number of phase
405 + points inside this region is given by,
406 + \begin{equation}
407 + \delta N = \rho \delta v = \rho \int { \ldots \int {dq_1 } ...dq_f
408 + dp_1 } ..dp_f.
409 + \end{equation}
410  
411 + \begin{equation}
412 + \frac{{d(\delta N)}}{{dt}} = \frac{{d\rho }}{{dt}}\delta v + \rho
413 + \frac{d}{{dt}}(\delta v) = 0.
414 + \end{equation}
415 + With the help of stationary assumption
416 + (\ref{introEquation:stationary}), we obtain the principle of the
417 + \emph{conservation of extension in phase space},
418 + \begin{equation}
419 + \frac{d}{{dt}}(\delta v) = \frac{d}{{dt}}\int { \ldots \int {dq_1 }
420 + ...dq_f dp_1 } ..dp_f  = 0.
421 + \label{introEquation:volumePreserving}
422 + \end{equation}
423 +
424 + \subsubsection{\label{introSection:liouvilleInOtherForms}Liouville's Theorem in Other Forms}
425 +
426   Liouville's theorem can be expresses in a variety of different forms
427   which are convenient within different contexts. For any two function
428   $F$ and $G$ of the coordinates and momenta of a system, the Poisson
# Line 431 | Line 458 | expressed as
458   \label{introEquation:liouvilleTheoremInOperator}
459   \end{equation}
460  
434
461   \subsection{\label{introSection:ergodic}The Ergodic Hypothesis}
462  
463   Various thermodynamic properties can be calculated from Molecular
# Line 544 | Line 570 | The most obvious change being that matrix $J$ now depe
570   \dot x = J(x)\nabla _x H \label{introEquation:poissonHamiltonian}
571   \end{equation}
572   The most obvious change being that matrix $J$ now depends on $x$.
547 The free rigid body is an example of Poisson system (actually a
548 Lie-Poisson system) with Hamiltonian function of angular kinetic
549 energy.
550 \begin{equation}
551 J(\pi ) = \left( {\begin{array}{*{20}c}
552   0 & {\pi _3 } & { - \pi _2 }  \\
553   { - \pi _3 } & 0 & {\pi _1 }  \\
554   {\pi _2 } & { - \pi _1 } & 0  \\
555 \end{array}} \right)
556 \end{equation}
573  
574 < \begin{equation}
559 < H = \frac{1}{2}\left( {\frac{{\pi _1^2 }}{{I_1 }} + \frac{{\pi _2^2
560 < }}{{I_2 }} + \frac{{\pi _3^2 }}{{I_3 }}} \right)
561 < \end{equation}
574 > \subsection{\label{introSection:exactFlow}Exact Flow}
575  
563 \subsection{\label{introSection:geometricProperties}Geometric Properties}
576   Let $x(t)$ be the exact solution of the ODE system,
577   \begin{equation}
578   \frac{{dx}}{{dt}} = f(x) \label{introEquation:ODE}
# Line 570 | Line 582 | where $\tau$ is a fixed time step and $\varphi$ is a m
582   x(t+\tau) =\varphi_\tau(x(t))
583   \]
584   where $\tau$ is a fixed time step and $\varphi$ is a map from phase
585 < space to itself. In most cases, it is not easy to find the exact
574 < flow $\varphi_\tau$. Instead, we use a approximate map, $\psi_\tau$,
575 < which is usually called integrator. The order of an integrator
576 < $\psi_\tau$ is $p$, if the Taylor series of $\psi_\tau$ agree to
577 < order $p$,
585 > space to itself. The flow has the continuous group property,
586   \begin{equation}
587 + \varphi _{\tau _1 }  \circ \varphi _{\tau _2 }  = \varphi _{\tau _1
588 + + \tau _2 } .
589 + \end{equation}
590 + In particular,
591 + \begin{equation}
592 + \varphi _\tau   \circ \varphi _{ - \tau }  = I
593 + \end{equation}
594 + Therefore, the exact flow is self-adjoint,
595 + \begin{equation}
596 + \varphi _\tau   = \varphi _{ - \tau }^{ - 1}.
597 + \end{equation}
598 + The exact flow can also be written in terms of the of an operator,
599 + \begin{equation}
600 + \varphi _\tau  (x) = e^{\tau \sum\limits_i {f_i (x)\frac{\partial
601 + }{{\partial x_i }}} } (x) \equiv \exp (\tau f)(x).
602 + \label{introEquation:exponentialOperator}
603 + \end{equation}
604 +
605 + In most cases, it is not easy to find the exact flow $\varphi_\tau$.
606 + Instead, we use a approximate map, $\psi_\tau$, which is usually
607 + called integrator. The order of an integrator $\psi_\tau$ is $p$, if
608 + the Taylor series of $\psi_\tau$ agree to order $p$,
609 + \begin{equation}
610   \psi_tau(x) = x + \tau f(x) + O(\tau^{p+1})
611   \end{equation}
612  
613 + \subsection{\label{introSection:geometricProperties}Geometric Properties}
614 +
615   The hidden geometric properties of ODE and its flow play important
616 < roles in numerical studies. Let $\varphi$ be the flow of Hamiltonian
617 < vector field, $\varphi$ is a \emph{symplectic} flow if it satisfies,
616 > roles in numerical studies. Many of them can be found in systems
617 > which occur naturally in applications.
618 >
619 > Let $\varphi$ be the flow of Hamiltonian vector field, $\varphi$ is
620 > a \emph{symplectic} flow if it satisfies,
621   \begin{equation}
622 < '\varphi^T J '\varphi = J.
622 > {\varphi '}^T J \varphi ' = J.
623   \end{equation}
624   According to Liouville's theorem, the symplectic volume is invariant
625   under a Hamiltonian flow, which is the basis for classical
# Line 591 | Line 627 | symplectomorphism. As to the Poisson system,
627   field on a symplectic manifold can be shown to be a
628   symplectomorphism. As to the Poisson system,
629   \begin{equation}
630 < '\varphi ^T J '\varphi  = J \circ \varphi
630 > {\varphi '}^T J \varphi ' = J \circ \varphi
631   \end{equation}
632 < is the property must be preserved by the integrator. It is possible
633 < to construct a \emph{volume-preserving} flow for a source free($
634 < \nabla \cdot f = 0 $) ODE, if the flow satisfies $ \det d\varphi  =
635 < 1$. Changing the variables $y = h(x)$ in a
636 < ODE\ref{introEquation:ODE} will result in a new system,
632 > is the property must be preserved by the integrator.
633 >
634 > It is possible to construct a \emph{volume-preserving} flow for a
635 > source free($ \nabla \cdot f = 0 $) ODE, if the flow satisfies $
636 > \det d\varphi  = 1$. One can show easily that a symplectic flow will
637 > be volume-preserving.
638 >
639 > Changing the variables $y = h(x)$ in a ODE\ref{introEquation:ODE}
640 > will result in a new system,
641   \[
642   \dot y = \tilde f(y) = ((dh \cdot f)h^{ - 1} )(y).
643   \]
644   The vector filed $f$ has reversing symmetry $h$ if $f = - \tilde f$.
645   In other words, the flow of this vector field is reversible if and
646 < only if $ h \circ \varphi ^{ - 1}  = \varphi  \circ h $. When
607 < designing any numerical methods, one should always try to preserve
608 < the structural properties of the original ODE and its flow.
646 > only if $ h \circ \varphi ^{ - 1}  = \varphi  \circ h $.
647  
648 + A \emph{first integral}, or conserved quantity of a general
649 + differential function is a function $ G:R^{2d}  \to R^d $ which is
650 + constant for all solutions of the ODE $\frac{{dx}}{{dt}} = f(x)$ ,
651 + \[
652 + \frac{{dG(x(t))}}{{dt}} = 0.
653 + \]
654 + Using chain rule, one may obtain,
655 + \[
656 + \sum\limits_i {\frac{{dG}}{{dx_i }}} f_i (x) = f \bullet \nabla G,
657 + \]
658 + which is the condition for conserving \emph{first integral}. For a
659 + canonical Hamiltonian system, the time evolution of an arbitrary
660 + smooth function $G$ is given by,
661 + \begin{equation}
662 + \begin{array}{c}
663 + \frac{{dG(x(t))}}{{dt}} = [\nabla _x G(x(t))]^T \dot x(t) \\
664 +  = [\nabla _x G(x(t))]^T J\nabla _x H(x(t)). \\
665 + \end{array}
666 + \label{introEquation:firstIntegral1}
667 + \end{equation}
668 + Using poisson bracket notion, Equation
669 + \ref{introEquation:firstIntegral1} can be rewritten as
670 + \[
671 + \frac{d}{{dt}}G(x(t)) = \left\{ {G,H} \right\}(x(t)).
672 + \]
673 + Therefore, the sufficient condition for $G$ to be the \emph{first
674 + integral} of a Hamiltonian system is
675 + \[
676 + \left\{ {G,H} \right\} = 0.
677 + \]
678 + As well known, the Hamiltonian (or energy) H of a Hamiltonian system
679 + is a \emph{first integral}, which is due to the fact $\{ H,H\}  =
680 + 0$.
681 +
682 +
683 + When designing any numerical methods, one should always try to
684 + preserve the structural properties of the original ODE and its flow.
685 +
686   \subsection{\label{introSection:constructionSymplectic}Construction of Symplectic Methods}
687   A lot of well established and very effective numerical methods have
688   been successful precisely because of their symplecticities even
# Line 622 | Line 698 | Generating function tends to lead to methods which are
698   \end{enumerate}
699  
700   Generating function tends to lead to methods which are cumbersome
701 < and difficult to use\cite{}. In dissipative systems, variational
702 < methods can capture the decay of energy accurately\cite{}. Since
703 < their geometrically unstable nature against non-Hamiltonian
704 < perturbations, ordinary implicit Runge-Kutta methods are not
705 < suitable for Hamiltonian system. Recently, various high-order
706 < explicit Runge--Kutta methods have been developed to overcome this
707 < instability \cite{}. However, due to computational penalty involved
708 < in implementing the Runge-Kutta methods, they do not attract too
709 < much attention from Molecular Dynamics community. Instead, splitting
710 < have been widely accepted since they exploit natural decompositions
711 < of the system\cite{Tuckerman92}. The main idea behind splitting
712 < methods is to decompose the discrete $\varphi_h$ as a composition of
713 < simpler flows,
701 > and difficult to use. In dissipative systems, variational methods
702 > can capture the decay of energy accurately. Since their
703 > geometrically unstable nature against non-Hamiltonian perturbations,
704 > ordinary implicit Runge-Kutta methods are not suitable for
705 > Hamiltonian system. Recently, various high-order explicit
706 > Runge--Kutta methods have been developed to overcome this
707 > instability. However, due to computational penalty involved in
708 > implementing the Runge-Kutta methods, they do not attract too much
709 > attention from Molecular Dynamics community. Instead, splitting have
710 > been widely accepted since they exploit natural decompositions of
711 > the system\cite{Tuckerman92}.
712 >
713 > \subsubsection{\label{introSection:splittingMethod}Splitting Method}
714 >
715 > The main idea behind splitting methods is to decompose the discrete
716 > $\varphi_h$ as a composition of simpler flows,
717   \begin{equation}
718   \varphi _h  = \varphi _{h_1 }  \circ \varphi _{h_2 }  \ldots  \circ
719   \varphi _{h_n }
720   \label{introEquation:FlowDecomposition}
721   \end{equation}
722   where each of the sub-flow is chosen such that each represent a
723 < simpler integration of the system. Let $\phi$ and $\psi$ both be
724 < symplectic maps, it is easy to show that any composition of
725 < symplectic flows yields a symplectic map,
723 > simpler integration of the system.
724 >
725 > Suppose that a Hamiltonian system takes the form,
726 > \[
727 > H = H_1 + H_2.
728 > \]
729 > Here, $H_1$ and $H_2$ may represent different physical processes of
730 > the system. For instance, they may relate to kinetic and potential
731 > energy respectively, which is a natural decomposition of the
732 > problem. If $H_1$ and $H_2$ can be integrated using exact flows
733 > $\varphi_1(t)$ and $\varphi_2(t)$, respectively, a simple first
734 > order is then given by the Lie-Trotter formula
735   \begin{equation}
736 + \varphi _h  = \varphi _{1,h}  \circ \varphi _{2,h},
737 + \label{introEquation:firstOrderSplitting}
738 + \end{equation}
739 + where $\varphi _h$ is the result of applying the corresponding
740 + continuous $\varphi _i$ over a time $h$. By definition, as
741 + $\varphi_i(t)$ is the exact solution of a Hamiltonian system, it
742 + must follow that each operator $\varphi_i(t)$ is a symplectic map.
743 + It is easy to show that any composition of symplectic flows yields a
744 + symplectic map,
745 + \begin{equation}
746   (\varphi '\phi ')^T J\varphi '\phi ' = \phi '^T \varphi '^T J\varphi
747 < '\phi ' = \phi '^T J\phi ' = J.
747 > '\phi ' = \phi '^T J\phi ' = J,
748   \label{introEquation:SymplecticFlowComposition}
749   \end{equation}
750 < Suppose that a Hamiltonian system has a form with $H = T + V$
750 > where $\phi$ and $\psi$ both are symplectic maps. Thus operator
751 > splitting in this context automatically generates a symplectic map.
752  
753 < \section{\label{introSection:molecularDynamics}Molecular Dynamics}
753 > The Lie-Trotter splitting(\ref{introEquation:firstOrderSplitting})
754 > introduces local errors proportional to $h^2$, while Strang
755 > splitting gives a second-order decomposition,
756 > \begin{equation}
757 > \varphi _h  = \varphi _{1,h/2}  \circ \varphi _{2,h}  \circ \varphi
758 > _{1,h/2} , \label{introEquation:secondOrderSplitting}
759 > \end{equation}
760 > which has a local error proportional to $h^3$. Sprang splitting's
761 > popularity in molecular simulation community attribute to its
762 > symmetric property,
763 > \begin{equation}
764 > \varphi _h^{ - 1} = \varphi _{ - h}.
765 > \label{introEquation:timeReversible}
766 > \end{equation}
767  
768 < As a special discipline of molecular modeling, Molecular dynamics
769 < has proven to be a powerful tool for studying the functions of
770 < biological systems, providing structural, thermodynamic and
771 < dynamical information.
768 > \subsubsection{\label{introSection:exampleSplittingMethod}Example of Splitting Method}
769 > The classical equation for a system consisting of interacting
770 > particles can be written in Hamiltonian form,
771 > \[
772 > H = T + V
773 > \]
774 > where $T$ is the kinetic energy and $V$ is the potential energy.
775 > Setting $H_1 = T, H_2 = V$ and applying Strang splitting, one
776 > obtains the following:
777 > \begin{align}
778 > q(\Delta t) &= q(0) + \dot{q}(0)\Delta t +
779 >    \frac{F[q(0)]}{m}\frac{\Delta t^2}{2}, %
780 > \label{introEquation:Lp10a} \\%
781 > %
782 > \dot{q}(\Delta t) &= \dot{q}(0) + \frac{\Delta t}{2m}
783 >    \biggl [F[q(0)] + F[q(\Delta t)] \biggr]. %
784 > \label{introEquation:Lp10b}
785 > \end{align}
786 > where $F(t)$ is the force at time $t$. This integration scheme is
787 > known as \emph{velocity verlet} which is
788 > symplectic(\ref{introEquation:SymplecticFlowComposition}),
789 > time-reversible(\ref{introEquation:timeReversible}) and
790 > volume-preserving (\ref{introEquation:volumePreserving}). These
791 > geometric properties attribute to its long-time stability and its
792 > popularity in the community. However, the most commonly used
793 > velocity verlet integration scheme is written as below,
794 > \begin{align}
795 > \dot{q}\biggl (\frac{\Delta t}{2}\biggr ) &=
796 >    \dot{q}(0) + \frac{\Delta t}{2m}\, F[q(0)], \label{introEquation:Lp9a}\\%
797 > %
798 > q(\Delta t) &= q(0) + \Delta t\, \dot{q}\biggl (\frac{\Delta t}{2}\biggr ),%
799 >    \label{introEquation:Lp9b}\\%
800 > %
801 > \dot{q}(\Delta t) &= \dot{q}\biggl (\frac{\Delta t}{2}\biggr ) +
802 >    \frac{\Delta t}{2m}\, F[q(0)]. \label{introEquation:Lp9c}
803 > \end{align}
804 > From the preceding splitting, one can see that the integration of
805 > the equations of motion would follow:
806 > \begin{enumerate}
807 > \item calculate the velocities at the half step, $\frac{\Delta t}{2}$, from the forces calculated at the initial position.
808  
809 < \subsection{\label{introSec:mdInit}Initialization}
809 > \item Use the half step velocities to move positions one whole step, $\Delta t$.
810  
811 < \subsection{\label{introSection:mdIntegration} Integration of the Equations of Motion}
811 > \item Evaluate the forces at the new positions, $\mathbf{r}(\Delta t)$, and use the new forces to complete the velocity move.
812  
813 < \section{\label{introSection:rigidBody}Dynamics of Rigid Bodies}
813 > \item Repeat from step 1 with the new position, velocities, and forces assuming the roles of the initial values.
814 > \end{enumerate}
815  
816 < A rigid body is a body in which the distance between any two given
817 < points of a rigid body remains constant regardless of external
818 < forces exerted on it. A rigid body therefore conserves its shape
819 < during its motion.
816 > Simply switching the order of splitting and composing, a new
817 > integrator, the \emph{position verlet} integrator, can be generated,
818 > \begin{align}
819 > \dot q(\Delta t) &= \dot q(0) + \Delta tF(q(0))\left[ {q(0) +
820 > \frac{{\Delta t}}{{2m}}\dot q(0)} \right], %
821 > \label{introEquation:positionVerlet1} \\%
822 > %
823 > q(\Delta t) &= q(0) + \frac{{\Delta t}}{2}\left[ {\dot q(0) + \dot
824 > q(\Delta t)} \right]. %
825 > \label{introEquation:positionVerlet2}
826 > \end{align}
827  
828 < Applications of dynamics of rigid bodies.
828 > \subsubsection{\label{introSection:errorAnalysis}Error Analysis and Higher Order Methods}
829  
830 < \subsection{\label{introSection:lieAlgebra}Lie Algebra}
831 <
832 < \subsection{\label{introSection:DLMMotionEquation}The Euler Equations of Rigid Body Motion}
833 <
834 < \subsection{\label{introSection:otherRBMotionEquation}Other Formulations for Rigid Body Motion}
679 <
680 < %\subsection{\label{introSection:poissonBrackets}Poisson Brackets}
681 <
682 < \section{\label{introSection:correlationFunctions}Correlation Functions}
683 <
684 < \section{\label{introSection:langevinDynamics}Langevin Dynamics}
685 <
686 < \subsection{\label{introSection:LDIntroduction}Introduction and application of Langevin Dynamics}
687 <
688 < \subsection{\label{introSection:generalizedLangevinDynamics}Generalized Langevin Dynamics}
689 <
830 > Baker-Campbell-Hausdorff formula can be used to determine the local
831 > error of splitting method in terms of commutator of the
832 > operators(\ref{introEquation:exponentialOperator}) associated with
833 > the sub-flow. For operators $hX$ and $hY$ which are associate to
834 > $\varphi_1(t)$ and $\varphi_2(t$ respectively , we have
835   \begin{equation}
836 < H = \frac{{p^2 }}{{2m}} + U(x) + H_B  + \Delta U(x,x_1 , \ldots x_N)
692 < \label{introEquation:bathGLE}
836 > \exp (hX + hY) = \exp (hZ)
837   \end{equation}
838 < where $H_B$ is harmonic bath Hamiltonian,
838 > where
839 > \begin{equation}
840 > hZ = hX + hY + \frac{{h^2 }}{2}[X,Y] + \frac{{h^3 }}{2}\left(
841 > {[X,[X,Y]] + [Y,[Y,X]]} \right) +  \ldots .
842 > \end{equation}
843 > Here, $[X,Y]$ is the commutators of operator $X$ and $Y$ given by
844   \[
845 < H_B  =\sum\limits_{\alpha  = 1}^N {\left\{ {\frac{{p_\alpha ^2
697 < }}{{2m_\alpha  }} + \frac{1}{2}m_\alpha  w_\alpha ^2 } \right\}}
845 > [X,Y] = XY - YX .
846   \]
847 < and $\Delta U$ is bilinear system-bath coupling,
847 > Applying Baker-Campbell-Hausdorff formula to Sprang splitting, we
848 > can obtain
849 > \begin{eqnarray*}
850 > \exp (h X/2)\exp (h Y)\exp (h X/2) & = & \exp (h X + h Y + h^2
851 > [X,Y]/4 + h^2 [Y,X]/4 \\ & & \mbox{} + h^2 [X,X]/8 + h^2 [Y,Y]/8 \\
852 > & & \mbox{} + h^3 [Y,[Y,X]]/12 - h^3 [X,[X,Y]]/24 & & \mbox{} +
853 > \ldots )
854 > \end{eqnarray*}
855 > Since \[ [X,Y] + [Y,X] = 0\] and \[ [X,X] = 0\], the dominant local
856 > error of Spring splitting is proportional to $h^3$. The same
857 > procedure can be applied to general splitting,  of the form
858 > \begin{equation}
859 > \varphi _{b_m h}^2  \circ \varphi _{a_m h}^1  \circ \varphi _{b_{m -
860 > 1} h}^2  \circ  \ldots  \circ \varphi _{a_1 h}^1 .
861 > \end{equation}
862 > Careful choice of coefficient $a_1 ,\ldot , b_m$ will lead to higher
863 > order method. Yoshida proposed an elegant way to compose higher
864 > order methods based on symmetric splitting. Given a symmetric second
865 > order base method $ \varphi _h^{(2)} $, a fourth-order symmetric
866 > method can be constructed by composing,
867   \[
868 < \Delta U =  - \sum\limits_{\alpha  = 1}^N {g_\alpha  x_\alpha  x}
868 > \varphi _h^{(4)}  = \varphi _{\alpha h}^{(2)}  \circ \varphi _{\beta
869 > h}^{(2)}  \circ \varphi _{\alpha h}^{(2)}
870   \]
871 < Completing the square,
871 > where $ \alpha  =  - \frac{{2^{1/3} }}{{2 - 2^{1/3} }}$ and $ \beta
872 > = \frac{{2^{1/3} }}{{2 - 2^{1/3} }}$. Moreover, a symmetric
873 > integrator $ \varphi _h^{(2n + 2)}$ can be composed by
874 > \begin{equation}
875 > \varphi _h^{(2n + 2)}  = \varphi _{\alpha h}^{(2n)}  \circ \varphi
876 > _{\beta h}^{(2n)}  \circ \varphi _{\alpha h}^{(2n)}
877 > \end{equation}
878 > , if the weights are chosen as
879   \[
880 < H_B  + \Delta U = \sum\limits_{\alpha  = 1}^N {\left\{
881 < {\frac{{p_\alpha ^2 }}{{2m_\alpha  }} + \frac{1}{2}m_\alpha
707 < w_\alpha ^2 \left( {x_\alpha   - \frac{{g_\alpha  }}{{m_\alpha
708 < w_\alpha ^2 }}x} \right)^2 } \right\}}  - \sum\limits_{\alpha  =
709 < 1}^N {\frac{{g_\alpha ^2 }}{{2m_\alpha  w_\alpha ^2 }}} x^2
880 > \alpha  =  - \frac{{2^{1/(2n + 1)} }}{{2 - 2^{1/(2n + 1)} }},\beta =
881 > \frac{{2^{1/(2n + 1)} }}{{2 - 2^{1/(2n + 1)} }} .
882   \]
883 < and putting it back into Eq.~\ref{introEquation:bathGLE},
883 >
884 > \section{\label{introSection:molecularDynamics}Molecular Dynamics}
885 >
886 > As one of the principal tools of molecular modeling, Molecular
887 > dynamics has proven to be a powerful tool for studying the functions
888 > of biological systems, providing structural, thermodynamic and
889 > dynamical information. The basic idea of molecular dynamics is that
890 > macroscopic properties are related to microscopic behavior and
891 > microscopic behavior can be calculated from the trajectories in
892 > simulations. For instance, instantaneous temperature of an
893 > Hamiltonian system of $N$ particle can be measured by
894   \[
895 < H = \frac{{p^2 }}{{2m}} + W(x) + \sum\limits_{\alpha  = 1}^N
714 < {\left\{ {\frac{{p_\alpha ^2 }}{{2m_\alpha  }} + \frac{1}{2}m_\alpha
715 < w_\alpha ^2 \left( {x_\alpha   - \frac{{g_\alpha  }}{{m_\alpha
716 < w_\alpha ^2 }}x} \right)^2 } \right\}}
895 > T(t) = \sum\limits_{i = 1}^N {\frac{{m_i v_i^2 }}{{fk_B }}}
896   \]
897 < where
897 > where $m_i$ and $v_i$ are the mass and velocity of $i$th particle
898 > respectively, $f$ is the number of degrees of freedom, and $k_B$ is
899 > the boltzman constant.
900 >
901 > A typical molecular dynamics run consists of three essential steps:
902 > \begin{enumerate}
903 >  \item Initialization
904 >    \begin{enumerate}
905 >    \item Preliminary preparation
906 >    \item Minimization
907 >    \item Heating
908 >    \item Equilibration
909 >    \end{enumerate}
910 >  \item Production
911 >  \item Analysis
912 > \end{enumerate}
913 > These three individual steps will be covered in the following
914 > sections. Sec.~\ref{introSec:initialSystemSettings} deals with the
915 > initialization of a simulation. Sec.~\ref{introSec:production} will
916 > discusses issues in production run, including the force evaluation
917 > and the numerical integration schemes of the equations of motion .
918 > Sec.~\ref{introSection:Analysis} provides the theoretical tools for
919 > trajectory analysis.
920 >
921 > \subsection{\label{introSec:initialSystemSettings}Initialization}
922 >
923 > \subsubsection{Preliminary preparation}
924 >
925 > When selecting the starting structure of a molecule for molecular
926 > simulation, one may retrieve its Cartesian coordinates from public
927 > databases, such as RCSB Protein Data Bank \textit{etc}. Although
928 > thousands of crystal structures of molecules are discovered every
929 > year, many more remain unknown due to the difficulties of
930 > purification and crystallization. Even for the molecule with known
931 > structure, some important information is missing. For example, the
932 > missing hydrogen atom which acts as donor in hydrogen bonding must
933 > be added. Moreover, in order to include electrostatic interaction,
934 > one may need to specify the partial charges for individual atoms.
935 > Under some circumstances, we may even need to prepare the system in
936 > a special setup. For instance, when studying transport phenomenon in
937 > membrane system, we may prepare the lipids in bilayer structure
938 > instead of placing lipids randomly in solvent, since we are not
939 > interested in self-aggregation and it takes a long time to happen.
940 >
941 > \subsubsection{Minimization}
942 >
943 > It is quite possible that some of molecules in the system from
944 > preliminary preparation may be overlapped with each other. This
945 > close proximity leads to high potential energy which consequently
946 > jeopardizes any molecular dynamics simulations. To remove these
947 > steric overlaps, one typically performs energy minimization to find
948 > a more reasonable conformation. Several energy minimization methods
949 > have been developed to exploit the energy surface and to locate the
950 > local minimum. While converging slowly near the minimum, steepest
951 > descent method is extremely robust when systems are far from
952 > harmonic. Thus, it is often used to refine structure from
953 > crystallographic data. Relied on the gradient or hessian, advanced
954 > methods like conjugate gradient and Newton-Raphson converge rapidly
955 > to a local minimum, while become unstable if the energy surface is
956 > far from quadratic. Another factor must be taken into account, when
957 > choosing energy minimization method, is the size of the system.
958 > Steepest descent and conjugate gradient can deal with models of any
959 > size. Because of the limit of computation power to calculate hessian
960 > matrix and insufficient storage capacity to store them, most
961 > Newton-Raphson methods can not be used with very large models.
962 >
963 > \subsubsection{Heating}
964 >
965 > Typically, Heating is performed by assigning random velocities
966 > according to a Gaussian distribution for a temperature. Beginning at
967 > a lower temperature and gradually increasing the temperature by
968 > assigning greater random velocities, we end up with setting the
969 > temperature of the system to a final temperature at which the
970 > simulation will be conducted. In heating phase, we should also keep
971 > the system from drifting or rotating as a whole. Equivalently, the
972 > net linear momentum and angular momentum of the system should be
973 > shifted to zero.
974 >
975 > \subsubsection{Equilibration}
976 >
977 > The purpose of equilibration is to allow the system to evolve
978 > spontaneously for a period of time and reach equilibrium. The
979 > procedure is continued until various statistical properties, such as
980 > temperature, pressure, energy, volume and other structural
981 > properties \textit{etc}, become independent of time. Strictly
982 > speaking, minimization and heating are not necessary, provided the
983 > equilibration process is long enough. However, these steps can serve
984 > as a means to arrive at an equilibrated structure in an effective
985 > way.
986 >
987 > \subsection{\label{introSection:production}Production}
988 >
989 > \subsubsection{\label{introSec:forceCalculation}The Force Calculation}
990 >
991 > \subsubsection{\label{introSection:integrationSchemes} Integration
992 > Schemes}
993 >
994 > \subsection{\label{introSection:Analysis} Analysis}
995 >
996 > \section{\label{introSection:rigidBody}Dynamics of Rigid Bodies}
997 >
998 > Rigid bodies are frequently involved in the modeling of different
999 > areas, from engineering, physics, to chemistry. For example,
1000 > missiles and vehicle are usually modeled by rigid bodies.  The
1001 > movement of the objects in 3D gaming engine or other physics
1002 > simulator is governed by the rigid body dynamics. In molecular
1003 > simulation, rigid body is used to simplify the model in
1004 > protein-protein docking study{\cite{Gray03}}.
1005 >
1006 > It is very important to develop stable and efficient methods to
1007 > integrate the equations of motion of orientational degrees of
1008 > freedom. Euler angles are the nature choice to describe the
1009 > rotational degrees of freedom. However, due to its singularity, the
1010 > numerical integration of corresponding equations of motion is very
1011 > inefficient and inaccurate. Although an alternative integrator using
1012 > different sets of Euler angles can overcome this difficulty\cite{},
1013 > the computational penalty and the lost of angular momentum
1014 > conservation still remain. A singularity free representation
1015 > utilizing quaternions was developed by Evans in 1977. Unfortunately,
1016 > this approach suffer from the nonseparable Hamiltonian resulted from
1017 > quaternion representation, which prevents the symplectic algorithm
1018 > to be utilized. Another different approach is to apply holonomic
1019 > constraints to the atoms belonging to the rigid body. Each atom
1020 > moves independently under the normal forces deriving from potential
1021 > energy and constraint forces which are used to guarantee the
1022 > rigidness. However, due to their iterative nature, SHAKE and Rattle
1023 > algorithm converge very slowly when the number of constraint
1024 > increases.
1025 >
1026 > The break through in geometric literature suggests that, in order to
1027 > develop a long-term integration scheme, one should preserve the
1028 > symplectic structure of the flow. Introducing conjugate momentum to
1029 > rotation matrix $Q$ and re-formulating Hamiltonian's equation, a
1030 > symplectic integrator, RSHAKE, was proposed to evolve the
1031 > Hamiltonian system in a constraint manifold by iteratively
1032 > satisfying the orthogonality constraint $Q_T Q = 1$. An alternative
1033 > method using quaternion representation was developed by Omelyan.
1034 > However, both of these methods are iterative and inefficient. In
1035 > this section, we will present a symplectic Lie-Poisson integrator
1036 > for rigid body developed by Dullweber and his
1037 > coworkers\cite{Dullweber1997} in depth.
1038 >
1039 > \subsection{\label{introSection:constrainedHamiltonianRB}Constrained Hamiltonian for Rigid Body}
1040 > The motion of the rigid body is Hamiltonian with the Hamiltonian
1041 > function
1042 > \begin{equation}
1043 > H = \frac{1}{2}(p^T m^{ - 1} p) + \frac{1}{2}tr(PJ^{ - 1} P) +
1044 > V(q,Q) + \frac{1}{2}tr[(QQ^T  - 1)\Lambda ].
1045 > \label{introEquation:RBHamiltonian}
1046 > \end{equation}
1047 > Here, $q$ and $Q$  are the position and rotation matrix for the
1048 > rigid-body, $p$ and $P$  are conjugate momenta to $q$  and $Q$ , and
1049 > $J$, a diagonal matrix, is defined by
1050   \[
1051 < W(x) = U(x) - \sum\limits_{\alpha  = 1}^N {\frac{{g_\alpha ^2
721 < }}{{2m_\alpha  w_\alpha ^2 }}} x^2
1051 > I_{ii}^{ - 1}  = \frac{1}{2}\sum\limits_{i \ne j} {J_{jj}^{ - 1} }
1052   \]
1053 < Since the first two terms of the new Hamiltonian depend only on the
1054 < system coordinates, we can get the equations of motion for
1055 < Generalized Langevin Dynamics by Hamilton's equations
1056 < \ref{introEquation:motionHamiltonianCoordinate,
1057 < introEquation:motionHamiltonianMomentum},
1058 < \begin{align}
1059 < \dot p &=  - \frac{{\partial H}}{{\partial x}}
1060 <       &= m\ddot x
1061 <       &= - \frac{{\partial W(x)}}{{\partial x}} - \sum\limits_{\alpha  = 1}^N {g_\alpha  \left( {x_\alpha   - \frac{{g_\alpha  }}{{m_\alpha  w_\alpha ^2 }}x} \right)}
1062 < \label{introEq:Lp5}
1063 < \end{align}
1064 < , and
735 < \begin{align}
736 < \dot p_\alpha   &=  - \frac{{\partial H}}{{\partial x_\alpha  }}
737 <                &= m\ddot x_\alpha
738 <                &= \- m_\alpha  w_\alpha ^2 \left( {x_\alpha   - \frac{{g_\alpha}}{{m_\alpha  w_\alpha ^2 }}x} \right)
739 < \end{align}
1053 > where $I_{ii}$ is the diagonal element of the inertia tensor. This
1054 > constrained Hamiltonian equation subjects to a holonomic constraint,
1055 > \begin{equation}
1056 > Q^T Q = 1$, \label{introEquation:orthogonalConstraint}
1057 > \end{equation}
1058 > which is used to ensure rotation matrix's orthogonality.
1059 > Differentiating \ref{introEquation:orthogonalConstraint} and using
1060 > Equation \ref{introEquation:RBMotionMomentum}, one may obtain,
1061 > \begin{equation}
1062 > Q^T PJ^{ - 1}  + J^{ - 1} P^T Q = 0 . \\
1063 > \label{introEquation:RBFirstOrderConstraint}
1064 > \end{equation}
1065  
1066 < \subsection{\label{introSection:laplaceTransform}The Laplace Transform}
1067 <
1066 > Using Equation (\ref{introEquation:motionHamiltonianCoordinate},
1067 > \ref{introEquation:motionHamiltonianMomentum}), one can write down
1068 > the equations of motion,
1069   \[
1070 < L(x) = \int_0^\infty  {x(t)e^{ - pt} dt}
1070 > \begin{array}{c}
1071 > \frac{{dq}}{{dt}} = \frac{p}{m} \label{introEquation:RBMotionPosition}\\
1072 > \frac{{dp}}{{dt}} =  - \nabla _q V(q,Q) \label{introEquation:RBMotionMomentum}\\
1073 > \frac{{dQ}}{{dt}} = PJ^{ - 1}  \label{introEquation:RBMotionRotation}\\
1074 > \frac{{dP}}{{dt}} =  - \nabla _Q V(q,Q) - 2Q\Lambda . \label{introEquation:RBMotionP}\\
1075 > \end{array}
1076   \]
1077  
1078 + In general, there are two ways to satisfy the holonomic constraints.
1079 + We can use constraint force provided by lagrange multiplier on the
1080 + normal manifold to keep the motion on constraint space. Or we can
1081 + simply evolve the system in constraint manifold. The two method are
1082 + proved to be equivalent. The holonomic constraint and equations of
1083 + motions define a constraint manifold for rigid body
1084   \[
1085 < L(x + y) = L(x) + L(y)
1085 > M = \left\{ {(Q,P):Q^T Q = 1,Q^T PJ^{ - 1}  + J^{ - 1} P^T Q = 0}
1086 > \right\}.
1087   \]
1088  
1089 + Unfortunately, this constraint manifold is not the cotangent bundle
1090 + $T_{\star}SO(3)$. However, it turns out that under symplectic
1091 + transformation, the cotangent space and the phase space are
1092 + diffeomorphic. Introducing
1093   \[
1094 < L(ax) = aL(x)
1094 > \tilde Q = Q,\tilde P = \frac{1}{2}\left( {P - QP^T Q} \right),
1095   \]
1096 + the mechanical system subject to a holonomic constraint manifold $M$
1097 + can be re-formulated as a Hamiltonian system on the cotangent space
1098 + \[
1099 + T^* SO(3) = \left\{ {(\tilde Q,\tilde P):\tilde Q^T \tilde Q =
1100 + 1,\tilde Q^T \tilde PJ^{ - 1}  + J^{ - 1} P^T \tilde Q = 0} \right\}
1101 + \]
1102  
1103 + For a body fixed vector $X_i$ with respect to the center of mass of
1104 + the rigid body, its corresponding lab fixed vector $X_0^{lab}$  is
1105 + given as
1106 + \begin{equation}
1107 + X_i^{lab} = Q X_i + q.
1108 + \end{equation}
1109 + Therefore, potential energy $V(q,Q)$ is defined by
1110   \[
1111 < L(\dot x) = pL(x) - px(0)
1111 > V(q,Q) = V(Q X_0 + q).
1112   \]
1113 + Hence, the force and torque are given by
1114 + \[
1115 + \nabla _q V(q,Q) = F(q,Q) = \sum\limits_i {F_i (q,Q)},
1116 + \]
1117 + and
1118 + \[
1119 + \nabla _Q V(q,Q) = F(q,Q)X_i^t
1120 + \]
1121 + respectively.
1122  
1123 + As a common choice to describe the rotation dynamics of the rigid
1124 + body, angular momentum on body frame $\Pi  = Q^t P$ is introduced to
1125 + rewrite the equations of motion,
1126 + \begin{equation}
1127 + \begin{array}{l}
1128 + \mathop \Pi \limits^ \bullet   = J^{ - 1} \Pi ^T \Pi  + Q^T \sum\limits_i {F_i (q,Q)X_i^T }  - \Lambda  \\
1129 + \mathop Q\limits^{{\rm{   }} \bullet }  = Q\Pi {\rm{ }}J^{ - 1}  \\
1130 + \end{array}
1131 + \label{introEqaution:RBMotionPI}
1132 + \end{equation}
1133 + , as well as holonomic constraints,
1134   \[
1135 < L(\ddot x) = p^2 L(x) - px(0) - \dot x(0)
1135 > \begin{array}{l}
1136 > \Pi J^{ - 1}  + J^{ - 1} \Pi ^t  = 0 \\
1137 > Q^T Q = 1 \\
1138 > \end{array}
1139   \]
1140  
1141 + For a vector $v(v_1 ,v_2 ,v_3 ) \in R^3$ and a matrix $\hat v \in
1142 + so(3)^ \star$, the hat-map isomorphism,
1143 + \begin{equation}
1144 + v(v_1 ,v_2 ,v_3 ) \Leftrightarrow \hat v = \left(
1145 + {\begin{array}{*{20}c}
1146 +   0 & { - v_3 } & {v_2 }  \\
1147 +   {v_3 } & 0 & { - v_1 }  \\
1148 +   { - v_2 } & {v_1 } & 0  \\
1149 + \end{array}} \right),
1150 + \label{introEquation:hatmapIsomorphism}
1151 + \end{equation}
1152 + will let us associate the matrix products with traditional vector
1153 + operations
1154   \[
1155 < L\left( {\int_0^t {g(t - \tau )h(\tau )d\tau } } \right) = G(p)H(p)
1155 > \hat vu = v \times u
1156   \]
1157  
1158 < Some relatively important transformation,
1158 > Using \ref{introEqaution:RBMotionPI}, one can construct a skew
1159 > matrix,
1160 > \begin{equation}
1161 > (\mathop \Pi \limits^ \bullet   - \mathop \Pi \limits^ \bullet  ^T
1162 > ){\rm{ }} = {\rm{ }}(\Pi  - \Pi ^T ){\rm{ }}(J^{ - 1} \Pi  + \Pi J^{
1163 > - 1} ) + \sum\limits_i {[Q^T F_i (r,Q)X_i^T  - X_i F_i (r,Q)^T Q]} -
1164 > (\Lambda  - \Lambda ^T ) . \label{introEquation:skewMatrixPI}
1165 > \end{equation}
1166 > Since $\Lambda$ is symmetric, the last term of Equation
1167 > \ref{introEquation:skewMatrixPI} is zero, which implies the Lagrange
1168 > multiplier $\Lambda$ is absent from the equations of motion. This
1169 > unique property eliminate the requirement of iterations which can
1170 > not be avoided in other methods\cite{}.
1171 >
1172 > Applying hat-map isomorphism, we obtain the equation of motion for
1173 > angular momentum on body frame
1174 > \begin{equation}
1175 > \dot \pi  = \pi  \times I^{ - 1} \pi  + \sum\limits_i {\left( {Q^T
1176 > F_i (r,Q)} \right) \times X_i }.
1177 > \label{introEquation:bodyAngularMotion}
1178 > \end{equation}
1179 > In the same manner, the equation of motion for rotation matrix is
1180 > given by
1181   \[
1182 < L(\cos at) = \frac{p}{{p^2  + a^2 }}
1182 > \dot Q = Qskew(I^{ - 1} \pi )
1183 > \]
1184 >
1185 > \subsection{\label{introSection:SymplecticFreeRB}Symplectic
1186 > Lie-Poisson Integrator for Free Rigid Body}
1187 >
1188 > If there is not external forces exerted on the rigid body, the only
1189 > contribution to the rotational is from the kinetic potential (the
1190 > first term of \ref{ introEquation:bodyAngularMotion}). The free
1191 > rigid body is an example of Lie-Poisson system with Hamiltonian
1192 > function
1193 > \begin{equation}
1194 > T^r (\pi ) = T_1 ^r (\pi _1 ) + T_2^r (\pi _2 ) + T_3^r (\pi _3 )
1195 > \label{introEquation:rotationalKineticRB}
1196 > \end{equation}
1197 > where $T_i^r (\pi _i ) = \frac{{\pi _i ^2 }}{{2I_i }}$ and
1198 > Lie-Poisson structure matrix,
1199 > \begin{equation}
1200 > J(\pi ) = \left( {\begin{array}{*{20}c}
1201 >   0 & {\pi _3 } & { - \pi _2 }  \\
1202 >   { - \pi _3 } & 0 & {\pi _1 }  \\
1203 >   {\pi _2 } & { - \pi _1 } & 0  \\
1204 > \end{array}} \right)
1205 > \end{equation}
1206 > Thus, the dynamics of free rigid body is governed by
1207 > \begin{equation}
1208 > \frac{d}{{dt}}\pi  = J(\pi )\nabla _\pi  T^r (\pi )
1209 > \end{equation}
1210 >
1211 > One may notice that each $T_i^r$ in Equation
1212 > \ref{introEquation:rotationalKineticRB} can be solved exactly. For
1213 > instance, the equations of motion due to $T_1^r$ are given by
1214 > \begin{equation}
1215 > \frac{d}{{dt}}\pi  = R_1 \pi ,\frac{d}{{dt}}Q = QR_1
1216 > \label{introEqaution:RBMotionSingleTerm}
1217 > \end{equation}
1218 > where
1219 > \[ R_1  = \left( {\begin{array}{*{20}c}
1220 >   0 & 0 & 0  \\
1221 >   0 & 0 & {\pi _1 }  \\
1222 >   0 & { - \pi _1 } & 0  \\
1223 > \end{array}} \right).
1224   \]
1225 + The solutions of Equation \ref{introEqaution:RBMotionSingleTerm} is
1226 + \[
1227 + \pi (\Delta t) = e^{\Delta tR_1 } \pi (0),Q(\Delta t) =
1228 + Q(0)e^{\Delta tR_1 }
1229 + \]
1230 + with
1231 + \[
1232 + e^{\Delta tR_1 }  = \left( {\begin{array}{*{20}c}
1233 +   0 & 0 & 0  \\
1234 +   0 & {\cos \theta _1 } & {\sin \theta _1 }  \\
1235 +   0 & { - \sin \theta _1 } & {\cos \theta _1 }  \\
1236 + \end{array}} \right),\theta _1  = \frac{{\pi _1 }}{{I_1 }}\Delta t.
1237 + \]
1238 + To reduce the cost of computing expensive functions in $e^{\Delta
1239 + tR_1 }$, we can use Cayley transformation,
1240 + \[
1241 + e^{\Delta tR_1 }  \approx (1 - \Delta tR_1 )^{ - 1} (1 + \Delta tR_1
1242 + )
1243 + \]
1244 + The flow maps for $T_2^r$ and $T_3^r$ can be found in the same
1245 + manner.
1246  
1247 + In order to construct a second-order symplectic method, we split the
1248 + angular kinetic Hamiltonian function can into five terms
1249   \[
1250 < L(\sin at) = \frac{a}{{p^2  + a^2 }}
1250 > T^r (\pi ) = \frac{1}{2}T_1 ^r (\pi _1 ) + \frac{1}{2}T_2^r (\pi _2
1251 > ) + T_3^r (\pi _3 ) + \frac{1}{2}T_2^r (\pi _2 ) + \frac{1}{2}T_1 ^r
1252 > (\pi _1 )
1253 > \].
1254 > Concatenating flows corresponding to these five terms, we can obtain
1255 > an symplectic integrator,
1256 > \[
1257 > \varphi _{\Delta t,T^r }  = \varphi _{\Delta t/2,\pi _1 }  \circ
1258 > \varphi _{\Delta t/2,\pi _2 }  \circ \varphi _{\Delta t,\pi _3 }
1259 > \circ \varphi _{\Delta t/2,\pi _2 }  \circ \varphi _{\Delta t/2,\pi
1260 > _1 }.
1261   \]
1262  
1263 + The non-canonical Lie-Poisson bracket ${F, G}$ of two function
1264 + $F(\pi )$ and $G(\pi )$ is defined by
1265   \[
1266 < L(1) = \frac{1}{p}
1266 > \{ F,G\} (\pi ) = [\nabla _\pi  F(\pi )]^T J(\pi )\nabla _\pi  G(\pi
1267 > )
1268   \]
1269 + If the Poisson bracket of a function $F$ with an arbitrary smooth
1270 + function $G$ is zero, $F$ is a \emph{Casimir}, which is the
1271 + conserved quantity in Poisson system. We can easily verify that the
1272 + norm of the angular momentum, $\parallel \pi
1273 + \parallel$, is a \emph{Casimir}. Let$ F(\pi ) = S(\frac{{\parallel
1274 + \pi \parallel ^2 }}{2})$ for an arbitrary function $ S:R \to R$ ,
1275 + then by the chain rule
1276 + \[
1277 + \nabla _\pi  F(\pi ) = S'(\frac{{\parallel \pi \parallel ^2
1278 + }}{2})\pi
1279 + \]
1280 + Thus $ [\nabla _\pi  F(\pi )]^T J(\pi ) =  - S'(\frac{{\parallel \pi
1281 + \parallel ^2 }}{2})\pi  \times \pi  = 0 $. This explicit
1282 + Lie-Poisson integrator is found to be extremely efficient and stable
1283 + which can be explained by the fact the small angle approximation is
1284 + used and the norm of the angular momentum is conserved.
1285  
1286 < First, the bath coordinates,
1286 > \subsection{\label{introSection:RBHamiltonianSplitting} Hamiltonian
1287 > Splitting for Rigid Body}
1288 >
1289 > The Hamiltonian of rigid body can be separated in terms of kinetic
1290 > energy and potential energy,
1291   \[
1292 < p^2 L(x_\alpha  ) - px_\alpha  (0) - \dot x_\alpha  (0) =  - \omega
783 < _\alpha ^2 L(x_\alpha  ) + \frac{{g_\alpha  }}{{\omega _\alpha
784 < }}L(x)
1292 > H = T(p,\pi ) + V(q,Q)
1293   \]
1294 + The equations of motion corresponding to potential energy and
1295 + kinetic energy are listed in the below table,
1296 + \begin{center}
1297 + \begin{tabular}{|l|l|}
1298 +  \hline
1299 +  % after \\: \hline or \cline{col1-col2} \cline{col3-col4} ...
1300 +  Potential & Kinetic \\
1301 +  $\frac{{dq}}{{dt}} = \frac{p}{m}$ & $\frac{d}{{dt}}q = p$ \\
1302 +  $\frac{d}{{dt}}p =  - \frac{{\partial V}}{{\partial q}}$ & $ \frac{d}{{dt}}p = 0$ \\
1303 +  $\frac{d}{{dt}}Q = 0$ & $ \frac{d}{{dt}}Q = Qskew(I^{ - 1} j)$ \\
1304 +  $ \frac{d}{{dt}}\pi  = \sum\limits_i {\left( {Q^T F_i (r,Q)} \right) \times X_i }$ & $\frac{d}{{dt}}\pi  = \pi  \times I^{ - 1} \pi$\\
1305 +  \hline
1306 + \end{tabular}
1307 + \end{center}
1308 + A second-order symplectic method is now obtained by the composition
1309 + of the flow maps,
1310   \[
1311 < L(x_\alpha  ) = \frac{{\frac{{g_\alpha  }}{{\omega _\alpha  }}L(x) +
1312 < px_\alpha  (0) + \dot x_\alpha  (0)}}{{p^2  + \omega _\alpha ^2 }}
1311 > \varphi _{\Delta t}  = \varphi _{\Delta t/2,V}  \circ \varphi
1312 > _{\Delta t,T}  \circ \varphi _{\Delta t/2,V}.
1313   \]
1314 < Then, the system coordinates,
1315 < \begin{align}
1316 < mL(\ddot x) &=  - \frac{1}{p}\frac{{\partial W(x)}}{{\partial x}} -
1317 < \sum\limits_{\alpha  = 1}^N {\left\{ {\frac{{\frac{{g_\alpha
1318 < }}{{\omega _\alpha  }}L(x) + px_\alpha  (0) + \dot x_\alpha
1319 < (0)}}{{p^2  + \omega _\alpha ^2 }} - \frac{{g_\alpha ^2 }}{{m_\alpha
1320 < }}\omega _\alpha ^2 L(x)} \right\}}
1321 < %
1322 < &= - \frac{1}{p}\frac{{\partial W(x)}}{{\partial x}} -
799 < \sum\limits_{\alpha  = 1}^N {\left\{ { - \frac{{g_\alpha ^2 }}{{m_\alpha  \omega _\alpha ^2 }}\frac{p}{{p^2  + \omega _\alpha ^2 }}pL(x)
800 < - \frac{p}{{p^2  + \omega _\alpha ^2 }}g_\alpha  x_\alpha  (0)
801 < - \frac{1}{{p^2  + \omega _\alpha ^2 }}g_\alpha  \dot x_\alpha  (0)} \right\}}
802 < \end{align}
803 < Then, the inverse transform,
1314 > Moreover, $\varphi _{\Delta t/2,V}$ can be divided into two
1315 > sub-flows which corresponding to force and torque respectively,
1316 > \[
1317 > \varphi _{\Delta t/2,V}  = \varphi _{\Delta t/2,F}  \circ \varphi
1318 > _{\Delta t/2,\tau }.
1319 > \]
1320 > Since the associated operators of $\varphi _{\Delta t/2,F} $ and
1321 > $\circ \varphi _{\Delta t/2,\tau }$ are commuted, the composition
1322 > order inside $\varphi _{\Delta t/2,V}$ does not matter.
1323  
1324 + Furthermore, kinetic potential can be separated to translational
1325 + kinetic term, $T^t (p)$, and rotational kinetic term, $T^r (\pi )$,
1326 + \begin{equation}
1327 + T(p,\pi ) =T^t (p) + T^r (\pi ).
1328 + \end{equation}
1329 + where $ T^t (p) = \frac{1}{2}p^T m^{ - 1} p $ and $T^r (\pi )$ is
1330 + defined by \ref{introEquation:rotationalKineticRB}. Therefore, the
1331 + corresponding flow maps are given by
1332 + \[
1333 + \varphi _{\Delta t,T}  = \varphi _{\Delta t,T^t }  \circ \varphi
1334 + _{\Delta t,T^r }.
1335 + \]
1336 + Finally, we obtain the overall symplectic flow maps for free moving
1337 + rigid body
1338 + \begin{equation}
1339 + \begin{array}{c}
1340 + \varphi _{\Delta t}  = \varphi _{\Delta t/2,F}  \circ \varphi _{\Delta t/2,\tau }  \\
1341 +  \circ \varphi _{\Delta t,T^t }  \circ \varphi _{\Delta t/2,\pi _1 }  \circ \varphi _{\Delta t/2,\pi _2 }  \circ \varphi _{\Delta t,\pi _3 }  \circ \varphi _{\Delta t/2,\pi _2 }  \circ \varphi _{\Delta t/2,\pi _1 }  \\
1342 +  \circ \varphi _{\Delta t/2,\tau }  \circ \varphi _{\Delta t/2,F}  .\\
1343 + \end{array}
1344 + \label{introEquation:overallRBFlowMaps}
1345 + \end{equation}
1346 +
1347 + \section{\label{introSection:langevinDynamics}Langevin Dynamics}
1348 + As an alternative to newtonian dynamics, Langevin dynamics, which
1349 + mimics a simple heat bath with stochastic and dissipative forces,
1350 + has been applied in a variety of studies. This section will review
1351 + the theory of Langevin dynamics simulation. A brief derivation of
1352 + generalized Langevin equation will be given first. Follow that, we
1353 + will discuss the physical meaning of the terms appearing in the
1354 + equation as well as the calculation of friction tensor from
1355 + hydrodynamics theory.
1356 +
1357 + \subsection{\label{introSection:generalizedLangevinDynamics}Derivation of Generalized Langevin Equation}
1358 +
1359 + Harmonic bath model, in which an effective set of harmonic
1360 + oscillators are used to mimic the effect of a linearly responding
1361 + environment, has been widely used in quantum chemistry and
1362 + statistical mechanics. One of the successful applications of
1363 + Harmonic bath model is the derivation of Deriving Generalized
1364 + Langevin Dynamics. Lets consider a system, in which the degree of
1365 + freedom $x$ is assumed to couple to the bath linearly, giving a
1366 + Hamiltonian of the form
1367 + \begin{equation}
1368 + H = \frac{{p^2 }}{{2m}} + U(x) + H_B  + \Delta U(x,x_1 , \ldots x_N)
1369 + \label{introEquation:bathGLE}.
1370 + \end{equation}
1371 + Here $p$ is a momentum conjugate to $q$, $m$ is the mass associated
1372 + with this degree of freedom, $H_B$ is harmonic bath Hamiltonian,
1373 + \[
1374 + H_B  = \sum\limits_{\alpha  = 1}^N {\left\{ {\frac{{p_\alpha ^2
1375 + }}{{2m_\alpha  }} + \frac{1}{2}m_\alpha  \omega _\alpha ^2 }
1376 + \right\}}
1377 + \]
1378 + where the index $\alpha$ runs over all the bath degrees of freedom,
1379 + $\omega _\alpha$ are the harmonic bath frequencies, $m_\alpha$ are
1380 + the harmonic bath masses, and $\Delta U$ is bilinear system-bath
1381 + coupling,
1382 + \[
1383 + \Delta U =  - \sum\limits_{\alpha  = 1}^N {g_\alpha  x_\alpha  x}
1384 + \]
1385 + where $g_\alpha$ are the coupling constants between the bath and the
1386 + coordinate $x$. Introducing
1387 + \[
1388 + W(x) = U(x) - \sum\limits_{\alpha  = 1}^N {\frac{{g_\alpha ^2
1389 + }}{{2m_\alpha  w_\alpha ^2 }}} x^2
1390 + \] and combining the last two terms in Equation
1391 + \ref{introEquation:bathGLE}, we may rewrite the Harmonic bath
1392 + Hamiltonian as
1393 + \[
1394 + H = \frac{{p^2 }}{{2m}} + W(x) + \sum\limits_{\alpha  = 1}^N
1395 + {\left\{ {\frac{{p_\alpha ^2 }}{{2m_\alpha  }} + \frac{1}{2}m_\alpha
1396 + w_\alpha ^2 \left( {x_\alpha   - \frac{{g_\alpha  }}{{m_\alpha
1397 + w_\alpha ^2 }}x} \right)^2 } \right\}}
1398 + \]
1399 + Since the first two terms of the new Hamiltonian depend only on the
1400 + system coordinates, we can get the equations of motion for
1401 + Generalized Langevin Dynamics by Hamilton's equations
1402 + \ref{introEquation:motionHamiltonianCoordinate,
1403 + introEquation:motionHamiltonianMomentum},
1404 + \begin{equation}
1405 + m\ddot x =  - \frac{{\partial W(x)}}{{\partial x}} -
1406 + \sum\limits_{\alpha  = 1}^N {g_\alpha  \left( {x_\alpha   -
1407 + \frac{{g_\alpha  }}{{m_\alpha  w_\alpha ^2 }}x} \right)},
1408 + \label{introEquation:coorMotionGLE}
1409 + \end{equation}
1410 + and
1411 + \begin{equation}
1412 + m\ddot x_\alpha   =  - m_\alpha  w_\alpha ^2 \left( {x_\alpha   -
1413 + \frac{{g_\alpha  }}{{m_\alpha  w_\alpha ^2 }}x} \right).
1414 + \label{introEquation:bathMotionGLE}
1415 + \end{equation}
1416 +
1417 + In order to derive an equation for $x$, the dynamics of the bath
1418 + variables $x_\alpha$ must be solved exactly first. As an integral
1419 + transform which is particularly useful in solving linear ordinary
1420 + differential equations, Laplace transform is the appropriate tool to
1421 + solve this problem. The basic idea is to transform the difficult
1422 + differential equations into simple algebra problems which can be
1423 + solved easily. Then applying inverse Laplace transform, also known
1424 + as the Bromwich integral, we can retrieve the solutions of the
1425 + original problems.
1426 +
1427 + Let $f(t)$ be a function defined on $ [0,\infty ) $. The Laplace
1428 + transform of f(t) is a new function defined as
1429 + \[
1430 + L(f(t)) \equiv F(p) = \int_0^\infty  {f(t)e^{ - pt} dt}
1431 + \]
1432 + where  $p$ is real and  $L$ is called the Laplace Transform
1433 + Operator. Below are some important properties of Laplace transform
1434 + \begin{equation}
1435 + \begin{array}{c}
1436 + L(x + y) = L(x) + L(y) \\
1437 + L(ax) = aL(x) \\
1438 + L(\dot x) = pL(x) - px(0) \\
1439 + L(\ddot x) = p^2 L(x) - px(0) - \dot x(0) \\
1440 + L\left( {\int_0^t {g(t - \tau )h(\tau )d\tau } } \right) = G(p)H(p) \\
1441 + \end{array}
1442 + \end{equation}
1443 +
1444 + Applying Laplace transform to the bath coordinates, we obtain
1445 + \[
1446 + \begin{array}{c}
1447 + p^2 L(x_\alpha  ) - px_\alpha  (0) - \dot x_\alpha  (0) =  - \omega _\alpha ^2 L(x_\alpha  ) + \frac{{g_\alpha  }}{{\omega _\alpha  }}L(x) \\
1448 + L(x_\alpha  ) = \frac{{\frac{{g_\alpha  }}{{\omega _\alpha  }}L(x) + px_\alpha  (0) + \dot x_\alpha  (0)}}{{p^2  + \omega _\alpha ^2 }} \\
1449 + \end{array}
1450 + \]
1451 + By the same way, the system coordinates become
1452 + \[
1453 + \begin{array}{c}
1454 + mL(\ddot x) =  - \frac{1}{p}\frac{{\partial W(x)}}{{\partial x}} \\
1455 +  - \sum\limits_{\alpha  = 1}^N {\left\{ { - \frac{{g_\alpha ^2 }}{{m_\alpha  \omega _\alpha ^2 }}\frac{p}{{p^2  + \omega _\alpha ^2 }}pL(x) - \frac{p}{{p^2  + \omega _\alpha ^2 }}g_\alpha  x_\alpha  (0) - \frac{1}{{p^2  + \omega _\alpha ^2 }}g_\alpha  \dot x_\alpha  (0)} \right\}}  \\
1456 + \end{array}
1457 + \]
1458 +
1459 + With the help of some relatively important inverse Laplace
1460 + transformations:
1461 + \[
1462 + \begin{array}{c}
1463 + L(\cos at) = \frac{p}{{p^2  + a^2 }} \\
1464 + L(\sin at) = \frac{a}{{p^2  + a^2 }} \\
1465 + L(1) = \frac{1}{p} \\
1466 + \end{array}
1467 + \]
1468 + , we obtain
1469   \begin{align}
1470   m\ddot x &=  - \frac{{\partial W(x)}}{{\partial x}} -
1471   \sum\limits_{\alpha  = 1}^N {\left\{ {\left( { - \frac{{g_\alpha ^2
# Line 821 | Line 1485 | t)\dot x(t - \tau )d} \tau }  + \sum\limits_{\alpha  =
1485   (\omega _\alpha  t)} \right\}}
1486   \end{align}
1487  
1488 + Introducing a \emph{dynamic friction kernel}
1489   \begin{equation}
1490 + \xi (t) = \sum\limits_{\alpha  = 1}^N {\left( { - \frac{{g_\alpha ^2
1491 + }}{{m_\alpha  \omega _\alpha ^2 }}} \right)\cos (\omega _\alpha  t)}
1492 + \label{introEquation:dynamicFrictionKernelDefinition}
1493 + \end{equation}
1494 + and \emph{a random force}
1495 + \begin{equation}
1496 + R(t) = \sum\limits_{\alpha  = 1}^N {\left( {g_\alpha  x_\alpha  (0)
1497 + - \frac{{g_\alpha ^2 }}{{m_\alpha  \omega _\alpha ^2 }}x(0)}
1498 + \right)\cos (\omega _\alpha  t)}  + \frac{{\dot x_\alpha
1499 + (0)}}{{\omega _\alpha  }}\sin (\omega _\alpha  t),
1500 + \label{introEquation:randomForceDefinition}
1501 + \end{equation}
1502 + the equation of motion can be rewritten as
1503 + \begin{equation}
1504   m\ddot x =  - \frac{{\partial W}}{{\partial x}} - \int_0^t {\xi
1505   (t)\dot x(t - \tau )d\tau }  + R(t)
1506   \label{introEuqation:GeneralizedLangevinDynamics}
1507   \end{equation}
1508 < %where $ {\xi (t)}$ is friction kernel, $R(t)$ is random force and
1509 < %$W$ is the potential of mean force. $W(x) =  - kT\ln p(x)$
1508 > which is known as the \emph{generalized Langevin equation}.
1509 >
1510 > \subsubsection{\label{introSection:randomForceDynamicFrictionKernel}Random Force and Dynamic Friction Kernel}
1511 >
1512 > One may notice that $R(t)$ depends only on initial conditions, which
1513 > implies it is completely deterministic within the context of a
1514 > harmonic bath. However, it is easy to verify that $R(t)$ is totally
1515 > uncorrelated to $x$ and $\dot x$,
1516   \[
1517 < \xi (t) = \sum\limits_{\alpha  = 1}^N {\left( { - \frac{{g_\alpha ^2
1518 < }}{{m_\alpha  \omega _\alpha ^2 }}} \right)\cos (\omega _\alpha  t)}
1517 > \begin{array}{l}
1518 > \left\langle {x(t)R(t)} \right\rangle  = 0, \\
1519 > \left\langle {\dot x(t)R(t)} \right\rangle  = 0. \\
1520 > \end{array}
1521   \]
1522 < For an infinite harmonic bath, we can use the spectral density and
1523 < an integral over frequencies.
1522 > This property is what we expect from a truly random process. As long
1523 > as the model, which is gaussian distribution in general, chosen for
1524 > $R(t)$ is a truly random process, the stochastic nature of the GLE
1525 > still remains.
1526  
1527 + %dynamic friction kernel
1528 + The convolution integral
1529   \[
1530 < R(t) = \sum\limits_{\alpha  = 1}^N {\left( {g_\alpha  x_\alpha  (0)
840 < - \frac{{g_\alpha ^2 }}{{m_\alpha  \omega _\alpha ^2 }}x(0)}
841 < \right)\cos (\omega _\alpha  t)}  + \frac{{\dot x_\alpha
842 < (0)}}{{\omega _\alpha  }}\sin (\omega _\alpha  t)
1530 > \int_0^t {\xi (t)\dot x(t - \tau )d\tau }
1531   \]
1532 < The random forces depend only on initial conditions.
1532 > depends on the entire history of the evolution of $x$, which implies
1533 > that the bath retains memory of previous motions. In other words,
1534 > the bath requires a finite time to respond to change in the motion
1535 > of the system. For a sluggish bath which responds slowly to changes
1536 > in the system coordinate, we may regard $\xi(t)$ as a constant
1537 > $\xi(t) = \Xi_0$. Hence, the convolution integral becomes
1538 > \[
1539 > \int_0^t {\xi (t)\dot x(t - \tau )d\tau }  = \xi _0 (x(t) - x(0))
1540 > \]
1541 > and Equation \ref{introEuqation:GeneralizedLangevinDynamics} becomes
1542 > \[
1543 > m\ddot x =  - \frac{\partial }{{\partial x}}\left( {W(x) +
1544 > \frac{1}{2}\xi _0 (x - x_0 )^2 } \right) + R(t),
1545 > \]
1546 > which can be used to describe dynamic caging effect. The other
1547 > extreme is the bath that responds infinitely quickly to motions in
1548 > the system. Thus, $\xi (t)$ can be taken as a $delta$ function in
1549 > time:
1550 > \[
1551 > \xi (t) = 2\xi _0 \delta (t)
1552 > \]
1553 > Hence, the convolution integral becomes
1554 > \[
1555 > \int_0^t {\xi (t)\dot x(t - \tau )d\tau }  = 2\xi _0 \int_0^t
1556 > {\delta (t)\dot x(t - \tau )d\tau }  = \xi _0 \dot x(t),
1557 > \]
1558 > and Equation \ref{introEuqation:GeneralizedLangevinDynamics} becomes
1559 > \begin{equation}
1560 > m\ddot x =  - \frac{{\partial W(x)}}{{\partial x}} - \xi _0 \dot
1561 > x(t) + R(t) \label{introEquation:LangevinEquation}
1562 > \end{equation}
1563 > which is known as the Langevin equation. The static friction
1564 > coefficient $\xi _0$ can either be calculated from spectral density
1565 > or be determined by Stokes' law for regular shaped particles.A
1566 > briefly review on calculating friction tensor for arbitrary shaped
1567 > particles is given in Sec.~\ref{introSection:frictionTensor}.
1568  
1569   \subsubsection{\label{introSection:secondFluctuationDissipation}The Second Fluctuation Dissipation Theorem}
1570 < So we can define a new set of coordinates,
1570 >
1571 > Defining a new set of coordinates,
1572   \[
1573   q_\alpha  (t) = x_\alpha  (t) - \frac{1}{{m_\alpha  \omega _\alpha
1574   ^2 }}x(0)
1575 < \]
1576 < This makes
1575 > \],
1576 > we can rewrite $R(T)$ as
1577   \[
1578 < R(t) = \sum\limits_{\alpha  = 1}^N {g_\alpha  q_\alpha  (t)}
1578 > R(t) = \sum\limits_{\alpha  = 1}^N {g_\alpha  q_\alpha  (t)}.
1579   \]
1580   And since the $q$ coordinates are harmonic oscillators,
1581   \[
1582 < \begin{array}{l}
1582 > \begin{array}{c}
1583 > \left\langle {q_\alpha ^2 } \right\rangle  = \frac{{kT}}{{m_\alpha  \omega _\alpha ^2 }} \\
1584   \left\langle {q_\alpha  (t)q_\alpha  (0)} \right\rangle  = \left\langle {q_\alpha ^2 (0)} \right\rangle \cos (\omega _\alpha  t) \\
1585   \left\langle {q_\alpha  (t)q_\beta  (0)} \right\rangle  = \delta _{\alpha \beta } \left\langle {q_\alpha  (t)q_\alpha  (0)} \right\rangle  \\
1586 + \left\langle {R(t)R(0)} \right\rangle  = \sum\limits_\alpha  {\sum\limits_\beta  {g_\alpha  g_\beta  \left\langle {q_\alpha  (t)q_\beta  (0)} \right\rangle } }  \\
1587 +  = \sum\limits_\alpha  {g_\alpha ^2 \left\langle {q_\alpha ^2 (0)} \right\rangle \cos (\omega _\alpha  t)}  \\
1588 +  = kT\xi (t) \\
1589   \end{array}
1590   \]
1591 + Thus, we recover the \emph{second fluctuation dissipation theorem}
1592 + \begin{equation}
1593 + \xi (t) = \left\langle {R(t)R(0)} \right\rangle
1594 + \label{introEquation:secondFluctuationDissipation}.
1595 + \end{equation}
1596 + In effect, it acts as a constraint on the possible ways in which one
1597 + can model the random force and friction kernel.
1598  
1599 < \begin{align}
1600 < \left\langle {R(t)R(0)} \right\rangle  &= \sum\limits_\alpha
1601 < {\sum\limits_\beta  {g_\alpha  g_\beta  \left\langle {q_\alpha
1602 < (t)q_\beta  (0)} \right\rangle } }
1603 < %
1604 < &= \sum\limits_\alpha  {g_\alpha ^2 \left\langle {q_\alpha ^2 (0)}
1605 < \right\rangle \cos (\omega _\alpha  t)}
1606 < %
1607 < &= kT\xi (t)
1608 < \end{align}
1599 > \subsection{\label{introSection:frictionTensor} Friction Tensor}
1600 > Theoretically, the friction kernel can be determined using velocity
1601 > autocorrelation function. However, this approach become impractical
1602 > when the system become more and more complicate. Instead, various
1603 > approaches based on hydrodynamics have been developed to calculate
1604 > the friction coefficients. The friction effect is isotropic in
1605 > Equation, \zeta can be taken as a scalar. In general, friction
1606 > tensor \Xi is a $6\times 6$ matrix given by
1607 > \[
1608 > \Xi  = \left( {\begin{array}{*{20}c}
1609 >   {\Xi _{}^{tt} } & {\Xi _{}^{rt} }  \\
1610 >   {\Xi _{}^{tr} } & {\Xi _{}^{rr} }  \\
1611 > \end{array}} \right).
1612 > \]
1613 > Here, $ {\Xi^{tt} }$ and $ {\Xi^{rr} }$ are translational friction
1614 > tensor and rotational resistance (friction) tensor respectively,
1615 > while ${\Xi^{tr} }$ is translation-rotation coupling tensor and $
1616 > {\Xi^{rt} }$ is rotation-translation coupling tensor. When a
1617 > particle moves in a fluid, it may experience friction force or
1618 > torque along the opposite direction of the velocity or angular
1619 > velocity,
1620 > \[
1621 > \left( \begin{array}{l}
1622 > F_R  \\
1623 > \tau _R  \\
1624 > \end{array} \right) =  - \left( {\begin{array}{*{20}c}
1625 >   {\Xi ^{tt} } & {\Xi ^{rt} }  \\
1626 >   {\Xi ^{tr} } & {\Xi ^{rr} }  \\
1627 > \end{array}} \right)\left( \begin{array}{l}
1628 > v \\
1629 > w \\
1630 > \end{array} \right)
1631 > \]
1632 > where $F_r$ is the friction force and $\tau _R$ is the friction
1633 > toque.
1634  
1635 + \subsubsection{\label{introSection:resistanceTensorRegular}The Resistance Tensor for Regular Shape}
1636 +
1637 + For a spherical particle, the translational and rotational friction
1638 + constant can be calculated from Stoke's law,
1639 + \[
1640 + \Xi ^{tt}  = \left( {\begin{array}{*{20}c}
1641 +   {6\pi \eta R} & 0 & 0  \\
1642 +   0 & {6\pi \eta R} & 0  \\
1643 +   0 & 0 & {6\pi \eta R}  \\
1644 + \end{array}} \right)
1645 + \]
1646 + and
1647 + \[
1648 + \Xi ^{rr}  = \left( {\begin{array}{*{20}c}
1649 +   {8\pi \eta R^3 } & 0 & 0  \\
1650 +   0 & {8\pi \eta R^3 } & 0  \\
1651 +   0 & 0 & {8\pi \eta R^3 }  \\
1652 + \end{array}} \right)
1653 + \]
1654 + where $\eta$ is the viscosity of the solvent and $R$ is the
1655 + hydrodynamics radius.
1656 +
1657 + Other non-spherical shape, such as cylinder and ellipsoid
1658 + \textit{etc}, are widely used as reference for developing new
1659 + hydrodynamics theory, because their properties can be calculated
1660 + exactly. In 1936, Perrin extended Stokes's law to general ellipsoid,
1661 + also called a triaxial ellipsoid, which is given in Cartesian
1662 + coordinates by
1663 + \[
1664 + \frac{{x^2 }}{{a^2 }} + \frac{{y^2 }}{{b^2 }} + \frac{{z^2 }}{{c^2
1665 + }} = 1
1666 + \]
1667 + where the semi-axes are of lengths $a$, $b$, and $c$. Unfortunately,
1668 + due to the complexity of the elliptic integral, only the ellipsoid
1669 + with the restriction of two axes having to be equal, \textit{i.e.}
1670 + prolate($ a \ge b = c$) and oblate ($ a < b = c $), can be solved
1671 + exactly. Introducing an elliptic integral parameter $S$ for prolate,
1672 + \[
1673 + S = \frac{2}{{\sqrt {a^2  - b^2 } }}\ln \frac{{a + \sqrt {a^2  - b^2
1674 + } }}{b},
1675 + \]
1676 + and oblate,
1677 + \[
1678 + S = \frac{2}{{\sqrt {b^2  - a^2 } }}arctg\frac{{\sqrt {b^2  - a^2 }
1679 + }}{a}
1680 + \],
1681 + one can write down the translational and rotational resistance
1682 + tensors
1683 + \[
1684 + \begin{array}{l}
1685 + \Xi _a^{tt}  = 16\pi \eta \frac{{a^2  - b^2 }}{{(2a^2  - b^2 )S - 2a}} \\
1686 + \Xi _b^{tt}  = \Xi _c^{tt}  = 32\pi \eta \frac{{a^2  - b^2 }}{{(2a^2  - 3b^2 )S + 2a}} \\
1687 + \end{array},
1688 + \]
1689 + and
1690 + \[
1691 + \begin{array}{l}
1692 + \Xi _a^{rr}  = \frac{{32\pi }}{3}\eta \frac{{(a^2  - b^2 )b^2 }}{{2a - b^2 S}} \\
1693 + \Xi _b^{rr}  = \Xi _c^{rr}  = \frac{{32\pi }}{3}\eta \frac{{(a^4  - b^4 )}}{{(2a^2  - b^2 )S - 2a}} \\
1694 + \end{array}.
1695 + \]
1696 +
1697 + \subsubsection{\label{introSection:resistanceTensorRegularArbitrary}The Resistance Tensor for Arbitrary Shape}
1698 +
1699 + Unlike spherical and other regular shaped molecules, there is not
1700 + analytical solution for friction tensor of any arbitrary shaped
1701 + rigid molecules. The ellipsoid of revolution model and general
1702 + triaxial ellipsoid model have been used to approximate the
1703 + hydrodynamic properties of rigid bodies. However, since the mapping
1704 + from all possible ellipsoidal space, $r$-space, to all possible
1705 + combination of rotational diffusion coefficients, $D$-space is not
1706 + unique\cite{Wegener79} as well as the intrinsic coupling between
1707 + translational and rotational motion of rigid body\cite{}, general
1708 + ellipsoid is not always suitable for modeling arbitrarily shaped
1709 + rigid molecule. A number of studies have been devoted to determine
1710 + the friction tensor for irregularly shaped rigid bodies using more
1711 + advanced method\cite{} where the molecule of interest was modeled by
1712 + combinations of spheres(beads)\cite{} and the hydrodynamics
1713 + properties of the molecule can be calculated using the hydrodynamic
1714 + interaction tensor. Let us consider a rigid assembly of $N$ beads
1715 + immersed in a continuous medium. Due to hydrodynamics interaction,
1716 + the ``net'' velocity of $i$th bead, $v'_i$ is different than its
1717 + unperturbed velocity $v_i$,
1718 + \[
1719 + v'_i  = v_i  - \sum\limits_{j \ne i} {T_{ij} F_j }
1720 + \]
1721 + where $F_i$ is the frictional force, and $T_{ij}$ is the
1722 + hydrodynamic interaction tensor. The friction force of $i$th bead is
1723 + proportional to its ``net'' velocity
1724   \begin{equation}
1725 < \xi (t) = \left\langle {R(t)R(0)} \right\rangle
1726 < \label{introEquation:secondFluctuationDissipation}
1725 > F_i  = \zeta _i v_i  - \zeta _i \sum\limits_{j \ne i} {T_{ij} F_j }.
1726 > \label{introEquation:tensorExpression}
1727   \end{equation}
1728 + This equation is the basis for deriving the hydrodynamic tensor. In
1729 + 1930, Oseen and Burgers gave a simple solution to Equation
1730 + \ref{introEquation:tensorExpression}
1731 + \begin{equation}
1732 + T_{ij}  = \frac{1}{{8\pi \eta r_{ij} }}\left( {I + \frac{{R_{ij}
1733 + R_{ij}^T }}{{R_{ij}^2 }}} \right).
1734 + \label{introEquation:oseenTensor}
1735 + \end{equation}
1736 + Here $R_{ij}$ is the distance vector between bead $i$ and bead $j$.
1737 + A second order expression for element of different size was
1738 + introduced by Rotne and Prager\cite{} and improved by Garc\'{i}a de
1739 + la Torre and Bloomfield,
1740 + \begin{equation}
1741 + T_{ij}  = \frac{1}{{8\pi \eta R_{ij} }}\left[ {\left( {I +
1742 + \frac{{R_{ij} R_{ij}^T }}{{R_{ij}^2 }}} \right) + R\frac{{\sigma
1743 + _i^2  + \sigma _j^2 }}{{r_{ij}^2 }}\left( {\frac{I}{3} -
1744 + \frac{{R_{ij} R_{ij}^T }}{{R_{ij}^2 }}} \right)} \right].
1745 + \label{introEquation:RPTensorNonOverlapped}
1746 + \end{equation}
1747 + Both of the Equation \ref{introEquation:oseenTensor} and Equation
1748 + \ref{introEquation:RPTensorNonOverlapped} have an assumption $R_{ij}
1749 + \ge \sigma _i  + \sigma _j$. An alternative expression for
1750 + overlapping beads with the same radius, $\sigma$, is given by
1751 + \begin{equation}
1752 + T_{ij}  = \frac{1}{{6\pi \eta R_{ij} }}\left[ {\left( {1 -
1753 + \frac{2}{{32}}\frac{{R_{ij} }}{\sigma }} \right)I +
1754 + \frac{2}{{32}}\frac{{R_{ij} R_{ij}^T }}{{R_{ij} \sigma }}} \right]
1755 + \label{introEquation:RPTensorOverlapped}
1756 + \end{equation}
1757  
1758 < \section{\label{introSection:hydroynamics}Hydrodynamics}
1758 > To calculate the resistance tensor at an arbitrary origin $O$, we
1759 > construct a $3N \times 3N$ matrix consisting of $N \times N$
1760 > $B_{ij}$ blocks
1761 > \begin{equation}
1762 > B = \left( {\begin{array}{*{20}c}
1763 >   {B_{11} } &  \ldots  & {B_{1N} }  \\
1764 >    \vdots  &  \ddots  &  \vdots   \\
1765 >   {B_{N1} } &  \cdots  & {B_{NN} }  \\
1766 > \end{array}} \right),
1767 > \end{equation}
1768 > where $B_{ij}$ is given by
1769 > \[
1770 > B_{ij}  = \delta _{ij} \frac{I}{{6\pi \eta R}} + (1 - \delta _{ij}
1771 > )T_{ij}
1772 > \]
1773 > where $\delta _{ij}$ is Kronecker delta function. Inverting matrix
1774 > $B$, we obtain
1775  
1776 < \subsection{\label{introSection:frictionTensor} Friction Tensor}
1777 < \subsection{\label{introSection:analyticalApproach}Analytical
1778 < Approach}
1776 > \[
1777 > C = B^{ - 1}  = \left( {\begin{array}{*{20}c}
1778 >   {C_{11} } &  \ldots  & {C_{1N} }  \\
1779 >    \vdots  &  \ddots  &  \vdots   \\
1780 >   {C_{N1} } &  \cdots  & {C_{NN} }  \\
1781 > \end{array}} \right)
1782 > \]
1783 > , which can be partitioned into $N \times N$ $3 \times 3$ block
1784 > $C_{ij}$. With the help of $C_{ij}$ and skew matrix $U_i$
1785 > \[
1786 > U_i  = \left( {\begin{array}{*{20}c}
1787 >   0 & { - z_i } & {y_i }  \\
1788 >   {z_i } & 0 & { - x_i }  \\
1789 >   { - y_i } & {x_i } & 0  \\
1790 > \end{array}} \right)
1791 > \]
1792 > where $x_i$, $y_i$, $z_i$ are the components of the vector joining
1793 > bead $i$ and origin $O$. Hence, the elements of resistance tensor at
1794 > arbitrary origin $O$ can be written as
1795 > \begin{equation}
1796 > \begin{array}{l}
1797 > \Xi _{}^{tt}  = \sum\limits_i {\sum\limits_j {C_{ij} } } , \\
1798 > \Xi _{}^{tr}  = \Xi _{}^{rt}  = \sum\limits_i {\sum\limits_j {U_i C_{ij} } } , \\
1799 > \Xi _{}^{rr}  =  - \sum\limits_i {\sum\limits_j {U_i C_{ij} } } U_j  \\
1800 > \end{array}
1801 > \label{introEquation:ResistanceTensorArbitraryOrigin}
1802 > \end{equation}
1803  
1804 < \subsection{\label{introSection:approximationApproach}Approximation
1805 < Approach}
1804 > The resistance tensor depends on the origin to which they refer. The
1805 > proper location for applying friction force is the center of
1806 > resistance (reaction), at which the trace of rotational resistance
1807 > tensor, $ \Xi ^{rr}$ reaches minimum. Mathematically, the center of
1808 > resistance is defined as an unique point of the rigid body at which
1809 > the translation-rotation coupling tensor are symmetric,
1810 > \begin{equation}
1811 > \Xi^{tr}  = \left( {\Xi^{tr} } \right)^T
1812 > \label{introEquation:definitionCR}
1813 > \end{equation}
1814 > Form Equation \ref{introEquation:ResistanceTensorArbitraryOrigin},
1815 > we can easily find out that the translational resistance tensor is
1816 > origin independent, while the rotational resistance tensor and
1817 > translation-rotation coupling resistance tensor depend on the
1818 > origin. Given resistance tensor at an arbitrary origin $O$, and a
1819 > vector ,$r_{OP}(x_{OP}, y_{OP}, z_{OP})$, from $O$ to $P$, we can
1820 > obtain the resistance tensor at $P$ by
1821 > \begin{equation}
1822 > \begin{array}{l}
1823 > \Xi _P^{tt}  = \Xi _O^{tt}  \\
1824 > \Xi _P^{tr}  = \Xi _P^{rt}  = \Xi _O^{tr}  - U_{OP} \Xi _O^{tt}  \\
1825 > \Xi _P^{rr}  = \Xi _O^{rr}  - U_{OP} \Xi _O^{tt} U_{OP}  + \Xi _O^{tr} U_{OP}  - U_{OP} \Xi _O^{tr} ^{^T }  \\
1826 > \end{array}
1827 > \label{introEquation:resistanceTensorTransformation}
1828 > \end{equation}
1829 > where
1830 > \[
1831 > U_{OP}  = \left( {\begin{array}{*{20}c}
1832 >   0 & { - z_{OP} } & {y_{OP} }  \\
1833 >   {z_i } & 0 & { - x_{OP} }  \\
1834 >   { - y_{OP} } & {x_{OP} } & 0  \\
1835 > \end{array}} \right)
1836 > \]
1837 > Using Equations \ref{introEquation:definitionCR} and
1838 > \ref{introEquation:resistanceTensorTransformation}, one can locate
1839 > the position of center of resistance,
1840 > \[
1841 > \left( \begin{array}{l}
1842 > x_{OR}  \\
1843 > y_{OR}  \\
1844 > z_{OR}  \\
1845 > \end{array} \right) = \left( {\begin{array}{*{20}c}
1846 >   {(\Xi _O^{rr} )_{yy}  + (\Xi _O^{rr} )_{zz} } & { - (\Xi _O^{rr} )_{xy} } & { - (\Xi _O^{rr} )_{xz} }  \\
1847 >   { - (\Xi _O^{rr} )_{xy} } & {(\Xi _O^{rr} )_{zz}  + (\Xi _O^{rr} )_{xx} } & { - (\Xi _O^{rr} )_{yz} }  \\
1848 >   { - (\Xi _O^{rr} )_{xz} } & { - (\Xi _O^{rr} )_{yz} } & {(\Xi _O^{rr} )_{xx}  + (\Xi _O^{rr} )_{yy} }  \\
1849 > \end{array}} \right)^{ - 1} \left( \begin{array}{l}
1850 > (\Xi _O^{tr} )_{yz}  - (\Xi _O^{tr} )_{zy}  \\
1851 > (\Xi _O^{tr} )_{zx}  - (\Xi _O^{tr} )_{xz}  \\
1852 > (\Xi _O^{tr} )_{xy}  - (\Xi _O^{tr} )_{yx}  \\
1853 > \end{array} \right).
1854 > \]
1855 > where $x_OR$, $y_OR$, $z_OR$ are the components of the vector
1856 > joining center of resistance $R$ and origin $O$.
1857  
1858 < \subsection{\label{introSection:centersRigidBody}Centers of Rigid
890 < Body}
1858 > %\section{\label{introSection:correlationFunctions}Correlation Functions}

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines