| 1665 |
|
(\omega _\alpha t) - \frac{{g_\alpha \dot x_\alpha (0)}}{{\omega |
| 1666 |
|
_\alpha }}\sin (\omega _\alpha t)} } \right\}} |
| 1667 |
|
% |
| 1668 |
< |
& = & \mbox{} - \frac{{\partial W(x)}}{{\partial x}} - \int_0^t |
| 1668 |
> |
& = & - \frac{{\partial W(x)}}{{\partial x}} - \int_0^t |
| 1669 |
|
{\sum\limits_{\alpha = 1}^N {\left( { - \frac{{g_\alpha ^2 |
| 1670 |
|
}}{{m_\alpha \omega _\alpha ^2 }}} \right)\cos (\omega _\alpha |
| 1671 |
|
t)\dot x(t - \tau )d} \tau } + \sum\limits_{\alpha = 1}^N {\left\{ |
| 1674 |
|
\frac{{g_\alpha \dot x_\alpha (0)}}{{\omega _\alpha }}\sin |
| 1675 |
|
(\omega _\alpha t)} \right\}} |
| 1676 |
|
\end{eqnarray*} |
| 1677 |
– |
|
| 1677 |
|
Introducing a \emph{dynamic friction kernel} |
| 1678 |
|
\begin{equation} |
| 1679 |
|
\xi (t) = \sum\limits_{\alpha = 1}^N {\left( { - \frac{{g_\alpha ^2 |
| 2026 |
|
Using Equations \ref{introEquation:definitionCR} and |
| 2027 |
|
\ref{introEquation:resistanceTensorTransformation}, one can locate |
| 2028 |
|
the position of center of resistance, |
| 2030 |
– |
\[ |
| 2031 |
– |
\left( \begin{array}{l} |
| 2032 |
– |
x_{OR} \\ |
| 2033 |
– |
y_{OR} \\ |
| 2034 |
– |
z_{OR} \\ |
| 2035 |
– |
\end{array} \right) = \left( {\begin{array}{*{20}c} |
| 2036 |
– |
{(\Xi _O^{rr} )_{yy} + (\Xi _O^{rr} )_{zz} } & { - (\Xi _O^{rr} )_{xy} } & { - (\Xi _O^{rr} )_{xz} } \\ |
| 2037 |
– |
{ - (\Xi _O^{rr} )_{xy} } & {(\Xi _O^{rr} )_{zz} + (\Xi _O^{rr} )_{xx} } & { - (\Xi _O^{rr} )_{yz} } \\ |
| 2038 |
– |
{ - (\Xi _O^{rr} )_{xz} } & { - (\Xi _O^{rr} )_{yz} } & {(\Xi _O^{rr} )_{xx} + (\Xi _O^{rr} )_{yy} } \\ |
| 2039 |
– |
\end{array}} \right)^{ - 1} \left( \begin{array}{l} |
| 2040 |
– |
(\Xi _O^{tr} )_{yz} - (\Xi _O^{tr} )_{zy} \\ |
| 2041 |
– |
(\Xi _O^{tr} )_{zx} - (\Xi _O^{tr} )_{xz} \\ |
| 2042 |
– |
(\Xi _O^{tr} )_{xy} - (\Xi _O^{tr} )_{yx} \\ |
| 2043 |
– |
\end{array} \right). |
| 2044 |
– |
\] |
| 2045 |
– |
|
| 2046 |
– |
|
| 2029 |
|
\begin{eqnarray*} |
| 2030 |
|
\left( \begin{array}{l} |
| 2031 |
|
x_{OR} \\ |