ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/tengDissertation/Introduction.tex
(Generate patch)

Comparing trunk/tengDissertation/Introduction.tex (file contents):
Revision 2685 by tim, Mon Apr 3 18:07:54 2006 UTC vs.
Revision 2705 by tim, Wed Apr 12 21:20:13 2006 UTC

# Line 1 | Line 1
1   \chapter{\label{chapt:introduction}INTRODUCTION AND THEORETICAL BACKGROUND}
2  
3 < \section{\label{introSection:classicalMechanics}Classical Mechanics}
3 > \section{\label{introSection:classicalMechanics}Classical
4 > Mechanics}
5  
6 < \section{\label{introSection:rigidBody}Dynamics of Rigid Bodies}
6 > Closely related to Classical Mechanics, Molecular Dynamics
7 > simulations are carried out by integrating the equations of motion
8 > for a given system of particles. There are three fundamental ideas
9 > behind classical mechanics. Firstly, One can determine the state of
10 > a mechanical system at any time of interest; Secondly, all the
11 > mechanical properties of the system at that time can be determined
12 > by combining the knowledge of the properties of the system with the
13 > specification of this state; Finally, the specification of the state
14 > when further combine with the laws of mechanics will also be
15 > sufficient to predict the future behavior of the system.
16  
17 < \section{\label{introSection:statisticalMechanics}Statistical Mechanics}
17 > \subsection{\label{introSection:newtonian}Newtonian Mechanics}
18 > The discovery of Newton's three laws of mechanics which govern the
19 > motion of particles is the foundation of the classical mechanics.
20 > Newton¡¯s first law defines a class of inertial frames. Inertial
21 > frames are reference frames where a particle not interacting with
22 > other bodies will move with constant speed in the same direction.
23 > With respect to inertial frames Newton¡¯s second law has the form
24 > \begin{equation}
25 > F = \frac {dp}{dt} = \frac {mv}{dt}
26 > \label{introEquation:newtonSecondLaw}
27 > \end{equation}
28 > A point mass interacting with other bodies moves with the
29 > acceleration along the direction of the force acting on it. Let
30 > $F_{ij}$ be the force that particle $i$ exerts on particle $j$, and
31 > $F_{ji}$ be the force that particle $j$ exerts on particle $i$.
32 > Newton¡¯s third law states that
33 > \begin{equation}
34 > F_{ij} = -F_{ji}
35 > \label{introEquation:newtonThirdLaw}
36 > \end{equation}
37  
38 + Conservation laws of Newtonian Mechanics play very important roles
39 + in solving mechanics problems. The linear momentum of a particle is
40 + conserved if it is free or it experiences no force. The second
41 + conservation theorem concerns the angular momentum of a particle.
42 + The angular momentum $L$ of a particle with respect to an origin
43 + from which $r$ is measured is defined to be
44 + \begin{equation}
45 + L \equiv r \times p \label{introEquation:angularMomentumDefinition}
46 + \end{equation}
47 + The torque $\tau$ with respect to the same origin is defined to be
48 + \begin{equation}
49 + N \equiv r \times F \label{introEquation:torqueDefinition}
50 + \end{equation}
51 + Differentiating Eq.~\ref{introEquation:angularMomentumDefinition},
52 + \[
53 + \dot L = \frac{d}{{dt}}(r \times p) = (\dot r \times p) + (r \times
54 + \dot p)
55 + \]
56 + since
57 + \[
58 + \dot r \times p = \dot r \times mv = m\dot r \times \dot r \equiv 0
59 + \]
60 + thus,
61 + \begin{equation}
62 + \dot L = r \times \dot p = N
63 + \end{equation}
64 + If there are no external torques acting on a body, the angular
65 + momentum of it is conserved. The last conservation theorem state
66 + that if all forces are conservative, Energy
67 + \begin{equation}E = T + V \label{introEquation:energyConservation}
68 + \end{equation}
69 + is conserved. All of these conserved quantities are
70 + important factors to determine the quality of numerical integration
71 + scheme for rigid body \cite{Dullweber1997}.
72 +
73 + \subsection{\label{introSection:lagrangian}Lagrangian Mechanics}
74 +
75 + Newtonian Mechanics suffers from two important limitations: it
76 + describes their motion in special cartesian coordinate systems.
77 + Another limitation of Newtonian mechanics becomes obvious when we
78 + try to describe systems with large numbers of particles. It becomes
79 + very difficult to predict the properties of the system by carrying
80 + out calculations involving the each individual interaction between
81 + all the particles, even if we know all of the details of the
82 + interaction. In order to overcome some of the practical difficulties
83 + which arise in attempts to apply Newton's equation to complex
84 + system, alternative procedures may be developed.
85 +
86 + \subsubsection{\label{introSection:halmiltonPrinciple}Hamilton's
87 + Principle}
88 +
89 + Hamilton introduced the dynamical principle upon which it is
90 + possible to base all of mechanics and, indeed, most of classical
91 + physics. Hamilton's Principle may be stated as follow,
92 +
93 + The actual trajectory, along which a dynamical system may move from
94 + one point to another within a specified time, is derived by finding
95 + the path which minimizes the time integral of the difference between
96 + the kinetic, $K$, and potential energies, $U$ \cite{tolman79}.
97 + \begin{equation}
98 + \delta \int_{t_1 }^{t_2 } {(K - U)dt = 0} ,
99 + \label{introEquation:halmitonianPrinciple1}
100 + \end{equation}
101 +
102 + For simple mechanical systems, where the forces acting on the
103 + different part are derivable from a potential and the velocities are
104 + small compared with that of light, the Lagrangian function $L$ can
105 + be define as the difference between the kinetic energy of the system
106 + and its potential energy,
107 + \begin{equation}
108 + L \equiv K - U = L(q_i ,\dot q_i ) ,
109 + \label{introEquation:lagrangianDef}
110 + \end{equation}
111 + then Eq.~\ref{introEquation:halmitonianPrinciple1} becomes
112 + \begin{equation}
113 + \delta \int_{t_1 }^{t_2 } {L dt = 0} ,
114 + \label{introEquation:halmitonianPrinciple2}
115 + \end{equation}
116 +
117 + \subsubsection{\label{introSection:equationOfMotionLagrangian}The
118 + Equations of Motion in Lagrangian Mechanics}
119 +
120 + For a holonomic system of $f$ degrees of freedom, the equations of
121 + motion in the Lagrangian form is
122 + \begin{equation}
123 + \frac{d}{{dt}}\frac{{\partial L}}{{\partial \dot q_i }} -
124 + \frac{{\partial L}}{{\partial q_i }} = 0,{\rm{ }}i = 1, \ldots,f
125 + \label{introEquation:eqMotionLagrangian}
126 + \end{equation}
127 + where $q_{i}$ is generalized coordinate and $\dot{q_{i}}$ is
128 + generalized velocity.
129 +
130 + \subsection{\label{introSection:hamiltonian}Hamiltonian Mechanics}
131 +
132 + Arising from Lagrangian Mechanics, Hamiltonian Mechanics was
133 + introduced by William Rowan Hamilton in 1833 as a re-formulation of
134 + classical mechanics. If the potential energy of a system is
135 + independent of generalized velocities, the generalized momenta can
136 + be defined as
137 + \begin{equation}
138 + p_i = \frac{\partial L}{\partial \dot q_i}
139 + \label{introEquation:generalizedMomenta}
140 + \end{equation}
141 + The Lagrange equations of motion are then expressed by
142 + \begin{equation}
143 + p_i  = \frac{{\partial L}}{{\partial q_i }}
144 + \label{introEquation:generalizedMomentaDot}
145 + \end{equation}
146 +
147 + With the help of the generalized momenta, we may now define a new
148 + quantity $H$ by the equation
149 + \begin{equation}
150 + H = \sum\limits_k {p_k \dot q_k }  - L ,
151 + \label{introEquation:hamiltonianDefByLagrangian}
152 + \end{equation}
153 + where $ \dot q_1  \ldots \dot q_f $ are generalized velocities and
154 + $L$ is the Lagrangian function for the system.
155 +
156 + Differentiating Eq.~\ref{introEquation:hamiltonianDefByLagrangian},
157 + one can obtain
158 + \begin{equation}
159 + dH = \sum\limits_k {\left( {p_k d\dot q_k  + \dot q_k dp_k  -
160 + \frac{{\partial L}}{{\partial q_k }}dq_k  - \frac{{\partial
161 + L}}{{\partial \dot q_k }}d\dot q_k } \right)}  - \frac{{\partial
162 + L}}{{\partial t}}dt \label{introEquation:diffHamiltonian1}
163 + \end{equation}
164 + Making use of  Eq.~\ref{introEquation:generalizedMomenta}, the
165 + second and fourth terms in the parentheses cancel. Therefore,
166 + Eq.~\ref{introEquation:diffHamiltonian1} can be rewritten as
167 + \begin{equation}
168 + dH = \sum\limits_k {\left( {\dot q_k dp_k  - \dot p_k dq_k }
169 + \right)}  - \frac{{\partial L}}{{\partial t}}dt
170 + \label{introEquation:diffHamiltonian2}
171 + \end{equation}
172 + By identifying the coefficients of $dq_k$, $dp_k$ and dt, we can
173 + find
174 + \begin{equation}
175 + \frac{{\partial H}}{{\partial p_k }} = q_k
176 + \label{introEquation:motionHamiltonianCoordinate}
177 + \end{equation}
178 + \begin{equation}
179 + \frac{{\partial H}}{{\partial q_k }} =  - p_k
180 + \label{introEquation:motionHamiltonianMomentum}
181 + \end{equation}
182 + and
183 + \begin{equation}
184 + \frac{{\partial H}}{{\partial t}} =  - \frac{{\partial L}}{{\partial
185 + t}}
186 + \label{introEquation:motionHamiltonianTime}
187 + \end{equation}
188 +
189 + Eq.~\ref{introEquation:motionHamiltonianCoordinate} and
190 + Eq.~\ref{introEquation:motionHamiltonianMomentum} are Hamilton's
191 + equation of motion. Due to their symmetrical formula, they are also
192 + known as the canonical equations of motions \cite{Goldstein01}.
193 +
194 + An important difference between Lagrangian approach and the
195 + Hamiltonian approach is that the Lagrangian is considered to be a
196 + function of the generalized velocities $\dot q_i$ and the
197 + generalized coordinates $q_i$, while the Hamiltonian is considered
198 + to be a function of the generalized momenta $p_i$ and the conjugate
199 + generalized coordinate $q_i$. Hamiltonian Mechanics is more
200 + appropriate for application to statistical mechanics and quantum
201 + mechanics, since it treats the coordinate and its time derivative as
202 + independent variables and it only works with 1st-order differential
203 + equations\cite{Marion90}.
204 +
205 + In Newtonian Mechanics, a system described by conservative forces
206 + conserves the total energy \ref{introEquation:energyConservation}.
207 + It follows that Hamilton's equations of motion conserve the total
208 + Hamiltonian.
209 + \begin{equation}
210 + \frac{{dH}}{{dt}} = \sum\limits_i {\left( {\frac{{\partial
211 + H}}{{\partial q_i }}\dot q_i  + \frac{{\partial H}}{{\partial p_i
212 + }}\dot p_i } \right)}  = \sum\limits_i {\left( {\frac{{\partial
213 + H}}{{\partial q_i }}\frac{{\partial H}}{{\partial p_i }} -
214 + \frac{{\partial H}}{{\partial p_i }}\frac{{\partial H}}{{\partial
215 + q_i }}} \right) = 0} \label{introEquation:conserveHalmitonian}
216 + \end{equation}
217 +
218 + \section{\label{introSection:statisticalMechanics}Statistical
219 + Mechanics}
220 +
221 + The thermodynamic behaviors and properties of Molecular Dynamics
222 + simulation are governed by the principle of Statistical Mechanics.
223 + The following section will give a brief introduction to some of the
224 + Statistical Mechanics concepts and theorem presented in this
225 + dissertation.
226 +
227 + \subsection{\label{introSection:ensemble}Phase Space and Ensemble}
228 +
229 + Mathematically, phase space is the space which represents all
230 + possible states. Each possible state of the system corresponds to
231 + one unique point in the phase space. For mechanical systems, the
232 + phase space usually consists of all possible values of position and
233 + momentum variables. Consider a dynamic system in a cartesian space,
234 + where each of the $6f$ coordinates and momenta is assigned to one of
235 + $6f$ mutually orthogonal axes, the phase space of this system is a
236 + $6f$ dimensional space. A point, $x = (q_1 , \ldots ,q_f ,p_1 ,
237 + \ldots ,p_f )$, with a unique set of values of $6f$ coordinates and
238 + momenta is a phase space vector.
239 +
240 + A microscopic state or microstate of a classical system is
241 + specification of the complete phase space vector of a system at any
242 + instant in time. An ensemble is defined as a collection of systems
243 + sharing one or more macroscopic characteristics but each being in a
244 + unique microstate. The complete ensemble is specified by giving all
245 + systems or microstates consistent with the common macroscopic
246 + characteristics of the ensemble. Although the state of each
247 + individual system in the ensemble could be precisely described at
248 + any instance in time by a suitable phase space vector, when using
249 + ensembles for statistical purposes, there is no need to maintain
250 + distinctions between individual systems, since the numbers of
251 + systems at any time in the different states which correspond to
252 + different regions of the phase space are more interesting. Moreover,
253 + in the point of view of statistical mechanics, one would prefer to
254 + use ensembles containing a large enough population of separate
255 + members so that the numbers of systems in such different states can
256 + be regarded as changing continuously as we traverse different
257 + regions of the phase space. The condition of an ensemble at any time
258 + can be regarded as appropriately specified by the density $\rho$
259 + with which representative points are distributed over the phase
260 + space. The density of distribution for an ensemble with $f$ degrees
261 + of freedom is defined as,
262 + \begin{equation}
263 + \rho  = \rho (q_1 , \ldots ,q_f ,p_1 , \ldots ,p_f ,t).
264 + \label{introEquation:densityDistribution}
265 + \end{equation}
266 + Governed by the principles of mechanics, the phase points change
267 + their value which would change the density at any time at phase
268 + space. Hence, the density of distribution is also to be taken as a
269 + function of the time.
270 +
271 + The number of systems $\delta N$ at time $t$ can be determined by,
272 + \begin{equation}
273 + \delta N = \rho (q,p,t)dq_1  \ldots dq_f dp_1  \ldots dp_f.
274 + \label{introEquation:deltaN}
275 + \end{equation}
276 + Assuming a large enough population of systems are exploited, we can
277 + sufficiently approximate $\delta N$ without introducing
278 + discontinuity when we go from one region in the phase space to
279 + another. By integrating over the whole phase space,
280 + \begin{equation}
281 + N = \int { \ldots \int {\rho (q,p,t)dq_1 } ...dq_f dp_1 } ...dp_f
282 + \label{introEquation:totalNumberSystem}
283 + \end{equation}
284 + gives us an expression for the total number of the systems. Hence,
285 + the probability per unit in the phase space can be obtained by,
286 + \begin{equation}
287 + \frac{{\rho (q,p,t)}}{N} = \frac{{\rho (q,p,t)}}{{\int { \ldots \int
288 + {\rho (q,p,t)dq_1 } ...dq_f dp_1 } ...dp_f }}.
289 + \label{introEquation:unitProbability}
290 + \end{equation}
291 + With the help of Equation(\ref{introEquation:unitProbability}) and
292 + the knowledge of the system, it is possible to calculate the average
293 + value of any desired quantity which depends on the coordinates and
294 + momenta of the system. Even when the dynamics of the real system is
295 + complex, or stochastic, or even discontinuous, the average
296 + properties of the ensemble of possibilities as a whole may still
297 + remain well defined. For a classical system in thermal equilibrium
298 + with its environment, the ensemble average of a mechanical quantity,
299 + $\langle A(q , p) \rangle_t$, takes the form of an integral over the
300 + phase space of the system,
301 + \begin{equation}
302 + \langle  A(q , p) \rangle_t = \frac{{\int { \ldots \int {A(q,p)\rho
303 + (q,p,t)dq_1 } ...dq_f dp_1 } ...dp_f }}{{\int { \ldots \int {\rho
304 + (q,p,t)dq_1 } ...dq_f dp_1 } ...dp_f }}
305 + \label{introEquation:ensembelAverage}
306 + \end{equation}
307 +
308 + There are several different types of ensembles with different
309 + statistical characteristics. As a function of macroscopic
310 + parameters, such as temperature \textit{etc}, partition function can
311 + be used to describe the statistical properties of a system in
312 + thermodynamic equilibrium.
313 +
314 + As an ensemble of systems, each of which is known to be thermally
315 + isolated and conserve energy, Microcanonical ensemble(NVE) has a
316 + partition function like,
317 + \begin{equation}
318 + \Omega (N,V,E) = e^{\beta TS}
319 + \label{introEqaution:NVEPartition}.
320 + \end{equation}
321 + A canonical ensemble(NVT)is an ensemble of systems, each of which
322 + can share its energy with a large heat reservoir. The distribution
323 + of the total energy amongst the possible dynamical states is given
324 + by the partition function,
325 + \begin{equation}
326 + \Omega (N,V,T) = e^{ - \beta A}
327 + \label{introEquation:NVTPartition}
328 + \end{equation}
329 + Here, $A$ is the Helmholtz free energy which is defined as $ A = U -
330 + TS$. Since most experiment are carried out under constant pressure
331 + condition, isothermal-isobaric ensemble(NPT) play a very important
332 + role in molecular simulation. The isothermal-isobaric ensemble allow
333 + the system to exchange energy with a heat bath of temperature $T$
334 + and to change the volume as well. Its partition function is given as
335 + \begin{equation}
336 + \Delta (N,P,T) =  - e^{\beta G}.
337 + \label{introEquation:NPTPartition}
338 + \end{equation}
339 + Here, $G = U - TS + PV$, and $G$ is called Gibbs free energy.
340 +
341 + \subsection{\label{introSection:liouville}Liouville's theorem}
342 +
343 + The Liouville's theorem is the foundation on which statistical
344 + mechanics rests. It describes the time evolution of phase space
345 + distribution function. In order to calculate the rate of change of
346 + $\rho$, we begin from Equation(\ref{introEquation:deltaN}). If we
347 + consider the two faces perpendicular to the $q_1$ axis, which are
348 + located at $q_1$ and $q_1 + \delta q_1$, the number of phase points
349 + leaving the opposite face is given by the expression,
350 + \begin{equation}
351 + \left( {\rho  + \frac{{\partial \rho }}{{\partial q_1 }}\delta q_1 }
352 + \right)\left( {\dot q_1  + \frac{{\partial \dot q_1 }}{{\partial q_1
353 + }}\delta q_1 } \right)\delta q_2  \ldots \delta q_f \delta p_1
354 + \ldots \delta p_f .
355 + \end{equation}
356 + Summing all over the phase space, we obtain
357 + \begin{equation}
358 + \frac{{d(\delta N)}}{{dt}} =  - \sum\limits_{i = 1}^f {\left[ {\rho
359 + \left( {\frac{{\partial \dot q_i }}{{\partial q_i }} +
360 + \frac{{\partial \dot p_i }}{{\partial p_i }}} \right) + \left(
361 + {\frac{{\partial \rho }}{{\partial q_i }}\dot q_i  + \frac{{\partial
362 + \rho }}{{\partial p_i }}\dot p_i } \right)} \right]} \delta q_1
363 + \ldots \delta q_f \delta p_1  \ldots \delta p_f .
364 + \end{equation}
365 + Differentiating the equations of motion in Hamiltonian formalism
366 + (\ref{introEquation:motionHamiltonianCoordinate},
367 + \ref{introEquation:motionHamiltonianMomentum}), we can show,
368 + \begin{equation}
369 + \sum\limits_i {\left( {\frac{{\partial \dot q_i }}{{\partial q_i }}
370 + + \frac{{\partial \dot p_i }}{{\partial p_i }}} \right)}  = 0 ,
371 + \end{equation}
372 + which cancels the first terms of the right hand side. Furthermore,
373 + divining $ \delta q_1  \ldots \delta q_f \delta p_1  \ldots \delta
374 + p_f $ in both sides, we can write out Liouville's theorem in a
375 + simple form,
376 + \begin{equation}
377 + \frac{{\partial \rho }}{{\partial t}} + \sum\limits_{i = 1}^f
378 + {\left( {\frac{{\partial \rho }}{{\partial q_i }}\dot q_i  +
379 + \frac{{\partial \rho }}{{\partial p_i }}\dot p_i } \right)}  = 0 .
380 + \label{introEquation:liouvilleTheorem}
381 + \end{equation}
382 +
383 + Liouville's theorem states that the distribution function is
384 + constant along any trajectory in phase space. In classical
385 + statistical mechanics, since the number of particles in the system
386 + is huge, we may be able to believe the system is stationary,
387 + \begin{equation}
388 + \frac{{\partial \rho }}{{\partial t}} = 0.
389 + \label{introEquation:stationary}
390 + \end{equation}
391 + In such stationary system, the density of distribution $\rho$ can be
392 + connected to the Hamiltonian $H$ through Maxwell-Boltzmann
393 + distribution,
394 + \begin{equation}
395 + \rho  \propto e^{ - \beta H}
396 + \label{introEquation:densityAndHamiltonian}
397 + \end{equation}
398 +
399 + \subsubsection{\label{introSection:phaseSpaceConservation}Conservation of Phase Space}
400 + Lets consider a region in the phase space,
401 + \begin{equation}
402 + \delta v = \int { \ldots \int {dq_1 } ...dq_f dp_1 } ..dp_f .
403 + \end{equation}
404 + If this region is small enough, the density $\rho$ can be regarded
405 + as uniform over the whole phase space. Thus, the number of phase
406 + points inside this region is given by,
407 + \begin{equation}
408 + \delta N = \rho \delta v = \rho \int { \ldots \int {dq_1 } ...dq_f
409 + dp_1 } ..dp_f.
410 + \end{equation}
411 +
412 + \begin{equation}
413 + \frac{{d(\delta N)}}{{dt}} = \frac{{d\rho }}{{dt}}\delta v + \rho
414 + \frac{d}{{dt}}(\delta v) = 0.
415 + \end{equation}
416 + With the help of stationary assumption
417 + (\ref{introEquation:stationary}), we obtain the principle of the
418 + \emph{conservation of extension in phase space},
419 + \begin{equation}
420 + \frac{d}{{dt}}(\delta v) = \frac{d}{{dt}}\int { \ldots \int {dq_1 }
421 + ...dq_f dp_1 } ..dp_f  = 0.
422 + \label{introEquation:volumePreserving}
423 + \end{equation}
424 +
425 + \subsubsection{\label{introSection:liouvilleInOtherForms}Liouville's Theorem in Other Forms}
426 +
427 + Liouville's theorem can be expresses in a variety of different forms
428 + which are convenient within different contexts. For any two function
429 + $F$ and $G$ of the coordinates and momenta of a system, the Poisson
430 + bracket ${F, G}$ is defined as
431 + \begin{equation}
432 + \left\{ {F,G} \right\} = \sum\limits_i {\left( {\frac{{\partial
433 + F}}{{\partial q_i }}\frac{{\partial G}}{{\partial p_i }} -
434 + \frac{{\partial F}}{{\partial p_i }}\frac{{\partial G}}{{\partial
435 + q_i }}} \right)}.
436 + \label{introEquation:poissonBracket}
437 + \end{equation}
438 + Substituting equations of motion in Hamiltonian formalism(
439 + \ref{introEquation:motionHamiltonianCoordinate} ,
440 + \ref{introEquation:motionHamiltonianMomentum} ) into
441 + (\ref{introEquation:liouvilleTheorem}), we can rewrite Liouville's
442 + theorem using Poisson bracket notion,
443 + \begin{equation}
444 + \left( {\frac{{\partial \rho }}{{\partial t}}} \right) =  - \left\{
445 + {\rho ,H} \right\}.
446 + \label{introEquation:liouvilleTheromInPoissin}
447 + \end{equation}
448 + Moreover, the Liouville operator is defined as
449 + \begin{equation}
450 + iL = \sum\limits_{i = 1}^f {\left( {\frac{{\partial H}}{{\partial
451 + p_i }}\frac{\partial }{{\partial q_i }} - \frac{{\partial
452 + H}}{{\partial q_i }}\frac{\partial }{{\partial p_i }}} \right)}
453 + \label{introEquation:liouvilleOperator}
454 + \end{equation}
455 + In terms of Liouville operator, Liouville's equation can also be
456 + expressed as
457 + \begin{equation}
458 + \left( {\frac{{\partial \rho }}{{\partial t}}} \right) =  - iL\rho
459 + \label{introEquation:liouvilleTheoremInOperator}
460 + \end{equation}
461 +
462 + \subsection{\label{introSection:ergodic}The Ergodic Hypothesis}
463 +
464 + Various thermodynamic properties can be calculated from Molecular
465 + Dynamics simulation. By comparing experimental values with the
466 + calculated properties, one can determine the accuracy of the
467 + simulation and the quality of the underlying model. However, both of
468 + experiment and computer simulation are usually performed during a
469 + certain time interval and the measurements are averaged over a
470 + period of them which is different from the average behavior of
471 + many-body system in Statistical Mechanics. Fortunately, Ergodic
472 + Hypothesis is proposed to make a connection between time average and
473 + ensemble average. It states that time average and average over the
474 + statistical ensemble are identical \cite{Frenkel1996, leach01:mm}.
475 + \begin{equation}
476 + \langle A(q , p) \rangle_t = \mathop {\lim }\limits_{t \to \infty }
477 + \frac{1}{t}\int\limits_0^t {A(q(t),p(t))dt = \int\limits_\Gamma
478 + {A(q(t),p(t))} } \rho (q(t), p(t)) dqdp
479 + \end{equation}
480 + where $\langle  A(q , p) \rangle_t$ is an equilibrium value of a
481 + physical quantity and $\rho (p(t), q(t))$ is the equilibrium
482 + distribution function. If an observation is averaged over a
483 + sufficiently long time (longer than relaxation time), all accessible
484 + microstates in phase space are assumed to be equally probed, giving
485 + a properly weighted statistical average. This allows the researcher
486 + freedom of choice when deciding how best to measure a given
487 + observable. In case an ensemble averaged approach sounds most
488 + reasonable, the Monte Carlo techniques\cite{metropolis:1949} can be
489 + utilized. Or if the system lends itself to a time averaging
490 + approach, the Molecular Dynamics techniques in
491 + Sec.~\ref{introSection:molecularDynamics} will be the best
492 + choice\cite{Frenkel1996}.
493 +
494 + \section{\label{introSection:geometricIntegratos}Geometric Integrators}
495 + A variety of numerical integrators were proposed to simulate the
496 + motions. They usually begin with an initial conditionals and move
497 + the objects in the direction governed by the differential equations.
498 + However, most of them ignore the hidden physical law contained
499 + within the equations. Since 1990, geometric integrators, which
500 + preserve various phase-flow invariants such as symplectic structure,
501 + volume and time reversal symmetry, are developed to address this
502 + issue. The velocity verlet method, which happens to be a simple
503 + example of symplectic integrator, continues to gain its popularity
504 + in molecular dynamics community. This fact can be partly explained
505 + by its geometric nature.
506 +
507 + \subsection{\label{introSection:symplecticManifold}Symplectic Manifold}
508 + A \emph{manifold} is an abstract mathematical space. It locally
509 + looks like Euclidean space, but when viewed globally, it may have
510 + more complicate structure. A good example of manifold is the surface
511 + of Earth. It seems to be flat locally, but it is round if viewed as
512 + a whole. A \emph{differentiable manifold} (also known as
513 + \emph{smooth manifold}) is a manifold with an open cover in which
514 + the covering neighborhoods are all smoothly isomorphic to one
515 + another. In other words,it is possible to apply calculus on
516 + \emph{differentiable manifold}. A \emph{symplectic manifold} is
517 + defined as a pair $(M, \omega)$ which consisting of a
518 + \emph{differentiable manifold} $M$ and a close, non-degenerated,
519 + bilinear symplectic form, $\omega$. A symplectic form on a vector
520 + space $V$ is a function $\omega(x, y)$ which satisfies
521 + $\omega(\lambda_1x_1+\lambda_2x_2, y) = \lambda_1\omega(x_1, y)+
522 + \lambda_2\omega(x_2, y)$, $\omega(x, y) = - \omega(y, x)$ and
523 + $\omega(x, x) = 0$. Cross product operation in vector field is an
524 + example of symplectic form.
525 +
526 + One of the motivations to study \emph{symplectic manifold} in
527 + Hamiltonian Mechanics is that a symplectic manifold can represent
528 + all possible configurations of the system and the phase space of the
529 + system can be described by it's cotangent bundle. Every symplectic
530 + manifold is even dimensional. For instance, in Hamilton equations,
531 + coordinate and momentum always appear in pairs.
532 +
533 + Let  $(M,\omega)$ and $(N, \eta)$ be symplectic manifolds. A map
534 + \[
535 + f : M \rightarrow N
536 + \]
537 + is a \emph{symplectomorphism} if it is a \emph{diffeomorphims} and
538 + the \emph{pullback} of $\eta$ under f is equal to $\omega$.
539 + Canonical transformation is an example of symplectomorphism in
540 + classical mechanics.
541 +
542 + \subsection{\label{introSection:ODE}Ordinary Differential Equations}
543 +
544 + For a ordinary differential system defined as
545 + \begin{equation}
546 + \dot x = f(x)
547 + \end{equation}
548 + where $x = x(q,p)^T$, this system is canonical Hamiltonian, if
549 + \begin{equation}
550 + f(r) = J\nabla _x H(r).
551 + \end{equation}
552 + $H = H (q, p)$ is Hamiltonian function and $J$ is the skew-symmetric
553 + matrix
554 + \begin{equation}
555 + J = \left( {\begin{array}{*{20}c}
556 +   0 & I  \\
557 +   { - I} & 0  \\
558 + \end{array}} \right)
559 + \label{introEquation:canonicalMatrix}
560 + \end{equation}
561 + where $I$ is an identity matrix. Using this notation, Hamiltonian
562 + system can be rewritten as,
563 + \begin{equation}
564 + \frac{d}{{dt}}x = J\nabla _x H(x)
565 + \label{introEquation:compactHamiltonian}
566 + \end{equation}In this case, $f$ is
567 + called a \emph{Hamiltonian vector field}.
568 +
569 + Another generalization of Hamiltonian dynamics is Poisson Dynamics,
570 + \begin{equation}
571 + \dot x = J(x)\nabla _x H \label{introEquation:poissonHamiltonian}
572 + \end{equation}
573 + The most obvious change being that matrix $J$ now depends on $x$.
574 + The free rigid body is an example of Poisson system (actually a
575 + Lie-Poisson system) with Hamiltonian function of angular kinetic
576 + energy.
577 + \begin{equation}
578 + J(\pi ) = \left( {\begin{array}{*{20}c}
579 +   0 & {\pi _3 } & { - \pi _2 }  \\
580 +   { - \pi _3 } & 0 & {\pi _1 }  \\
581 +   {\pi _2 } & { - \pi _1 } & 0  \\
582 + \end{array}} \right)
583 + \end{equation}
584 +
585 + \begin{equation}
586 + H = \frac{1}{2}\left( {\frac{{\pi _1^2 }}{{I_1 }} + \frac{{\pi _2^2
587 + }}{{I_2 }} + \frac{{\pi _3^2 }}{{I_3 }}} \right)
588 + \end{equation}
589 +
590 + \subsection{\label{introSection:exactFlow}Exact Flow}
591 +
592 + Let $x(t)$ be the exact solution of the ODE system,
593 + \begin{equation}
594 + \frac{{dx}}{{dt}} = f(x) \label{introEquation:ODE}
595 + \end{equation}
596 + The exact flow(solution) $\varphi_\tau$ is defined by
597 + \[
598 + x(t+\tau) =\varphi_\tau(x(t))
599 + \]
600 + where $\tau$ is a fixed time step and $\varphi$ is a map from phase
601 + space to itself. The flow has the continuous group property,
602 + \begin{equation}
603 + \varphi _{\tau _1 }  \circ \varphi _{\tau _2 }  = \varphi _{\tau _1
604 + + \tau _2 } .
605 + \end{equation}
606 + In particular,
607 + \begin{equation}
608 + \varphi _\tau   \circ \varphi _{ - \tau }  = I
609 + \end{equation}
610 + Therefore, the exact flow is self-adjoint,
611 + \begin{equation}
612 + \varphi _\tau   = \varphi _{ - \tau }^{ - 1}.
613 + \end{equation}
614 + The exact flow can also be written in terms of the of an operator,
615 + \begin{equation}
616 + \varphi _\tau  (x) = e^{\tau \sum\limits_i {f_i (x)\frac{\partial
617 + }{{\partial x_i }}} } (x) \equiv \exp (\tau f)(x).
618 + \label{introEquation:exponentialOperator}
619 + \end{equation}
620 +
621 + In most cases, it is not easy to find the exact flow $\varphi_\tau$.
622 + Instead, we use a approximate map, $\psi_\tau$, which is usually
623 + called integrator. The order of an integrator $\psi_\tau$ is $p$, if
624 + the Taylor series of $\psi_\tau$ agree to order $p$,
625 + \begin{equation}
626 + \psi_tau(x) = x + \tau f(x) + O(\tau^{p+1})
627 + \end{equation}
628 +
629 + \subsection{\label{introSection:geometricProperties}Geometric Properties}
630 +
631 + The hidden geometric properties of ODE and its flow play important
632 + roles in numerical studies. Many of them can be found in systems
633 + which occur naturally in applications.
634 +
635 + Let $\varphi$ be the flow of Hamiltonian vector field, $\varphi$ is
636 + a \emph{symplectic} flow if it satisfies,
637 + \begin{equation}
638 + {\varphi '}^T J \varphi ' = J.
639 + \end{equation}
640 + According to Liouville's theorem, the symplectic volume is invariant
641 + under a Hamiltonian flow, which is the basis for classical
642 + statistical mechanics. Furthermore, the flow of a Hamiltonian vector
643 + field on a symplectic manifold can be shown to be a
644 + symplectomorphism. As to the Poisson system,
645 + \begin{equation}
646 + {\varphi '}^T J \varphi ' = J \circ \varphi
647 + \end{equation}
648 + is the property must be preserved by the integrator.
649 +
650 + It is possible to construct a \emph{volume-preserving} flow for a
651 + source free($ \nabla \cdot f = 0 $) ODE, if the flow satisfies $
652 + \det d\varphi  = 1$. One can show easily that a symplectic flow will
653 + be volume-preserving.
654 +
655 + Changing the variables $y = h(x)$ in a ODE\ref{introEquation:ODE}
656 + will result in a new system,
657 + \[
658 + \dot y = \tilde f(y) = ((dh \cdot f)h^{ - 1} )(y).
659 + \]
660 + The vector filed $f$ has reversing symmetry $h$ if $f = - \tilde f$.
661 + In other words, the flow of this vector field is reversible if and
662 + only if $ h \circ \varphi ^{ - 1}  = \varphi  \circ h $.
663 +
664 + A \emph{first integral}, or conserved quantity of a general
665 + differential function is a function $ G:R^{2d}  \to R^d $ which is
666 + constant for all solutions of the ODE $\frac{{dx}}{{dt}} = f(x)$ ,
667 + \[
668 + \frac{{dG(x(t))}}{{dt}} = 0.
669 + \]
670 + Using chain rule, one may obtain,
671 + \[
672 + \sum\limits_i {\frac{{dG}}{{dx_i }}} f_i (x) = f \bullet \nabla G,
673 + \]
674 + which is the condition for conserving \emph{first integral}. For a
675 + canonical Hamiltonian system, the time evolution of an arbitrary
676 + smooth function $G$ is given by,
677 + \begin{equation}
678 + \begin{array}{c}
679 + \frac{{dG(x(t))}}{{dt}} = [\nabla _x G(x(t))]^T \dot x(t) \\
680 +  = [\nabla _x G(x(t))]^T J\nabla _x H(x(t)). \\
681 + \end{array}
682 + \label{introEquation:firstIntegral1}
683 + \end{equation}
684 + Using poisson bracket notion, Equation
685 + \ref{introEquation:firstIntegral1} can be rewritten as
686 + \[
687 + \frac{d}{{dt}}G(x(t)) = \left\{ {G,H} \right\}(x(t)).
688 + \]
689 + Therefore, the sufficient condition for $G$ to be the \emph{first
690 + integral} of a Hamiltonian system is
691 + \[
692 + \left\{ {G,H} \right\} = 0.
693 + \]
694 + As well known, the Hamiltonian (or energy) H of a Hamiltonian system
695 + is a \emph{first integral}, which is due to the fact $\{ H,H\}  =
696 + 0$.
697 +
698 +
699 + When designing any numerical methods, one should always try to
700 + preserve the structural properties of the original ODE and its flow.
701 +
702 + \subsection{\label{introSection:constructionSymplectic}Construction of Symplectic Methods}
703 + A lot of well established and very effective numerical methods have
704 + been successful precisely because of their symplecticities even
705 + though this fact was not recognized when they were first
706 + constructed. The most famous example is leapfrog methods in
707 + molecular dynamics. In general, symplectic integrators can be
708 + constructed using one of four different methods.
709 + \begin{enumerate}
710 + \item Generating functions
711 + \item Variational methods
712 + \item Runge-Kutta methods
713 + \item Splitting methods
714 + \end{enumerate}
715 +
716 + Generating function tends to lead to methods which are cumbersome
717 + and difficult to use. In dissipative systems, variational methods
718 + can capture the decay of energy accurately. Since their
719 + geometrically unstable nature against non-Hamiltonian perturbations,
720 + ordinary implicit Runge-Kutta methods are not suitable for
721 + Hamiltonian system. Recently, various high-order explicit
722 + Runge--Kutta methods have been developed to overcome this
723 + instability. However, due to computational penalty involved in
724 + implementing the Runge-Kutta methods, they do not attract too much
725 + attention from Molecular Dynamics community. Instead, splitting have
726 + been widely accepted since they exploit natural decompositions of
727 + the system\cite{Tuckerman92}.
728 +
729 + \subsubsection{\label{introSection:splittingMethod}Splitting Method}
730 +
731 + The main idea behind splitting methods is to decompose the discrete
732 + $\varphi_h$ as a composition of simpler flows,
733 + \begin{equation}
734 + \varphi _h  = \varphi _{h_1 }  \circ \varphi _{h_2 }  \ldots  \circ
735 + \varphi _{h_n }
736 + \label{introEquation:FlowDecomposition}
737 + \end{equation}
738 + where each of the sub-flow is chosen such that each represent a
739 + simpler integration of the system.
740 +
741 + Suppose that a Hamiltonian system takes the form,
742 + \[
743 + H = H_1 + H_2.
744 + \]
745 + Here, $H_1$ and $H_2$ may represent different physical processes of
746 + the system. For instance, they may relate to kinetic and potential
747 + energy respectively, which is a natural decomposition of the
748 + problem. If $H_1$ and $H_2$ can be integrated using exact flows
749 + $\varphi_1(t)$ and $\varphi_2(t)$, respectively, a simple first
750 + order is then given by the Lie-Trotter formula
751 + \begin{equation}
752 + \varphi _h  = \varphi _{1,h}  \circ \varphi _{2,h},
753 + \label{introEquation:firstOrderSplitting}
754 + \end{equation}
755 + where $\varphi _h$ is the result of applying the corresponding
756 + continuous $\varphi _i$ over a time $h$. By definition, as
757 + $\varphi_i(t)$ is the exact solution of a Hamiltonian system, it
758 + must follow that each operator $\varphi_i(t)$ is a symplectic map.
759 + It is easy to show that any composition of symplectic flows yields a
760 + symplectic map,
761 + \begin{equation}
762 + (\varphi '\phi ')^T J\varphi '\phi ' = \phi '^T \varphi '^T J\varphi
763 + '\phi ' = \phi '^T J\phi ' = J,
764 + \label{introEquation:SymplecticFlowComposition}
765 + \end{equation}
766 + where $\phi$ and $\psi$ both are symplectic maps. Thus operator
767 + splitting in this context automatically generates a symplectic map.
768 +
769 + The Lie-Trotter splitting(\ref{introEquation:firstOrderSplitting})
770 + introduces local errors proportional to $h^2$, while Strang
771 + splitting gives a second-order decomposition,
772 + \begin{equation}
773 + \varphi _h  = \varphi _{1,h/2}  \circ \varphi _{2,h}  \circ \varphi
774 + _{1,h/2} ,
775 + \label{introEqaution:secondOrderSplitting}
776 + \end{equation}
777 + which has a local error proportional to $h^3$. Sprang splitting's
778 + popularity in molecular simulation community attribute to its
779 + symmetric property,
780 + \begin{equation}
781 + \varphi _h^{ - 1} = \varphi _{ - h}.
782 + \label{introEquation:timeReversible}
783 + \end{equation}
784 +
785 + \subsubsection{\label{introSection:exampleSplittingMethod}Example of Splitting Method}
786 + The classical equation for a system consisting of interacting
787 + particles can be written in Hamiltonian form,
788 + \[
789 + H = T + V
790 + \]
791 + where $T$ is the kinetic energy and $V$ is the potential energy.
792 + Setting $H_1 = T, H_2 = V$ and applying Strang splitting, one
793 + obtains the following:
794 + \begin{align}
795 + q(\Delta t) &= q(0) + \dot{q}(0)\Delta t +
796 +    \frac{F[q(0)]}{m}\frac{\Delta t^2}{2}, %
797 + \label{introEquation:Lp10a} \\%
798 + %
799 + \dot{q}(\Delta t) &= \dot{q}(0) + \frac{\Delta t}{2m}
800 +    \biggl [F[q(0)] + F[q(\Delta t)] \biggr]. %
801 + \label{introEquation:Lp10b}
802 + \end{align}
803 + where $F(t)$ is the force at time $t$. This integration scheme is
804 + known as \emph{velocity verlet} which is
805 + symplectic(\ref{introEquation:SymplecticFlowComposition}),
806 + time-reversible(\ref{introEquation:timeReversible}) and
807 + volume-preserving (\ref{introEquation:volumePreserving}). These
808 + geometric properties attribute to its long-time stability and its
809 + popularity in the community. However, the most commonly used
810 + velocity verlet integration scheme is written as below,
811 + \begin{align}
812 + \dot{q}\biggl (\frac{\Delta t}{2}\biggr ) &=
813 +    \dot{q}(0) + \frac{\Delta t}{2m}\, F[q(0)], \label{introEquation:Lp9a}\\%
814 + %
815 + q(\Delta t) &= q(0) + \Delta t\, \dot{q}\biggl (\frac{\Delta t}{2}\biggr ),%
816 +    \label{introEquation:Lp9b}\\%
817 + %
818 + \dot{q}(\Delta t) &= \dot{q}\biggl (\frac{\Delta t}{2}\biggr ) +
819 +    \frac{\Delta t}{2m}\, F[q(0)]. \label{introEquation:Lp9c}
820 + \end{align}
821 + From the preceding splitting, one can see that the integration of
822 + the equations of motion would follow:
823 + \begin{enumerate}
824 + \item calculate the velocities at the half step, $\frac{\Delta t}{2}$, from the forces calculated at the initial position.
825 +
826 + \item Use the half step velocities to move positions one whole step, $\Delta t$.
827 +
828 + \item Evaluate the forces at the new positions, $\mathbf{r}(\Delta t)$, and use the new forces to complete the velocity move.
829 +
830 + \item Repeat from step 1 with the new position, velocities, and forces assuming the roles of the initial values.
831 + \end{enumerate}
832 +
833 + Simply switching the order of splitting and composing, a new
834 + integrator, the \emph{position verlet} integrator, can be generated,
835 + \begin{align}
836 + \dot q(\Delta t) &= \dot q(0) + \Delta tF(q(0))\left[ {q(0) +
837 + \frac{{\Delta t}}{{2m}}\dot q(0)} \right], %
838 + \label{introEquation:positionVerlet1} \\%
839 + %
840 + q(\Delta t) &= q(0) + \frac{{\Delta t}}{2}\left[ {\dot q(0) + \dot
841 + q(\Delta t)} \right]. %
842 + \label{introEquation:positionVerlet1}
843 + \end{align}
844 +
845 + \subsubsection{\label{introSection:errorAnalysis}Error Analysis and Higher Order Methods}
846 +
847 + Baker-Campbell-Hausdorff formula can be used to determine the local
848 + error of splitting method in terms of commutator of the
849 + operators(\ref{introEquation:exponentialOperator}) associated with
850 + the sub-flow. For operators $hX$ and $hY$ which are associate to
851 + $\varphi_1(t)$ and $\varphi_2(t$ respectively , we have
852 + \begin{equation}
853 + \exp (hX + hY) = \exp (hZ)
854 + \end{equation}
855 + where
856 + \begin{equation}
857 + hZ = hX + hY + \frac{{h^2 }}{2}[X,Y] + \frac{{h^3 }}{2}\left(
858 + {[X,[X,Y]] + [Y,[Y,X]]} \right) +  \ldots .
859 + \end{equation}
860 + Here, $[X,Y]$ is the commutators of operator $X$ and $Y$ given by
861 + \[
862 + [X,Y] = XY - YX .
863 + \]
864 + Applying Baker-Campbell-Hausdorff formula to Sprang splitting, we
865 + can obtain
866 + \begin{eqnarray*}
867 + \exp (h X/2)\exp (h Y)\exp (h X/2) & = & \exp (h X + h Y + h^2
868 + [X,Y]/4 + h^2 [Y,X]/4 \\ & & \mbox{} + h^2 [X,X]/8 + h^2 [Y,Y]/8 \\
869 + & & \mbox{} + h^3 [Y,[Y,X]]/12 - h^3 [X,[X,Y]]/24 & & \mbox{} +
870 + \ldots )
871 + \end{eqnarray*}
872 + Since \[ [X,Y] + [Y,X] = 0\] and \[ [X,X] = 0\], the dominant local
873 + error of Spring splitting is proportional to $h^3$. The same
874 + procedure can be applied to general splitting,  of the form
875 + \begin{equation}
876 + \varphi _{b_m h}^2  \circ \varphi _{a_m h}^1  \circ \varphi _{b_{m -
877 + 1} h}^2  \circ  \ldots  \circ \varphi _{a_1 h}^1 .
878 + \end{equation}
879 + Careful choice of coefficient $a_1 ,\ldot , b_m$ will lead to higher
880 + order method. Yoshida proposed an elegant way to compose higher
881 + order methods based on symmetric splitting. Given a symmetric second
882 + order base method $ \varphi _h^{(2)} $, a fourth-order symmetric
883 + method can be constructed by composing,
884 + \[
885 + \varphi _h^{(4)}  = \varphi _{\alpha h}^{(2)}  \circ \varphi _{\beta
886 + h}^{(2)}  \circ \varphi _{\alpha h}^{(2)}
887 + \]
888 + where $ \alpha  =  - \frac{{2^{1/3} }}{{2 - 2^{1/3} }}$ and $ \beta
889 + = \frac{{2^{1/3} }}{{2 - 2^{1/3} }}$. Moreover, a symmetric
890 + integrator $ \varphi _h^{(2n + 2)}$ can be composed by
891 + \begin{equation}
892 + \varphi _h^{(2n + 2)}  = \varphi _{\alpha h}^{(2n)}  \circ \varphi
893 + _{\beta h}^{(2n)}  \circ \varphi _{\alpha h}^{(2n)}
894 + \end{equation}
895 + , if the weights are chosen as
896 + \[
897 + \alpha  =  - \frac{{2^{1/(2n + 1)} }}{{2 - 2^{1/(2n + 1)} }},\beta =
898 + \frac{{2^{1/(2n + 1)} }}{{2 - 2^{1/(2n + 1)} }} .
899 + \]
900 +
901   \section{\label{introSection:molecularDynamics}Molecular Dynamics}
902  
903 + As a special discipline of molecular modeling, Molecular dynamics
904 + has proven to be a powerful tool for studying the functions of
905 + biological systems, providing structural, thermodynamic and
906 + dynamical information.
907 +
908 + \subsection{\label{introSec:mdInit}Initialization}
909 +
910 + \subsection{\label{introSec:forceEvaluation}Force Evaluation}
911 +
912 + \subsection{\label{introSection:mdIntegration} Integration of the Equations of Motion}
913 +
914 + \section{\label{introSection:rigidBody}Dynamics of Rigid Bodies}
915 +
916 + Rigid bodies are frequently involved in the modeling of different
917 + areas, from engineering, physics, to chemistry. For example,
918 + missiles and vehicle are usually modeled by rigid bodies.  The
919 + movement of the objects in 3D gaming engine or other physics
920 + simulator is governed by the rigid body dynamics. In molecular
921 + simulation, rigid body is used to simplify the model in
922 + protein-protein docking study{\cite{Gray03}}.
923 +
924 + It is very important to develop stable and efficient methods to
925 + integrate the equations of motion of orientational degrees of
926 + freedom. Euler angles are the nature choice to describe the
927 + rotational degrees of freedom. However, due to its singularity, the
928 + numerical integration of corresponding equations of motion is very
929 + inefficient and inaccurate. Although an alternative integrator using
930 + different sets of Euler angles can overcome this difficulty\cite{},
931 + the computational penalty and the lost of angular momentum
932 + conservation still remain. A singularity free representation
933 + utilizing quaternions was developed by Evans in 1977. Unfortunately,
934 + this approach suffer from the nonseparable Hamiltonian resulted from
935 + quaternion representation, which prevents the symplectic algorithm
936 + to be utilized. Another different approach is to apply holonomic
937 + constraints to the atoms belonging to the rigid body. Each atom
938 + moves independently under the normal forces deriving from potential
939 + energy and constraint forces which are used to guarantee the
940 + rigidness. However, due to their iterative nature, SHAKE and Rattle
941 + algorithm converge very slowly when the number of constraint
942 + increases.
943 +
944 + The break through in geometric literature suggests that, in order to
945 + develop a long-term integration scheme, one should preserve the
946 + symplectic structure of the flow. Introducing conjugate momentum to
947 + rotation matrix $A$ and re-formulating Hamiltonian's equation, a
948 + symplectic integrator, RSHAKE, was proposed to evolve the
949 + Hamiltonian system in a constraint manifold by iteratively
950 + satisfying the orthogonality constraint $A_t A = 1$. An alternative
951 + method using quaternion representation was developed by Omelyan.
952 + However, both of these methods are iterative and inefficient. In
953 + this section, we will present a symplectic Lie-Poisson integrator
954 + for rigid body developed by Dullweber and his coworkers\cite{}.
955 +
956 + \subsection{\label{introSection:lieAlgebra}Lie Algebra}
957 +
958 + \subsection{\label{introSection:DLMMotionEquation}The Euler Equations of Rigid Body Motion}
959 +
960 + \subsection{\label{introSection:otherRBMotionEquation}Other Formulations for Rigid Body Motion}
961 +
962 + \section{\label{introSection:correlationFunctions}Correlation Functions}
963 +
964   \section{\label{introSection:langevinDynamics}Langevin Dynamics}
965  
966 + \subsection{\label{introSection:LDIntroduction}Introduction and application of Langevin Dynamics}
967 +
968 + \subsection{\label{introSection:generalizedLangevinDynamics}Generalized Langevin Dynamics}
969 +
970 + \begin{equation}
971 + H = \frac{{p^2 }}{{2m}} + U(x) + H_B  + \Delta U(x,x_1 , \ldots x_N)
972 + \label{introEquation:bathGLE}
973 + \end{equation}
974 + where $H_B$ is harmonic bath Hamiltonian,
975 + \[
976 + H_B  =\sum\limits_{\alpha  = 1}^N {\left\{ {\frac{{p_\alpha ^2
977 + }}{{2m_\alpha  }} + \frac{1}{2}m_\alpha  w_\alpha ^2 } \right\}}
978 + \]
979 + and $\Delta U$ is bilinear system-bath coupling,
980 + \[
981 + \Delta U =  - \sum\limits_{\alpha  = 1}^N {g_\alpha  x_\alpha  x}
982 + \]
983 + Completing the square,
984 + \[
985 + H_B  + \Delta U = \sum\limits_{\alpha  = 1}^N {\left\{
986 + {\frac{{p_\alpha ^2 }}{{2m_\alpha  }} + \frac{1}{2}m_\alpha
987 + w_\alpha ^2 \left( {x_\alpha   - \frac{{g_\alpha  }}{{m_\alpha
988 + w_\alpha ^2 }}x} \right)^2 } \right\}}  - \sum\limits_{\alpha  =
989 + 1}^N {\frac{{g_\alpha ^2 }}{{2m_\alpha  w_\alpha ^2 }}} x^2
990 + \]
991 + and putting it back into Eq.~\ref{introEquation:bathGLE},
992 + \[
993 + H = \frac{{p^2 }}{{2m}} + W(x) + \sum\limits_{\alpha  = 1}^N
994 + {\left\{ {\frac{{p_\alpha ^2 }}{{2m_\alpha  }} + \frac{1}{2}m_\alpha
995 + w_\alpha ^2 \left( {x_\alpha   - \frac{{g_\alpha  }}{{m_\alpha
996 + w_\alpha ^2 }}x} \right)^2 } \right\}}
997 + \]
998 + where
999 + \[
1000 + W(x) = U(x) - \sum\limits_{\alpha  = 1}^N {\frac{{g_\alpha ^2
1001 + }}{{2m_\alpha  w_\alpha ^2 }}} x^2
1002 + \]
1003 + Since the first two terms of the new Hamiltonian depend only on the
1004 + system coordinates, we can get the equations of motion for
1005 + Generalized Langevin Dynamics by Hamilton's equations
1006 + \ref{introEquation:motionHamiltonianCoordinate,
1007 + introEquation:motionHamiltonianMomentum},
1008 + \begin{align}
1009 + \dot p &=  - \frac{{\partial H}}{{\partial x}}
1010 +       &= m\ddot x
1011 +       &= - \frac{{\partial W(x)}}{{\partial x}} - \sum\limits_{\alpha  = 1}^N {g_\alpha  \left( {x_\alpha   - \frac{{g_\alpha  }}{{m_\alpha  w_\alpha ^2 }}x} \right)}
1012 + \label{introEquation:Lp5}
1013 + \end{align}
1014 + , and
1015 + \begin{align}
1016 + \dot p_\alpha   &=  - \frac{{\partial H}}{{\partial x_\alpha  }}
1017 +                &= m\ddot x_\alpha
1018 +                &= \- m_\alpha  w_\alpha ^2 \left( {x_\alpha   - \frac{{g_\alpha}}{{m_\alpha  w_\alpha ^2 }}x} \right)
1019 + \end{align}
1020 +
1021 + \subsection{\label{introSection:laplaceTransform}The Laplace Transform}
1022 +
1023 + \[
1024 + L(x) = \int_0^\infty  {x(t)e^{ - pt} dt}
1025 + \]
1026 +
1027 + \[
1028 + L(x + y) = L(x) + L(y)
1029 + \]
1030 +
1031 + \[
1032 + L(ax) = aL(x)
1033 + \]
1034 +
1035 + \[
1036 + L(\dot x) = pL(x) - px(0)
1037 + \]
1038 +
1039 + \[
1040 + L(\ddot x) = p^2 L(x) - px(0) - \dot x(0)
1041 + \]
1042 +
1043 + \[
1044 + L\left( {\int_0^t {g(t - \tau )h(\tau )d\tau } } \right) = G(p)H(p)
1045 + \]
1046 +
1047 + Some relatively important transformation,
1048 + \[
1049 + L(\cos at) = \frac{p}{{p^2  + a^2 }}
1050 + \]
1051 +
1052 + \[
1053 + L(\sin at) = \frac{a}{{p^2  + a^2 }}
1054 + \]
1055 +
1056 + \[
1057 + L(1) = \frac{1}{p}
1058 + \]
1059 +
1060 + First, the bath coordinates,
1061 + \[
1062 + p^2 L(x_\alpha  ) - px_\alpha  (0) - \dot x_\alpha  (0) =  - \omega
1063 + _\alpha ^2 L(x_\alpha  ) + \frac{{g_\alpha  }}{{\omega _\alpha
1064 + }}L(x)
1065 + \]
1066 + \[
1067 + L(x_\alpha  ) = \frac{{\frac{{g_\alpha  }}{{\omega _\alpha  }}L(x) +
1068 + px_\alpha  (0) + \dot x_\alpha  (0)}}{{p^2  + \omega _\alpha ^2 }}
1069 + \]
1070 + Then, the system coordinates,
1071 + \begin{align}
1072 + mL(\ddot x) &=  - \frac{1}{p}\frac{{\partial W(x)}}{{\partial x}} -
1073 + \sum\limits_{\alpha  = 1}^N {\left\{ {\frac{{\frac{{g_\alpha
1074 + }}{{\omega _\alpha  }}L(x) + px_\alpha  (0) + \dot x_\alpha
1075 + (0)}}{{p^2  + \omega _\alpha ^2 }} - \frac{{g_\alpha ^2 }}{{m_\alpha
1076 + }}\omega _\alpha ^2 L(x)} \right\}}
1077 + %
1078 + &= - \frac{1}{p}\frac{{\partial W(x)}}{{\partial x}} -
1079 + \sum\limits_{\alpha  = 1}^N {\left\{ { - \frac{{g_\alpha ^2 }}{{m_\alpha  \omega _\alpha ^2 }}\frac{p}{{p^2  + \omega _\alpha ^2 }}pL(x)
1080 + - \frac{p}{{p^2  + \omega _\alpha ^2 }}g_\alpha  x_\alpha  (0)
1081 + - \frac{1}{{p^2  + \omega _\alpha ^2 }}g_\alpha  \dot x_\alpha  (0)} \right\}}
1082 + \end{align}
1083 + Then, the inverse transform,
1084 +
1085 + \begin{align}
1086 + m\ddot x &=  - \frac{{\partial W(x)}}{{\partial x}} -
1087 + \sum\limits_{\alpha  = 1}^N {\left\{ {\left( { - \frac{{g_\alpha ^2
1088 + }}{{m_\alpha  \omega _\alpha ^2 }}} \right)\int_0^t {\cos (\omega
1089 + _\alpha  t)\dot x(t - \tau )d\tau  - \left[ {g_\alpha  x_\alpha  (0)
1090 + - \frac{{g_\alpha  }}{{m_\alpha  \omega _\alpha  }}} \right]\cos
1091 + (\omega _\alpha  t) - \frac{{g_\alpha  \dot x_\alpha  (0)}}{{\omega
1092 + _\alpha  }}\sin (\omega _\alpha  t)} } \right\}}
1093 + %
1094 + &= - \frac{{\partial W(x)}}{{\partial x}} - \int_0^t
1095 + {\sum\limits_{\alpha  = 1}^N {\left( { - \frac{{g_\alpha ^2
1096 + }}{{m_\alpha  \omega _\alpha ^2 }}} \right)\cos (\omega _\alpha
1097 + t)\dot x(t - \tau )d} \tau }  + \sum\limits_{\alpha  = 1}^N {\left\{
1098 + {\left[ {g_\alpha  x_\alpha  (0) - \frac{{g_\alpha  }}{{m_\alpha
1099 + \omega _\alpha  }}} \right]\cos (\omega _\alpha  t) +
1100 + \frac{{g_\alpha  \dot x_\alpha  (0)}}{{\omega _\alpha  }}\sin
1101 + (\omega _\alpha  t)} \right\}}
1102 + \end{align}
1103 +
1104 + \begin{equation}
1105 + m\ddot x =  - \frac{{\partial W}}{{\partial x}} - \int_0^t {\xi
1106 + (t)\dot x(t - \tau )d\tau }  + R(t)
1107 + \label{introEuqation:GeneralizedLangevinDynamics}
1108 + \end{equation}
1109 + %where $ {\xi (t)}$ is friction kernel, $R(t)$ is random force and
1110 + %$W$ is the potential of mean force. $W(x) =  - kT\ln p(x)$
1111 + \[
1112 + \xi (t) = \sum\limits_{\alpha  = 1}^N {\left( { - \frac{{g_\alpha ^2
1113 + }}{{m_\alpha  \omega _\alpha ^2 }}} \right)\cos (\omega _\alpha  t)}
1114 + \]
1115 + For an infinite harmonic bath, we can use the spectral density and
1116 + an integral over frequencies.
1117 +
1118 + \[
1119 + R(t) = \sum\limits_{\alpha  = 1}^N {\left( {g_\alpha  x_\alpha  (0)
1120 + - \frac{{g_\alpha ^2 }}{{m_\alpha  \omega _\alpha ^2 }}x(0)}
1121 + \right)\cos (\omega _\alpha  t)}  + \frac{{\dot x_\alpha
1122 + (0)}}{{\omega _\alpha  }}\sin (\omega _\alpha  t)
1123 + \]
1124 + The random forces depend only on initial conditions.
1125 +
1126 + \subsubsection{\label{introSection:secondFluctuationDissipation}The Second Fluctuation Dissipation Theorem}
1127 + So we can define a new set of coordinates,
1128 + \[
1129 + q_\alpha  (t) = x_\alpha  (t) - \frac{1}{{m_\alpha  \omega _\alpha
1130 + ^2 }}x(0)
1131 + \]
1132 + This makes
1133 + \[
1134 + R(t) = \sum\limits_{\alpha  = 1}^N {g_\alpha  q_\alpha  (t)}
1135 + \]
1136 + And since the $q$ coordinates are harmonic oscillators,
1137 + \[
1138 + \begin{array}{l}
1139 + \left\langle {q_\alpha  (t)q_\alpha  (0)} \right\rangle  = \left\langle {q_\alpha ^2 (0)} \right\rangle \cos (\omega _\alpha  t) \\
1140 + \left\langle {q_\alpha  (t)q_\beta  (0)} \right\rangle  = \delta _{\alpha \beta } \left\langle {q_\alpha  (t)q_\alpha  (0)} \right\rangle  \\
1141 + \end{array}
1142 + \]
1143 +
1144 + \begin{align}
1145 + \left\langle {R(t)R(0)} \right\rangle  &= \sum\limits_\alpha
1146 + {\sum\limits_\beta  {g_\alpha  g_\beta  \left\langle {q_\alpha
1147 + (t)q_\beta  (0)} \right\rangle } }
1148 + %
1149 + &= \sum\limits_\alpha  {g_\alpha ^2 \left\langle {q_\alpha ^2 (0)}
1150 + \right\rangle \cos (\omega _\alpha  t)}
1151 + %
1152 + &= kT\xi (t)
1153 + \end{align}
1154 +
1155 + \begin{equation}
1156 + \xi (t) = \left\langle {R(t)R(0)} \right\rangle
1157 + \label{introEquation:secondFluctuationDissipation}
1158 + \end{equation}
1159 +
1160   \section{\label{introSection:hydroynamics}Hydrodynamics}
1161  
1162 < \section{\label{introSection:correlationFunctions}Correlation Functions}
1162 > \subsection{\label{introSection:frictionTensor} Friction Tensor}
1163 > \subsection{\label{introSection:analyticalApproach}Analytical
1164 > Approach}
1165 >
1166 > \subsection{\label{introSection:approximationApproach}Approximation
1167 > Approach}
1168 >
1169 > \subsection{\label{introSection:centersRigidBody}Centers of Rigid
1170 > Body}

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines