ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/tengDissertation/Introduction.tex
(Generate patch)

Comparing trunk/tengDissertation/Introduction.tex (file contents):
Revision 2705 by tim, Wed Apr 12 21:20:13 2006 UTC vs.
Revision 2707 by tim, Thu Apr 13 22:17:13 2006 UTC

# Line 315 | Line 315 | partition function like,
315   isolated and conserve energy, Microcanonical ensemble(NVE) has a
316   partition function like,
317   \begin{equation}
318 < \Omega (N,V,E) = e^{\beta TS}
319 < \label{introEqaution:NVEPartition}.
318 > \Omega (N,V,E) = e^{\beta TS} \label{introEquation:NVEPartition}.
319   \end{equation}
320   A canonical ensemble(NVT)is an ensemble of systems, each of which
321   can share its energy with a large heat reservoir. The distribution
# Line 771 | Line 770 | splitting gives a second-order decomposition,
770   splitting gives a second-order decomposition,
771   \begin{equation}
772   \varphi _h  = \varphi _{1,h/2}  \circ \varphi _{2,h}  \circ \varphi
773 < _{1,h/2} ,
775 < \label{introEqaution:secondOrderSplitting}
773 > _{1,h/2} , \label{introEquation:secondOrderSplitting}
774   \end{equation}
775   which has a local error proportional to $h^3$. Sprang splitting's
776   popularity in molecular simulation community attribute to its
# Line 951 | Line 949 | this section, we will present a symplectic Lie-Poisson
949   method using quaternion representation was developed by Omelyan.
950   However, both of these methods are iterative and inefficient. In
951   this section, we will present a symplectic Lie-Poisson integrator
952 < for rigid body developed by Dullweber and his coworkers\cite{}.
952 > for rigid body developed by Dullweber and his
953 > coworkers\cite{Dullweber1997}.
954  
955   \subsection{\label{introSection:lieAlgebra}Lie Algebra}
956  
957 < \subsection{\label{introSection:DLMMotionEquation}The Euler Equations of Rigid Body Motion}
957 > \subsection{\label{introSection:constrainedHamiltonianRB}Constrained Hamiltonian for Rigid Body}
958  
959 < \subsection{\label{introSection:otherRBMotionEquation}Other Formulations for Rigid Body Motion}
959 > \begin{equation}
960 > H = \frac{1}{2}(p^T m^{ - 1} p) + \frac{1}{2}tr(PJ^{ - 1} P) +
961 > V(q,Q) + \frac{1}{2}tr[(QQ^T  - 1)\Lambda ].
962 > \label{introEquation:RBHamiltonian}
963 > \end{equation}
964 > Here, $q$ and $Q$  are the position and rotation matrix for the
965 > rigid-body, $p$ and $P$  are conjugate momenta to $q$  and $Q$ , and
966 > $J$, a diagonal matrix, is defined by
967 > \[
968 > I_{ii}^{ - 1}  = \frac{1}{2}\sum\limits_{i \ne j} {J_{jj}^{ - 1} }
969 > \]
970 > where $I_{ii}$ is the diagonal element of the inertia tensor. This
971 > constrained Hamiltonian equation subjects to a holonomic constraint,
972 > \begin{equation}
973 > Q^T Q = 1$, \label{introEquation:orthogonalConstraint}
974 > \end{equation}
975 > which is used to ensure rotation matrix's orthogonality.
976 > Differentiating \ref{introEquation:orthogonalConstraint} and using
977 > Equation \ref{introEquation:RBMotionMomentum}, one may obtain,
978 > \begin{equation}
979 > Q^T PJ^{ - 1}  + J^{ - 1} P^T Q = 0 . \\
980 > \label{introEquation:RBFirstOrderConstraint}
981 > \end{equation}
982  
983 < \section{\label{introSection:correlationFunctions}Correlation Functions}
983 > Using Equation (\ref{introEquation:motionHamiltonianCoordinate},
984 > \ref{introEquation:motionHamiltonianMomentum}), one can write down
985 > the equations of motion,
986 > \[
987 > \begin{array}{c}
988 > \frac{{dq}}{{dt}} = \frac{p}{m} \label{introEquation:RBMotionPosition}\\
989 > \frac{{dp}}{{dt}} =  - \nabla _q V(q,Q) \label{introEquation:RBMotionMomentum}\\
990 > \frac{{dQ}}{{dt}} = PJ^{ - 1}  \label{introEquation:RBMotionRotation}\\
991 > \frac{{dP}}{{dt}} =  - \nabla _Q V(q,Q) - 2Q\Lambda . \label{introEquation:RBMotionP}\\
992 > \end{array}
993 > \]
994 >
995 > In general, there are two ways to satisfy the holonomic constraints.
996 > We can use constraint force provided by lagrange multiplier on the
997 > normal manifold to keep the motion on constraint space. Or we can
998 > simply evolve the system in constraint manifold. The two method are
999 > proved to be equivalent. The holonomic constraint and equations of
1000 > motions define a constraint manifold for rigid body
1001 > \[
1002 > M = \left\{ {(Q,P):Q^T Q = 1,Q^T PJ^{ - 1}  + J^{ - 1} P^T Q = 0}
1003 > \right\}.
1004 > \]
1005 >
1006 > Unfortunately, this constraint manifold is not the cotangent bundle
1007 > $T_{\star}SO(3)$. However, it turns out that under symplectic
1008 > transformation, the cotangent space and the phase space are
1009 > diffeomorphic. Introducing
1010 > \[
1011 > \tilde Q = Q,\tilde P = \frac{1}{2}\left( {P - QP^T Q} \right),
1012 > \]
1013 > the mechanical system subject to a holonomic constraint manifold $M$
1014 > can be re-formulated as a Hamiltonian system on the cotangent space
1015 > \[
1016 > T^* SO(3) = \left\{ {(\tilde Q,\tilde P):\tilde Q^T \tilde Q =
1017 > 1,\tilde Q^T \tilde PJ^{ - 1}  + J^{ - 1} P^T \tilde Q = 0} \right\}
1018 > \]
1019 >
1020 > For a body fixed vector $X_i$ with respect to the center of mass of
1021 > the rigid body, its corresponding lab fixed vector $X_0^{lab}$  is
1022 > given as
1023 > \begin{equation}
1024 > X_i^{lab} = Q X_i + q.
1025 > \end{equation}
1026 > Therefore, potential energy $V(q,Q)$ is defined by
1027 > \[
1028 > V(q,Q) = V(Q X_0 + q).
1029 > \]
1030 > Hence,
1031 > \[
1032 > \nabla _q V(q,Q) = F(q,Q) = \sum\limits_i {F_i (q,Q)}
1033 > \]
1034 >
1035 > \[
1036 > \nabla _Q V(q,Q) = F(q,Q)X_i^t
1037 > \]
1038  
1039 + As a common choice to describe the rotation dynamics of the rigid
1040 + body, angular momentum on body frame $\Pi  = Q^t P$ is introduced to
1041 + rewrite the equations of motion,
1042 + \begin{equation}
1043 + \begin{array}{l}
1044 + \mathop \Pi \limits^ \bullet   = J^{ - 1} \Pi ^T \Pi  + Q^T \sum\limits_i {F_i (q,Q)X_i^T }  - \Lambda  \\
1045 + \mathop Q\limits^{{\rm{   }} \bullet }  = Q\Pi {\rm{ }}J^{ - 1}  \\
1046 + \end{array}
1047 + \label{introEqaution:RBMotionPI}
1048 + \end{equation}
1049 + , as well as holonomic constraints,
1050 + \[
1051 + \begin{array}{l}
1052 + \Pi J^{ - 1}  + J^{ - 1} \Pi ^t  = 0 \\
1053 + Q^T Q = 1 \\
1054 + \end{array}
1055 + \]
1056 +
1057 + For a vector $v(v_1 ,v_2 ,v_3 ) \in R^3$ and a matrix $\hat v \in
1058 + so(3)^ \star$, the hat-map isomorphism,
1059 + \begin{equation}
1060 + v(v_1 ,v_2 ,v_3 ) \Leftrightarrow \hat v = \left(
1061 + {\begin{array}{*{20}c}
1062 +   0 & { - v_3 } & {v_2 }  \\
1063 +   {v_3 } & 0 & { - v_1 }  \\
1064 +   { - v_2 } & {v_1 } & 0  \\
1065 + \end{array}} \right),
1066 + \label{introEquation:hatmapIsomorphism}
1067 + \end{equation}
1068 + will let us associate the matrix products with traditional vector
1069 + operations
1070 + \[
1071 + \hat vu = v \times u
1072 + \]
1073 +
1074 + Using \ref{introEqaution:RBMotionPI}, one can construct a skew
1075 + matrix,
1076 + \begin{equation}
1077 + (\mathop \Pi \limits^ \bullet   - \mathop \Pi \limits^ \bullet  ^T
1078 + ){\rm{ }} = {\rm{ }}(\Pi  - \Pi ^T ){\rm{ }}(J^{ - 1} \Pi  + \Pi J^{
1079 + - 1} ) + \sum\limits_i {[Q^T F_i (r,Q)X_i^T  - X_i F_i (r,Q)^T Q]} -
1080 + (\Lambda  - \Lambda ^T ) . \label{introEquation:skewMatrixPI}
1081 + \end{equation}
1082 + Since $\Lambda$ is symmetric, the last term of Equation
1083 + \ref{introEquation:skewMatrixPI}, which implies the Lagrange
1084 + multiplier $\Lambda$ is ignored in the integration.
1085 +
1086 + Hence, applying hat-map isomorphism, we obtain the equation of
1087 + motion for angular momentum on body frame
1088 + \[
1089 + \dot \pi  = \pi  \times I^{ - 1} \pi  + Q^T \sum\limits_i {F_i (r,Q)
1090 + \times X_i }
1091 + \]
1092 + In the same manner, the equation of motion for rotation matrix is
1093 + given by
1094 + \[
1095 + \dot Q = Qskew(M^{ - 1} \pi )
1096 + \]
1097 +
1098 + The free rigid body equation is an example of a non-canonical
1099 + Hamiltonian system.
1100 +
1101 + \subsection{\label{introSection:symplecticDiscretizationRB}Symplectic Integration of Euler Equations}
1102 +
1103 + \[
1104 + \varphi _{\Delta t}  = \varphi _{\Delta t/2,V}  \circ \varphi
1105 + _{\Delta t,T}  \circ \varphi _{\Delta t/2,V}
1106 + \]
1107 +
1108 + \[
1109 + \varphi _{\Delta t,T}  = \varphi _{\Delta t,R}  \circ \varphi
1110 + _{\Delta t,\pi }
1111 + \]
1112 +
1113 + \[
1114 + \varphi _{\Delta t,\pi }  = \varphi _{\Delta t/2,\pi _1 }  \circ
1115 + \varphi _{\Delta t/2,\pi _2 }  \circ \varphi _{\Delta t,\pi _3 }
1116 + \circ \varphi _{\Delta t/2,\pi _2 }  \circ \varphi _{\Delta t/2,\pi
1117 + _1 }
1118 + \]
1119 +
1120 + \[
1121 + \varphi _{\Delta t/2,V}  = \varphi _{\Delta t/2,F}  \circ \varphi
1122 + _{\Delta t/2,\tau }
1123 + \]
1124 +
1125 +
1126   \section{\label{introSection:langevinDynamics}Langevin Dynamics}
1127  
1128   \subsection{\label{introSection:LDIntroduction}Introduction and application of Langevin Dynamics}
# Line 1168 | Line 1330 | Body}
1330  
1331   \subsection{\label{introSection:centersRigidBody}Centers of Rigid
1332   Body}
1333 +
1334 + \section{\label{introSection:correlationFunctions}Correlation Functions}

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines