ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/tengDissertation/Introduction.tex
(Generate patch)

Comparing trunk/tengDissertation/Introduction.tex (file contents):
Revision 2685 by tim, Mon Apr 3 18:07:54 2006 UTC vs.
Revision 2716 by tim, Mon Apr 17 20:39:26 2006 UTC

# Line 1 | Line 1
1   \chapter{\label{chapt:introduction}INTRODUCTION AND THEORETICAL BACKGROUND}
2  
3 < \section{\label{introSection:classicalMechanics}Classical Mechanics}
3 > \section{\label{introSection:classicalMechanics}Classical
4 > Mechanics}
5  
6 < \section{\label{introSection:rigidBody}Dynamics of Rigid Bodies}
6 > Closely related to Classical Mechanics, Molecular Dynamics
7 > simulations are carried out by integrating the equations of motion
8 > for a given system of particles. There are three fundamental ideas
9 > behind classical mechanics. Firstly, One can determine the state of
10 > a mechanical system at any time of interest; Secondly, all the
11 > mechanical properties of the system at that time can be determined
12 > by combining the knowledge of the properties of the system with the
13 > specification of this state; Finally, the specification of the state
14 > when further combine with the laws of mechanics will also be
15 > sufficient to predict the future behavior of the system.
16  
17 < \section{\label{introSection:statisticalMechanics}Statistical Mechanics}
17 > \subsection{\label{introSection:newtonian}Newtonian Mechanics}
18 > The discovery of Newton's three laws of mechanics which govern the
19 > motion of particles is the foundation of the classical mechanics.
20 > Newton¡¯s first law defines a class of inertial frames. Inertial
21 > frames are reference frames where a particle not interacting with
22 > other bodies will move with constant speed in the same direction.
23 > With respect to inertial frames Newton¡¯s second law has the form
24 > \begin{equation}
25 > F = \frac {dp}{dt} = \frac {mv}{dt}
26 > \label{introEquation:newtonSecondLaw}
27 > \end{equation}
28 > A point mass interacting with other bodies moves with the
29 > acceleration along the direction of the force acting on it. Let
30 > $F_{ij}$ be the force that particle $i$ exerts on particle $j$, and
31 > $F_{ji}$ be the force that particle $j$ exerts on particle $i$.
32 > Newton¡¯s third law states that
33 > \begin{equation}
34 > F_{ij} = -F_{ji}
35 > \label{introEquation:newtonThirdLaw}
36 > \end{equation}
37 >
38 > Conservation laws of Newtonian Mechanics play very important roles
39 > in solving mechanics problems. The linear momentum of a particle is
40 > conserved if it is free or it experiences no force. The second
41 > conservation theorem concerns the angular momentum of a particle.
42 > The angular momentum $L$ of a particle with respect to an origin
43 > from which $r$ is measured is defined to be
44 > \begin{equation}
45 > L \equiv r \times p \label{introEquation:angularMomentumDefinition}
46 > \end{equation}
47 > The torque $\tau$ with respect to the same origin is defined to be
48 > \begin{equation}
49 > N \equiv r \times F \label{introEquation:torqueDefinition}
50 > \end{equation}
51 > Differentiating Eq.~\ref{introEquation:angularMomentumDefinition},
52 > \[
53 > \dot L = \frac{d}{{dt}}(r \times p) = (\dot r \times p) + (r \times
54 > \dot p)
55 > \]
56 > since
57 > \[
58 > \dot r \times p = \dot r \times mv = m\dot r \times \dot r \equiv 0
59 > \]
60 > thus,
61 > \begin{equation}
62 > \dot L = r \times \dot p = N
63 > \end{equation}
64 > If there are no external torques acting on a body, the angular
65 > momentum of it is conserved. The last conservation theorem state
66 > that if all forces are conservative, Energy
67 > \begin{equation}E = T + V \label{introEquation:energyConservation}
68 > \end{equation}
69 > is conserved. All of these conserved quantities are
70 > important factors to determine the quality of numerical integration
71 > scheme for rigid body \cite{Dullweber1997}.
72 >
73 > \subsection{\label{introSection:lagrangian}Lagrangian Mechanics}
74 >
75 > Newtonian Mechanics suffers from two important limitations: it
76 > describes their motion in special cartesian coordinate systems.
77 > Another limitation of Newtonian mechanics becomes obvious when we
78 > try to describe systems with large numbers of particles. It becomes
79 > very difficult to predict the properties of the system by carrying
80 > out calculations involving the each individual interaction between
81 > all the particles, even if we know all of the details of the
82 > interaction. In order to overcome some of the practical difficulties
83 > which arise in attempts to apply Newton's equation to complex
84 > system, alternative procedures may be developed.
85 >
86 > \subsubsection{\label{introSection:halmiltonPrinciple}Hamilton's
87 > Principle}
88 >
89 > Hamilton introduced the dynamical principle upon which it is
90 > possible to base all of mechanics and, indeed, most of classical
91 > physics. Hamilton's Principle may be stated as follow,
92 >
93 > The actual trajectory, along which a dynamical system may move from
94 > one point to another within a specified time, is derived by finding
95 > the path which minimizes the time integral of the difference between
96 > the kinetic, $K$, and potential energies, $U$ \cite{tolman79}.
97 > \begin{equation}
98 > \delta \int_{t_1 }^{t_2 } {(K - U)dt = 0} ,
99 > \label{introEquation:halmitonianPrinciple1}
100 > \end{equation}
101 >
102 > For simple mechanical systems, where the forces acting on the
103 > different part are derivable from a potential and the velocities are
104 > small compared with that of light, the Lagrangian function $L$ can
105 > be define as the difference between the kinetic energy of the system
106 > and its potential energy,
107 > \begin{equation}
108 > L \equiv K - U = L(q_i ,\dot q_i ) ,
109 > \label{introEquation:lagrangianDef}
110 > \end{equation}
111 > then Eq.~\ref{introEquation:halmitonianPrinciple1} becomes
112 > \begin{equation}
113 > \delta \int_{t_1 }^{t_2 } {L dt = 0} ,
114 > \label{introEquation:halmitonianPrinciple2}
115 > \end{equation}
116 >
117 > \subsubsection{\label{introSection:equationOfMotionLagrangian}The
118 > Equations of Motion in Lagrangian Mechanics}
119 >
120 > For a holonomic system of $f$ degrees of freedom, the equations of
121 > motion in the Lagrangian form is
122 > \begin{equation}
123 > \frac{d}{{dt}}\frac{{\partial L}}{{\partial \dot q_i }} -
124 > \frac{{\partial L}}{{\partial q_i }} = 0,{\rm{ }}i = 1, \ldots,f
125 > \label{introEquation:eqMotionLagrangian}
126 > \end{equation}
127 > where $q_{i}$ is generalized coordinate and $\dot{q_{i}}$ is
128 > generalized velocity.
129 >
130 > \subsection{\label{introSection:hamiltonian}Hamiltonian Mechanics}
131 >
132 > Arising from Lagrangian Mechanics, Hamiltonian Mechanics was
133 > introduced by William Rowan Hamilton in 1833 as a re-formulation of
134 > classical mechanics. If the potential energy of a system is
135 > independent of generalized velocities, the generalized momenta can
136 > be defined as
137 > \begin{equation}
138 > p_i = \frac{\partial L}{\partial \dot q_i}
139 > \label{introEquation:generalizedMomenta}
140 > \end{equation}
141 > The Lagrange equations of motion are then expressed by
142 > \begin{equation}
143 > p_i  = \frac{{\partial L}}{{\partial q_i }}
144 > \label{introEquation:generalizedMomentaDot}
145 > \end{equation}
146 >
147 > With the help of the generalized momenta, we may now define a new
148 > quantity $H$ by the equation
149 > \begin{equation}
150 > H = \sum\limits_k {p_k \dot q_k }  - L ,
151 > \label{introEquation:hamiltonianDefByLagrangian}
152 > \end{equation}
153 > where $ \dot q_1  \ldots \dot q_f $ are generalized velocities and
154 > $L$ is the Lagrangian function for the system.
155 >
156 > Differentiating Eq.~\ref{introEquation:hamiltonianDefByLagrangian},
157 > one can obtain
158 > \begin{equation}
159 > dH = \sum\limits_k {\left( {p_k d\dot q_k  + \dot q_k dp_k  -
160 > \frac{{\partial L}}{{\partial q_k }}dq_k  - \frac{{\partial
161 > L}}{{\partial \dot q_k }}d\dot q_k } \right)}  - \frac{{\partial
162 > L}}{{\partial t}}dt \label{introEquation:diffHamiltonian1}
163 > \end{equation}
164 > Making use of  Eq.~\ref{introEquation:generalizedMomenta}, the
165 > second and fourth terms in the parentheses cancel. Therefore,
166 > Eq.~\ref{introEquation:diffHamiltonian1} can be rewritten as
167 > \begin{equation}
168 > dH = \sum\limits_k {\left( {\dot q_k dp_k  - \dot p_k dq_k }
169 > \right)}  - \frac{{\partial L}}{{\partial t}}dt
170 > \label{introEquation:diffHamiltonian2}
171 > \end{equation}
172 > By identifying the coefficients of $dq_k$, $dp_k$ and dt, we can
173 > find
174 > \begin{equation}
175 > \frac{{\partial H}}{{\partial p_k }} = q_k
176 > \label{introEquation:motionHamiltonianCoordinate}
177 > \end{equation}
178 > \begin{equation}
179 > \frac{{\partial H}}{{\partial q_k }} =  - p_k
180 > \label{introEquation:motionHamiltonianMomentum}
181 > \end{equation}
182 > and
183 > \begin{equation}
184 > \frac{{\partial H}}{{\partial t}} =  - \frac{{\partial L}}{{\partial
185 > t}}
186 > \label{introEquation:motionHamiltonianTime}
187 > \end{equation}
188 >
189 > Eq.~\ref{introEquation:motionHamiltonianCoordinate} and
190 > Eq.~\ref{introEquation:motionHamiltonianMomentum} are Hamilton's
191 > equation of motion. Due to their symmetrical formula, they are also
192 > known as the canonical equations of motions \cite{Goldstein01}.
193 >
194 > An important difference between Lagrangian approach and the
195 > Hamiltonian approach is that the Lagrangian is considered to be a
196 > function of the generalized velocities $\dot q_i$ and the
197 > generalized coordinates $q_i$, while the Hamiltonian is considered
198 > to be a function of the generalized momenta $p_i$ and the conjugate
199 > generalized coordinate $q_i$. Hamiltonian Mechanics is more
200 > appropriate for application to statistical mechanics and quantum
201 > mechanics, since it treats the coordinate and its time derivative as
202 > independent variables and it only works with 1st-order differential
203 > equations\cite{Marion90}.
204 >
205 > In Newtonian Mechanics, a system described by conservative forces
206 > conserves the total energy \ref{introEquation:energyConservation}.
207 > It follows that Hamilton's equations of motion conserve the total
208 > Hamiltonian.
209 > \begin{equation}
210 > \frac{{dH}}{{dt}} = \sum\limits_i {\left( {\frac{{\partial
211 > H}}{{\partial q_i }}\dot q_i  + \frac{{\partial H}}{{\partial p_i
212 > }}\dot p_i } \right)}  = \sum\limits_i {\left( {\frac{{\partial
213 > H}}{{\partial q_i }}\frac{{\partial H}}{{\partial p_i }} -
214 > \frac{{\partial H}}{{\partial p_i }}\frac{{\partial H}}{{\partial
215 > q_i }}} \right) = 0} \label{introEquation:conserveHalmitonian}
216 > \end{equation}
217 >
218 > \section{\label{introSection:statisticalMechanics}Statistical
219 > Mechanics}
220 >
221 > The thermodynamic behaviors and properties of Molecular Dynamics
222 > simulation are governed by the principle of Statistical Mechanics.
223 > The following section will give a brief introduction to some of the
224 > Statistical Mechanics concepts and theorem presented in this
225 > dissertation.
226 >
227 > \subsection{\label{introSection:ensemble}Phase Space and Ensemble}
228 >
229 > Mathematically, phase space is the space which represents all
230 > possible states. Each possible state of the system corresponds to
231 > one unique point in the phase space. For mechanical systems, the
232 > phase space usually consists of all possible values of position and
233 > momentum variables. Consider a dynamic system in a cartesian space,
234 > where each of the $6f$ coordinates and momenta is assigned to one of
235 > $6f$ mutually orthogonal axes, the phase space of this system is a
236 > $6f$ dimensional space. A point, $x = (q_1 , \ldots ,q_f ,p_1 ,
237 > \ldots ,p_f )$, with a unique set of values of $6f$ coordinates and
238 > momenta is a phase space vector.
239 >
240 > A microscopic state or microstate of a classical system is
241 > specification of the complete phase space vector of a system at any
242 > instant in time. An ensemble is defined as a collection of systems
243 > sharing one or more macroscopic characteristics but each being in a
244 > unique microstate. The complete ensemble is specified by giving all
245 > systems or microstates consistent with the common macroscopic
246 > characteristics of the ensemble. Although the state of each
247 > individual system in the ensemble could be precisely described at
248 > any instance in time by a suitable phase space vector, when using
249 > ensembles for statistical purposes, there is no need to maintain
250 > distinctions between individual systems, since the numbers of
251 > systems at any time in the different states which correspond to
252 > different regions of the phase space are more interesting. Moreover,
253 > in the point of view of statistical mechanics, one would prefer to
254 > use ensembles containing a large enough population of separate
255 > members so that the numbers of systems in such different states can
256 > be regarded as changing continuously as we traverse different
257 > regions of the phase space. The condition of an ensemble at any time
258 > can be regarded as appropriately specified by the density $\rho$
259 > with which representative points are distributed over the phase
260 > space. The density of distribution for an ensemble with $f$ degrees
261 > of freedom is defined as,
262 > \begin{equation}
263 > \rho  = \rho (q_1 , \ldots ,q_f ,p_1 , \ldots ,p_f ,t).
264 > \label{introEquation:densityDistribution}
265 > \end{equation}
266 > Governed by the principles of mechanics, the phase points change
267 > their value which would change the density at any time at phase
268 > space. Hence, the density of distribution is also to be taken as a
269 > function of the time.
270 >
271 > The number of systems $\delta N$ at time $t$ can be determined by,
272 > \begin{equation}
273 > \delta N = \rho (q,p,t)dq_1  \ldots dq_f dp_1  \ldots dp_f.
274 > \label{introEquation:deltaN}
275 > \end{equation}
276 > Assuming a large enough population of systems are exploited, we can
277 > sufficiently approximate $\delta N$ without introducing
278 > discontinuity when we go from one region in the phase space to
279 > another. By integrating over the whole phase space,
280 > \begin{equation}
281 > N = \int { \ldots \int {\rho (q,p,t)dq_1 } ...dq_f dp_1 } ...dp_f
282 > \label{introEquation:totalNumberSystem}
283 > \end{equation}
284 > gives us an expression for the total number of the systems. Hence,
285 > the probability per unit in the phase space can be obtained by,
286 > \begin{equation}
287 > \frac{{\rho (q,p,t)}}{N} = \frac{{\rho (q,p,t)}}{{\int { \ldots \int
288 > {\rho (q,p,t)dq_1 } ...dq_f dp_1 } ...dp_f }}.
289 > \label{introEquation:unitProbability}
290 > \end{equation}
291 > With the help of Equation(\ref{introEquation:unitProbability}) and
292 > the knowledge of the system, it is possible to calculate the average
293 > value of any desired quantity which depends on the coordinates and
294 > momenta of the system. Even when the dynamics of the real system is
295 > complex, or stochastic, or even discontinuous, the average
296 > properties of the ensemble of possibilities as a whole may still
297 > remain well defined. For a classical system in thermal equilibrium
298 > with its environment, the ensemble average of a mechanical quantity,
299 > $\langle A(q , p) \rangle_t$, takes the form of an integral over the
300 > phase space of the system,
301 > \begin{equation}
302 > \langle  A(q , p) \rangle_t = \frac{{\int { \ldots \int {A(q,p)\rho
303 > (q,p,t)dq_1 } ...dq_f dp_1 } ...dp_f }}{{\int { \ldots \int {\rho
304 > (q,p,t)dq_1 } ...dq_f dp_1 } ...dp_f }}
305 > \label{introEquation:ensembelAverage}
306 > \end{equation}
307 >
308 > There are several different types of ensembles with different
309 > statistical characteristics. As a function of macroscopic
310 > parameters, such as temperature \textit{etc}, partition function can
311 > be used to describe the statistical properties of a system in
312 > thermodynamic equilibrium.
313 >
314 > As an ensemble of systems, each of which is known to be thermally
315 > isolated and conserve energy, Microcanonical ensemble(NVE) has a
316 > partition function like,
317 > \begin{equation}
318 > \Omega (N,V,E) = e^{\beta TS} \label{introEquation:NVEPartition}.
319 > \end{equation}
320 > A canonical ensemble(NVT)is an ensemble of systems, each of which
321 > can share its energy with a large heat reservoir. The distribution
322 > of the total energy amongst the possible dynamical states is given
323 > by the partition function,
324 > \begin{equation}
325 > \Omega (N,V,T) = e^{ - \beta A}
326 > \label{introEquation:NVTPartition}
327 > \end{equation}
328 > Here, $A$ is the Helmholtz free energy which is defined as $ A = U -
329 > TS$. Since most experiment are carried out under constant pressure
330 > condition, isothermal-isobaric ensemble(NPT) play a very important
331 > role in molecular simulation. The isothermal-isobaric ensemble allow
332 > the system to exchange energy with a heat bath of temperature $T$
333 > and to change the volume as well. Its partition function is given as
334 > \begin{equation}
335 > \Delta (N,P,T) =  - e^{\beta G}.
336 > \label{introEquation:NPTPartition}
337 > \end{equation}
338 > Here, $G = U - TS + PV$, and $G$ is called Gibbs free energy.
339 >
340 > \subsection{\label{introSection:liouville}Liouville's theorem}
341 >
342 > The Liouville's theorem is the foundation on which statistical
343 > mechanics rests. It describes the time evolution of phase space
344 > distribution function. In order to calculate the rate of change of
345 > $\rho$, we begin from Equation(\ref{introEquation:deltaN}). If we
346 > consider the two faces perpendicular to the $q_1$ axis, which are
347 > located at $q_1$ and $q_1 + \delta q_1$, the number of phase points
348 > leaving the opposite face is given by the expression,
349 > \begin{equation}
350 > \left( {\rho  + \frac{{\partial \rho }}{{\partial q_1 }}\delta q_1 }
351 > \right)\left( {\dot q_1  + \frac{{\partial \dot q_1 }}{{\partial q_1
352 > }}\delta q_1 } \right)\delta q_2  \ldots \delta q_f \delta p_1
353 > \ldots \delta p_f .
354 > \end{equation}
355 > Summing all over the phase space, we obtain
356 > \begin{equation}
357 > \frac{{d(\delta N)}}{{dt}} =  - \sum\limits_{i = 1}^f {\left[ {\rho
358 > \left( {\frac{{\partial \dot q_i }}{{\partial q_i }} +
359 > \frac{{\partial \dot p_i }}{{\partial p_i }}} \right) + \left(
360 > {\frac{{\partial \rho }}{{\partial q_i }}\dot q_i  + \frac{{\partial
361 > \rho }}{{\partial p_i }}\dot p_i } \right)} \right]} \delta q_1
362 > \ldots \delta q_f \delta p_1  \ldots \delta p_f .
363 > \end{equation}
364 > Differentiating the equations of motion in Hamiltonian formalism
365 > (\ref{introEquation:motionHamiltonianCoordinate},
366 > \ref{introEquation:motionHamiltonianMomentum}), we can show,
367 > \begin{equation}
368 > \sum\limits_i {\left( {\frac{{\partial \dot q_i }}{{\partial q_i }}
369 > + \frac{{\partial \dot p_i }}{{\partial p_i }}} \right)}  = 0 ,
370 > \end{equation}
371 > which cancels the first terms of the right hand side. Furthermore,
372 > divining $ \delta q_1  \ldots \delta q_f \delta p_1  \ldots \delta
373 > p_f $ in both sides, we can write out Liouville's theorem in a
374 > simple form,
375 > \begin{equation}
376 > \frac{{\partial \rho }}{{\partial t}} + \sum\limits_{i = 1}^f
377 > {\left( {\frac{{\partial \rho }}{{\partial q_i }}\dot q_i  +
378 > \frac{{\partial \rho }}{{\partial p_i }}\dot p_i } \right)}  = 0 .
379 > \label{introEquation:liouvilleTheorem}
380 > \end{equation}
381 >
382 > Liouville's theorem states that the distribution function is
383 > constant along any trajectory in phase space. In classical
384 > statistical mechanics, since the number of particles in the system
385 > is huge, we may be able to believe the system is stationary,
386 > \begin{equation}
387 > \frac{{\partial \rho }}{{\partial t}} = 0.
388 > \label{introEquation:stationary}
389 > \end{equation}
390 > In such stationary system, the density of distribution $\rho$ can be
391 > connected to the Hamiltonian $H$ through Maxwell-Boltzmann
392 > distribution,
393 > \begin{equation}
394 > \rho  \propto e^{ - \beta H}
395 > \label{introEquation:densityAndHamiltonian}
396 > \end{equation}
397 >
398 > \subsubsection{\label{introSection:phaseSpaceConservation}Conservation of Phase Space}
399 > Lets consider a region in the phase space,
400 > \begin{equation}
401 > \delta v = \int { \ldots \int {dq_1 } ...dq_f dp_1 } ..dp_f .
402 > \end{equation}
403 > If this region is small enough, the density $\rho$ can be regarded
404 > as uniform over the whole phase space. Thus, the number of phase
405 > points inside this region is given by,
406 > \begin{equation}
407 > \delta N = \rho \delta v = \rho \int { \ldots \int {dq_1 } ...dq_f
408 > dp_1 } ..dp_f.
409 > \end{equation}
410 >
411 > \begin{equation}
412 > \frac{{d(\delta N)}}{{dt}} = \frac{{d\rho }}{{dt}}\delta v + \rho
413 > \frac{d}{{dt}}(\delta v) = 0.
414 > \end{equation}
415 > With the help of stationary assumption
416 > (\ref{introEquation:stationary}), we obtain the principle of the
417 > \emph{conservation of extension in phase space},
418 > \begin{equation}
419 > \frac{d}{{dt}}(\delta v) = \frac{d}{{dt}}\int { \ldots \int {dq_1 }
420 > ...dq_f dp_1 } ..dp_f  = 0.
421 > \label{introEquation:volumePreserving}
422 > \end{equation}
423 >
424 > \subsubsection{\label{introSection:liouvilleInOtherForms}Liouville's Theorem in Other Forms}
425 >
426 > Liouville's theorem can be expresses in a variety of different forms
427 > which are convenient within different contexts. For any two function
428 > $F$ and $G$ of the coordinates and momenta of a system, the Poisson
429 > bracket ${F, G}$ is defined as
430 > \begin{equation}
431 > \left\{ {F,G} \right\} = \sum\limits_i {\left( {\frac{{\partial
432 > F}}{{\partial q_i }}\frac{{\partial G}}{{\partial p_i }} -
433 > \frac{{\partial F}}{{\partial p_i }}\frac{{\partial G}}{{\partial
434 > q_i }}} \right)}.
435 > \label{introEquation:poissonBracket}
436 > \end{equation}
437 > Substituting equations of motion in Hamiltonian formalism(
438 > \ref{introEquation:motionHamiltonianCoordinate} ,
439 > \ref{introEquation:motionHamiltonianMomentum} ) into
440 > (\ref{introEquation:liouvilleTheorem}), we can rewrite Liouville's
441 > theorem using Poisson bracket notion,
442 > \begin{equation}
443 > \left( {\frac{{\partial \rho }}{{\partial t}}} \right) =  - \left\{
444 > {\rho ,H} \right\}.
445 > \label{introEquation:liouvilleTheromInPoissin}
446 > \end{equation}
447 > Moreover, the Liouville operator is defined as
448 > \begin{equation}
449 > iL = \sum\limits_{i = 1}^f {\left( {\frac{{\partial H}}{{\partial
450 > p_i }}\frac{\partial }{{\partial q_i }} - \frac{{\partial
451 > H}}{{\partial q_i }}\frac{\partial }{{\partial p_i }}} \right)}
452 > \label{introEquation:liouvilleOperator}
453 > \end{equation}
454 > In terms of Liouville operator, Liouville's equation can also be
455 > expressed as
456 > \begin{equation}
457 > \left( {\frac{{\partial \rho }}{{\partial t}}} \right) =  - iL\rho
458 > \label{introEquation:liouvilleTheoremInOperator}
459 > \end{equation}
460 >
461 > \subsection{\label{introSection:ergodic}The Ergodic Hypothesis}
462 >
463 > Various thermodynamic properties can be calculated from Molecular
464 > Dynamics simulation. By comparing experimental values with the
465 > calculated properties, one can determine the accuracy of the
466 > simulation and the quality of the underlying model. However, both of
467 > experiment and computer simulation are usually performed during a
468 > certain time interval and the measurements are averaged over a
469 > period of them which is different from the average behavior of
470 > many-body system in Statistical Mechanics. Fortunately, Ergodic
471 > Hypothesis is proposed to make a connection between time average and
472 > ensemble average. It states that time average and average over the
473 > statistical ensemble are identical \cite{Frenkel1996, leach01:mm}.
474 > \begin{equation}
475 > \langle A(q , p) \rangle_t = \mathop {\lim }\limits_{t \to \infty }
476 > \frac{1}{t}\int\limits_0^t {A(q(t),p(t))dt = \int\limits_\Gamma
477 > {A(q(t),p(t))} } \rho (q(t), p(t)) dqdp
478 > \end{equation}
479 > where $\langle  A(q , p) \rangle_t$ is an equilibrium value of a
480 > physical quantity and $\rho (p(t), q(t))$ is the equilibrium
481 > distribution function. If an observation is averaged over a
482 > sufficiently long time (longer than relaxation time), all accessible
483 > microstates in phase space are assumed to be equally probed, giving
484 > a properly weighted statistical average. This allows the researcher
485 > freedom of choice when deciding how best to measure a given
486 > observable. In case an ensemble averaged approach sounds most
487 > reasonable, the Monte Carlo techniques\cite{metropolis:1949} can be
488 > utilized. Or if the system lends itself to a time averaging
489 > approach, the Molecular Dynamics techniques in
490 > Sec.~\ref{introSection:molecularDynamics} will be the best
491 > choice\cite{Frenkel1996}.
492 >
493 > \section{\label{introSection:geometricIntegratos}Geometric Integrators}
494 > A variety of numerical integrators were proposed to simulate the
495 > motions. They usually begin with an initial conditionals and move
496 > the objects in the direction governed by the differential equations.
497 > However, most of them ignore the hidden physical law contained
498 > within the equations. Since 1990, geometric integrators, which
499 > preserve various phase-flow invariants such as symplectic structure,
500 > volume and time reversal symmetry, are developed to address this
501 > issue. The velocity verlet method, which happens to be a simple
502 > example of symplectic integrator, continues to gain its popularity
503 > in molecular dynamics community. This fact can be partly explained
504 > by its geometric nature.
505 >
506 > \subsection{\label{introSection:symplecticManifold}Symplectic Manifold}
507 > A \emph{manifold} is an abstract mathematical space. It locally
508 > looks like Euclidean space, but when viewed globally, it may have
509 > more complicate structure. A good example of manifold is the surface
510 > of Earth. It seems to be flat locally, but it is round if viewed as
511 > a whole. A \emph{differentiable manifold} (also known as
512 > \emph{smooth manifold}) is a manifold with an open cover in which
513 > the covering neighborhoods are all smoothly isomorphic to one
514 > another. In other words,it is possible to apply calculus on
515 > \emph{differentiable manifold}. A \emph{symplectic manifold} is
516 > defined as a pair $(M, \omega)$ which consisting of a
517 > \emph{differentiable manifold} $M$ and a close, non-degenerated,
518 > bilinear symplectic form, $\omega$. A symplectic form on a vector
519 > space $V$ is a function $\omega(x, y)$ which satisfies
520 > $\omega(\lambda_1x_1+\lambda_2x_2, y) = \lambda_1\omega(x_1, y)+
521 > \lambda_2\omega(x_2, y)$, $\omega(x, y) = - \omega(y, x)$ and
522 > $\omega(x, x) = 0$. Cross product operation in vector field is an
523 > example of symplectic form.
524 >
525 > One of the motivations to study \emph{symplectic manifold} in
526 > Hamiltonian Mechanics is that a symplectic manifold can represent
527 > all possible configurations of the system and the phase space of the
528 > system can be described by it's cotangent bundle. Every symplectic
529 > manifold is even dimensional. For instance, in Hamilton equations,
530 > coordinate and momentum always appear in pairs.
531 >
532 > Let  $(M,\omega)$ and $(N, \eta)$ be symplectic manifolds. A map
533 > \[
534 > f : M \rightarrow N
535 > \]
536 > is a \emph{symplectomorphism} if it is a \emph{diffeomorphims} and
537 > the \emph{pullback} of $\eta$ under f is equal to $\omega$.
538 > Canonical transformation is an example of symplectomorphism in
539 > classical mechanics.
540 >
541 > \subsection{\label{introSection:ODE}Ordinary Differential Equations}
542 >
543 > For a ordinary differential system defined as
544 > \begin{equation}
545 > \dot x = f(x)
546 > \end{equation}
547 > where $x = x(q,p)^T$, this system is canonical Hamiltonian, if
548 > \begin{equation}
549 > f(r) = J\nabla _x H(r).
550 > \end{equation}
551 > $H = H (q, p)$ is Hamiltonian function and $J$ is the skew-symmetric
552 > matrix
553 > \begin{equation}
554 > J = \left( {\begin{array}{*{20}c}
555 >   0 & I  \\
556 >   { - I} & 0  \\
557 > \end{array}} \right)
558 > \label{introEquation:canonicalMatrix}
559 > \end{equation}
560 > where $I$ is an identity matrix. Using this notation, Hamiltonian
561 > system can be rewritten as,
562 > \begin{equation}
563 > \frac{d}{{dt}}x = J\nabla _x H(x)
564 > \label{introEquation:compactHamiltonian}
565 > \end{equation}In this case, $f$ is
566 > called a \emph{Hamiltonian vector field}.
567 >
568 > Another generalization of Hamiltonian dynamics is Poisson Dynamics,
569 > \begin{equation}
570 > \dot x = J(x)\nabla _x H \label{introEquation:poissonHamiltonian}
571 > \end{equation}
572 > The most obvious change being that matrix $J$ now depends on $x$.
573 >
574 > \subsection{\label{introSection:exactFlow}Exact Flow}
575 >
576 > Let $x(t)$ be the exact solution of the ODE system,
577 > \begin{equation}
578 > \frac{{dx}}{{dt}} = f(x) \label{introEquation:ODE}
579 > \end{equation}
580 > The exact flow(solution) $\varphi_\tau$ is defined by
581 > \[
582 > x(t+\tau) =\varphi_\tau(x(t))
583 > \]
584 > where $\tau$ is a fixed time step and $\varphi$ is a map from phase
585 > space to itself. The flow has the continuous group property,
586 > \begin{equation}
587 > \varphi _{\tau _1 }  \circ \varphi _{\tau _2 }  = \varphi _{\tau _1
588 > + \tau _2 } .
589 > \end{equation}
590 > In particular,
591 > \begin{equation}
592 > \varphi _\tau   \circ \varphi _{ - \tau }  = I
593 > \end{equation}
594 > Therefore, the exact flow is self-adjoint,
595 > \begin{equation}
596 > \varphi _\tau   = \varphi _{ - \tau }^{ - 1}.
597 > \end{equation}
598 > The exact flow can also be written in terms of the of an operator,
599 > \begin{equation}
600 > \varphi _\tau  (x) = e^{\tau \sum\limits_i {f_i (x)\frac{\partial
601 > }{{\partial x_i }}} } (x) \equiv \exp (\tau f)(x).
602 > \label{introEquation:exponentialOperator}
603 > \end{equation}
604 >
605 > In most cases, it is not easy to find the exact flow $\varphi_\tau$.
606 > Instead, we use a approximate map, $\psi_\tau$, which is usually
607 > called integrator. The order of an integrator $\psi_\tau$ is $p$, if
608 > the Taylor series of $\psi_\tau$ agree to order $p$,
609 > \begin{equation}
610 > \psi_tau(x) = x + \tau f(x) + O(\tau^{p+1})
611 > \end{equation}
612 >
613 > \subsection{\label{introSection:geometricProperties}Geometric Properties}
614 >
615 > The hidden geometric properties of ODE and its flow play important
616 > roles in numerical studies. Many of them can be found in systems
617 > which occur naturally in applications.
618 >
619 > Let $\varphi$ be the flow of Hamiltonian vector field, $\varphi$ is
620 > a \emph{symplectic} flow if it satisfies,
621 > \begin{equation}
622 > {\varphi '}^T J \varphi ' = J.
623 > \end{equation}
624 > According to Liouville's theorem, the symplectic volume is invariant
625 > under a Hamiltonian flow, which is the basis for classical
626 > statistical mechanics. Furthermore, the flow of a Hamiltonian vector
627 > field on a symplectic manifold can be shown to be a
628 > symplectomorphism. As to the Poisson system,
629 > \begin{equation}
630 > {\varphi '}^T J \varphi ' = J \circ \varphi
631 > \end{equation}
632 > is the property must be preserved by the integrator.
633 >
634 > It is possible to construct a \emph{volume-preserving} flow for a
635 > source free($ \nabla \cdot f = 0 $) ODE, if the flow satisfies $
636 > \det d\varphi  = 1$. One can show easily that a symplectic flow will
637 > be volume-preserving.
638 >
639 > Changing the variables $y = h(x)$ in a ODE\ref{introEquation:ODE}
640 > will result in a new system,
641 > \[
642 > \dot y = \tilde f(y) = ((dh \cdot f)h^{ - 1} )(y).
643 > \]
644 > The vector filed $f$ has reversing symmetry $h$ if $f = - \tilde f$.
645 > In other words, the flow of this vector field is reversible if and
646 > only if $ h \circ \varphi ^{ - 1}  = \varphi  \circ h $.
647 >
648 > A \emph{first integral}, or conserved quantity of a general
649 > differential function is a function $ G:R^{2d}  \to R^d $ which is
650 > constant for all solutions of the ODE $\frac{{dx}}{{dt}} = f(x)$ ,
651 > \[
652 > \frac{{dG(x(t))}}{{dt}} = 0.
653 > \]
654 > Using chain rule, one may obtain,
655 > \[
656 > \sum\limits_i {\frac{{dG}}{{dx_i }}} f_i (x) = f \bullet \nabla G,
657 > \]
658 > which is the condition for conserving \emph{first integral}. For a
659 > canonical Hamiltonian system, the time evolution of an arbitrary
660 > smooth function $G$ is given by,
661 > \begin{equation}
662 > \begin{array}{c}
663 > \frac{{dG(x(t))}}{{dt}} = [\nabla _x G(x(t))]^T \dot x(t) \\
664 >  = [\nabla _x G(x(t))]^T J\nabla _x H(x(t)). \\
665 > \end{array}
666 > \label{introEquation:firstIntegral1}
667 > \end{equation}
668 > Using poisson bracket notion, Equation
669 > \ref{introEquation:firstIntegral1} can be rewritten as
670 > \[
671 > \frac{d}{{dt}}G(x(t)) = \left\{ {G,H} \right\}(x(t)).
672 > \]
673 > Therefore, the sufficient condition for $G$ to be the \emph{first
674 > integral} of a Hamiltonian system is
675 > \[
676 > \left\{ {G,H} \right\} = 0.
677 > \]
678 > As well known, the Hamiltonian (or energy) H of a Hamiltonian system
679 > is a \emph{first integral}, which is due to the fact $\{ H,H\}  =
680 > 0$.
681 >
682 >
683 > When designing any numerical methods, one should always try to
684 > preserve the structural properties of the original ODE and its flow.
685 >
686 > \subsection{\label{introSection:constructionSymplectic}Construction of Symplectic Methods}
687 > A lot of well established and very effective numerical methods have
688 > been successful precisely because of their symplecticities even
689 > though this fact was not recognized when they were first
690 > constructed. The most famous example is leapfrog methods in
691 > molecular dynamics. In general, symplectic integrators can be
692 > constructed using one of four different methods.
693 > \begin{enumerate}
694 > \item Generating functions
695 > \item Variational methods
696 > \item Runge-Kutta methods
697 > \item Splitting methods
698 > \end{enumerate}
699 >
700 > Generating function tends to lead to methods which are cumbersome
701 > and difficult to use. In dissipative systems, variational methods
702 > can capture the decay of energy accurately. Since their
703 > geometrically unstable nature against non-Hamiltonian perturbations,
704 > ordinary implicit Runge-Kutta methods are not suitable for
705 > Hamiltonian system. Recently, various high-order explicit
706 > Runge--Kutta methods have been developed to overcome this
707 > instability. However, due to computational penalty involved in
708 > implementing the Runge-Kutta methods, they do not attract too much
709 > attention from Molecular Dynamics community. Instead, splitting have
710 > been widely accepted since they exploit natural decompositions of
711 > the system\cite{Tuckerman92}.
712 >
713 > \subsubsection{\label{introSection:splittingMethod}Splitting Method}
714 >
715 > The main idea behind splitting methods is to decompose the discrete
716 > $\varphi_h$ as a composition of simpler flows,
717 > \begin{equation}
718 > \varphi _h  = \varphi _{h_1 }  \circ \varphi _{h_2 }  \ldots  \circ
719 > \varphi _{h_n }
720 > \label{introEquation:FlowDecomposition}
721 > \end{equation}
722 > where each of the sub-flow is chosen such that each represent a
723 > simpler integration of the system.
724 >
725 > Suppose that a Hamiltonian system takes the form,
726 > \[
727 > H = H_1 + H_2.
728 > \]
729 > Here, $H_1$ and $H_2$ may represent different physical processes of
730 > the system. For instance, they may relate to kinetic and potential
731 > energy respectively, which is a natural decomposition of the
732 > problem. If $H_1$ and $H_2$ can be integrated using exact flows
733 > $\varphi_1(t)$ and $\varphi_2(t)$, respectively, a simple first
734 > order is then given by the Lie-Trotter formula
735 > \begin{equation}
736 > \varphi _h  = \varphi _{1,h}  \circ \varphi _{2,h},
737 > \label{introEquation:firstOrderSplitting}
738 > \end{equation}
739 > where $\varphi _h$ is the result of applying the corresponding
740 > continuous $\varphi _i$ over a time $h$. By definition, as
741 > $\varphi_i(t)$ is the exact solution of a Hamiltonian system, it
742 > must follow that each operator $\varphi_i(t)$ is a symplectic map.
743 > It is easy to show that any composition of symplectic flows yields a
744 > symplectic map,
745 > \begin{equation}
746 > (\varphi '\phi ')^T J\varphi '\phi ' = \phi '^T \varphi '^T J\varphi
747 > '\phi ' = \phi '^T J\phi ' = J,
748 > \label{introEquation:SymplecticFlowComposition}
749 > \end{equation}
750 > where $\phi$ and $\psi$ both are symplectic maps. Thus operator
751 > splitting in this context automatically generates a symplectic map.
752 >
753 > The Lie-Trotter splitting(\ref{introEquation:firstOrderSplitting})
754 > introduces local errors proportional to $h^2$, while Strang
755 > splitting gives a second-order decomposition,
756 > \begin{equation}
757 > \varphi _h  = \varphi _{1,h/2}  \circ \varphi _{2,h}  \circ \varphi
758 > _{1,h/2} , \label{introEquation:secondOrderSplitting}
759 > \end{equation}
760 > which has a local error proportional to $h^3$. Sprang splitting's
761 > popularity in molecular simulation community attribute to its
762 > symmetric property,
763 > \begin{equation}
764 > \varphi _h^{ - 1} = \varphi _{ - h}.
765 > \label{introEquation:timeReversible}
766 > \end{equation}
767 >
768 > \subsubsection{\label{introSection:exampleSplittingMethod}Example of Splitting Method}
769 > The classical equation for a system consisting of interacting
770 > particles can be written in Hamiltonian form,
771 > \[
772 > H = T + V
773 > \]
774 > where $T$ is the kinetic energy and $V$ is the potential energy.
775 > Setting $H_1 = T, H_2 = V$ and applying Strang splitting, one
776 > obtains the following:
777 > \begin{align}
778 > q(\Delta t) &= q(0) + \dot{q}(0)\Delta t +
779 >    \frac{F[q(0)]}{m}\frac{\Delta t^2}{2}, %
780 > \label{introEquation:Lp10a} \\%
781 > %
782 > \dot{q}(\Delta t) &= \dot{q}(0) + \frac{\Delta t}{2m}
783 >    \biggl [F[q(0)] + F[q(\Delta t)] \biggr]. %
784 > \label{introEquation:Lp10b}
785 > \end{align}
786 > where $F(t)$ is the force at time $t$. This integration scheme is
787 > known as \emph{velocity verlet} which is
788 > symplectic(\ref{introEquation:SymplecticFlowComposition}),
789 > time-reversible(\ref{introEquation:timeReversible}) and
790 > volume-preserving (\ref{introEquation:volumePreserving}). These
791 > geometric properties attribute to its long-time stability and its
792 > popularity in the community. However, the most commonly used
793 > velocity verlet integration scheme is written as below,
794 > \begin{align}
795 > \dot{q}\biggl (\frac{\Delta t}{2}\biggr ) &=
796 >    \dot{q}(0) + \frac{\Delta t}{2m}\, F[q(0)], \label{introEquation:Lp9a}\\%
797 > %
798 > q(\Delta t) &= q(0) + \Delta t\, \dot{q}\biggl (\frac{\Delta t}{2}\biggr ),%
799 >    \label{introEquation:Lp9b}\\%
800 > %
801 > \dot{q}(\Delta t) &= \dot{q}\biggl (\frac{\Delta t}{2}\biggr ) +
802 >    \frac{\Delta t}{2m}\, F[q(0)]. \label{introEquation:Lp9c}
803 > \end{align}
804 > From the preceding splitting, one can see that the integration of
805 > the equations of motion would follow:
806 > \begin{enumerate}
807 > \item calculate the velocities at the half step, $\frac{\Delta t}{2}$, from the forces calculated at the initial position.
808 >
809 > \item Use the half step velocities to move positions one whole step, $\Delta t$.
810 >
811 > \item Evaluate the forces at the new positions, $\mathbf{r}(\Delta t)$, and use the new forces to complete the velocity move.
812 >
813 > \item Repeat from step 1 with the new position, velocities, and forces assuming the roles of the initial values.
814 > \end{enumerate}
815 >
816 > Simply switching the order of splitting and composing, a new
817 > integrator, the \emph{position verlet} integrator, can be generated,
818 > \begin{align}
819 > \dot q(\Delta t) &= \dot q(0) + \Delta tF(q(0))\left[ {q(0) +
820 > \frac{{\Delta t}}{{2m}}\dot q(0)} \right], %
821 > \label{introEquation:positionVerlet1} \\%
822 > %
823 > q(\Delta t) &= q(0) + \frac{{\Delta t}}{2}\left[ {\dot q(0) + \dot
824 > q(\Delta t)} \right]. %
825 > \label{introEquation:positionVerlet1}
826 > \end{align}
827 >
828 > \subsubsection{\label{introSection:errorAnalysis}Error Analysis and Higher Order Methods}
829 >
830 > Baker-Campbell-Hausdorff formula can be used to determine the local
831 > error of splitting method in terms of commutator of the
832 > operators(\ref{introEquation:exponentialOperator}) associated with
833 > the sub-flow. For operators $hX$ and $hY$ which are associate to
834 > $\varphi_1(t)$ and $\varphi_2(t$ respectively , we have
835 > \begin{equation}
836 > \exp (hX + hY) = \exp (hZ)
837 > \end{equation}
838 > where
839 > \begin{equation}
840 > hZ = hX + hY + \frac{{h^2 }}{2}[X,Y] + \frac{{h^3 }}{2}\left(
841 > {[X,[X,Y]] + [Y,[Y,X]]} \right) +  \ldots .
842 > \end{equation}
843 > Here, $[X,Y]$ is the commutators of operator $X$ and $Y$ given by
844 > \[
845 > [X,Y] = XY - YX .
846 > \]
847 > Applying Baker-Campbell-Hausdorff formula to Sprang splitting, we
848 > can obtain
849 > \begin{eqnarray*}
850 > \exp (h X/2)\exp (h Y)\exp (h X/2) & = & \exp (h X + h Y + h^2
851 > [X,Y]/4 + h^2 [Y,X]/4 \\ & & \mbox{} + h^2 [X,X]/8 + h^2 [Y,Y]/8 \\
852 > & & \mbox{} + h^3 [Y,[Y,X]]/12 - h^3 [X,[X,Y]]/24 & & \mbox{} +
853 > \ldots )
854 > \end{eqnarray*}
855 > Since \[ [X,Y] + [Y,X] = 0\] and \[ [X,X] = 0\], the dominant local
856 > error of Spring splitting is proportional to $h^3$. The same
857 > procedure can be applied to general splitting,  of the form
858 > \begin{equation}
859 > \varphi _{b_m h}^2  \circ \varphi _{a_m h}^1  \circ \varphi _{b_{m -
860 > 1} h}^2  \circ  \ldots  \circ \varphi _{a_1 h}^1 .
861 > \end{equation}
862 > Careful choice of coefficient $a_1 ,\ldot , b_m$ will lead to higher
863 > order method. Yoshida proposed an elegant way to compose higher
864 > order methods based on symmetric splitting. Given a symmetric second
865 > order base method $ \varphi _h^{(2)} $, a fourth-order symmetric
866 > method can be constructed by composing,
867 > \[
868 > \varphi _h^{(4)}  = \varphi _{\alpha h}^{(2)}  \circ \varphi _{\beta
869 > h}^{(2)}  \circ \varphi _{\alpha h}^{(2)}
870 > \]
871 > where $ \alpha  =  - \frac{{2^{1/3} }}{{2 - 2^{1/3} }}$ and $ \beta
872 > = \frac{{2^{1/3} }}{{2 - 2^{1/3} }}$. Moreover, a symmetric
873 > integrator $ \varphi _h^{(2n + 2)}$ can be composed by
874 > \begin{equation}
875 > \varphi _h^{(2n + 2)}  = \varphi _{\alpha h}^{(2n)}  \circ \varphi
876 > _{\beta h}^{(2n)}  \circ \varphi _{\alpha h}^{(2n)}
877 > \end{equation}
878 > , if the weights are chosen as
879 > \[
880 > \alpha  =  - \frac{{2^{1/(2n + 1)} }}{{2 - 2^{1/(2n + 1)} }},\beta =
881 > \frac{{2^{1/(2n + 1)} }}{{2 - 2^{1/(2n + 1)} }} .
882 > \]
883  
884   \section{\label{introSection:molecularDynamics}Molecular Dynamics}
885  
886 < \section{\label{introSection:langevinDynamics}Langevin Dynamics}
886 > As a special discipline of molecular modeling, Molecular dynamics
887 > has proven to be a powerful tool for studying the functions of
888 > biological systems, providing structural, thermodynamic and
889 > dynamical information.
890  
891 < \section{\label{introSection:hydroynamics}Hydrodynamics}
891 > \subsection{\label{introSec:mdInit}Initialization}
892  
893 < \section{\label{introSection:correlationFunctions}Correlation Functions}
893 > \subsection{\label{introSec:forceEvaluation}Force Evaluation}
894 >
895 > \subsection{\label{introSection:mdIntegration} Integration of the Equations of Motion}
896 >
897 > \section{\label{introSection:rigidBody}Dynamics of Rigid Bodies}
898 >
899 > Rigid bodies are frequently involved in the modeling of different
900 > areas, from engineering, physics, to chemistry. For example,
901 > missiles and vehicle are usually modeled by rigid bodies.  The
902 > movement of the objects in 3D gaming engine or other physics
903 > simulator is governed by the rigid body dynamics. In molecular
904 > simulation, rigid body is used to simplify the model in
905 > protein-protein docking study{\cite{Gray03}}.
906 >
907 > It is very important to develop stable and efficient methods to
908 > integrate the equations of motion of orientational degrees of
909 > freedom. Euler angles are the nature choice to describe the
910 > rotational degrees of freedom. However, due to its singularity, the
911 > numerical integration of corresponding equations of motion is very
912 > inefficient and inaccurate. Although an alternative integrator using
913 > different sets of Euler angles can overcome this difficulty\cite{},
914 > the computational penalty and the lost of angular momentum
915 > conservation still remain. A singularity free representation
916 > utilizing quaternions was developed by Evans in 1977. Unfortunately,
917 > this approach suffer from the nonseparable Hamiltonian resulted from
918 > quaternion representation, which prevents the symplectic algorithm
919 > to be utilized. Another different approach is to apply holonomic
920 > constraints to the atoms belonging to the rigid body. Each atom
921 > moves independently under the normal forces deriving from potential
922 > energy and constraint forces which are used to guarantee the
923 > rigidness. However, due to their iterative nature, SHAKE and Rattle
924 > algorithm converge very slowly when the number of constraint
925 > increases.
926 >
927 > The break through in geometric literature suggests that, in order to
928 > develop a long-term integration scheme, one should preserve the
929 > symplectic structure of the flow. Introducing conjugate momentum to
930 > rotation matrix $A$ and re-formulating Hamiltonian's equation, a
931 > symplectic integrator, RSHAKE, was proposed to evolve the
932 > Hamiltonian system in a constraint manifold by iteratively
933 > satisfying the orthogonality constraint $A_t A = 1$. An alternative
934 > method using quaternion representation was developed by Omelyan.
935 > However, both of these methods are iterative and inefficient. In
936 > this section, we will present a symplectic Lie-Poisson integrator
937 > for rigid body developed by Dullweber and his
938 > coworkers\cite{Dullweber1997} in depth.
939 >
940 > \subsection{\label{introSection:constrainedHamiltonianRB}Constrained Hamiltonian for Rigid Body}
941 > The motion of the rigid body is Hamiltonian with the Hamiltonian
942 > function
943 > \begin{equation}
944 > H = \frac{1}{2}(p^T m^{ - 1} p) + \frac{1}{2}tr(PJ^{ - 1} P) +
945 > V(q,Q) + \frac{1}{2}tr[(QQ^T  - 1)\Lambda ].
946 > \label{introEquation:RBHamiltonian}
947 > \end{equation}
948 > Here, $q$ and $Q$  are the position and rotation matrix for the
949 > rigid-body, $p$ and $P$  are conjugate momenta to $q$  and $Q$ , and
950 > $J$, a diagonal matrix, is defined by
951 > \[
952 > I_{ii}^{ - 1}  = \frac{1}{2}\sum\limits_{i \ne j} {J_{jj}^{ - 1} }
953 > \]
954 > where $I_{ii}$ is the diagonal element of the inertia tensor. This
955 > constrained Hamiltonian equation subjects to a holonomic constraint,
956 > \begin{equation}
957 > Q^T Q = 1$, \label{introEquation:orthogonalConstraint}
958 > \end{equation}
959 > which is used to ensure rotation matrix's orthogonality.
960 > Differentiating \ref{introEquation:orthogonalConstraint} and using
961 > Equation \ref{introEquation:RBMotionMomentum}, one may obtain,
962 > \begin{equation}
963 > Q^T PJ^{ - 1}  + J^{ - 1} P^T Q = 0 . \\
964 > \label{introEquation:RBFirstOrderConstraint}
965 > \end{equation}
966 >
967 > Using Equation (\ref{introEquation:motionHamiltonianCoordinate},
968 > \ref{introEquation:motionHamiltonianMomentum}), one can write down
969 > the equations of motion,
970 > \[
971 > \begin{array}{c}
972 > \frac{{dq}}{{dt}} = \frac{p}{m} \label{introEquation:RBMotionPosition}\\
973 > \frac{{dp}}{{dt}} =  - \nabla _q V(q,Q) \label{introEquation:RBMotionMomentum}\\
974 > \frac{{dQ}}{{dt}} = PJ^{ - 1}  \label{introEquation:RBMotionRotation}\\
975 > \frac{{dP}}{{dt}} =  - \nabla _Q V(q,Q) - 2Q\Lambda . \label{introEquation:RBMotionP}\\
976 > \end{array}
977 > \]
978 >
979 > In general, there are two ways to satisfy the holonomic constraints.
980 > We can use constraint force provided by lagrange multiplier on the
981 > normal manifold to keep the motion on constraint space. Or we can
982 > simply evolve the system in constraint manifold. The two method are
983 > proved to be equivalent. The holonomic constraint and equations of
984 > motions define a constraint manifold for rigid body
985 > \[
986 > M = \left\{ {(Q,P):Q^T Q = 1,Q^T PJ^{ - 1}  + J^{ - 1} P^T Q = 0}
987 > \right\}.
988 > \]
989 >
990 > Unfortunately, this constraint manifold is not the cotangent bundle
991 > $T_{\star}SO(3)$. However, it turns out that under symplectic
992 > transformation, the cotangent space and the phase space are
993 > diffeomorphic. Introducing
994 > \[
995 > \tilde Q = Q,\tilde P = \frac{1}{2}\left( {P - QP^T Q} \right),
996 > \]
997 > the mechanical system subject to a holonomic constraint manifold $M$
998 > can be re-formulated as a Hamiltonian system on the cotangent space
999 > \[
1000 > T^* SO(3) = \left\{ {(\tilde Q,\tilde P):\tilde Q^T \tilde Q =
1001 > 1,\tilde Q^T \tilde PJ^{ - 1}  + J^{ - 1} P^T \tilde Q = 0} \right\}
1002 > \]
1003 >
1004 > For a body fixed vector $X_i$ with respect to the center of mass of
1005 > the rigid body, its corresponding lab fixed vector $X_0^{lab}$  is
1006 > given as
1007 > \begin{equation}
1008 > X_i^{lab} = Q X_i + q.
1009 > \end{equation}
1010 > Therefore, potential energy $V(q,Q)$ is defined by
1011 > \[
1012 > V(q,Q) = V(Q X_0 + q).
1013 > \]
1014 > Hence, the force and torque are given by
1015 > \[
1016 > \nabla _q V(q,Q) = F(q,Q) = \sum\limits_i {F_i (q,Q)},
1017 > \]
1018 > and
1019 > \[
1020 > \nabla _Q V(q,Q) = F(q,Q)X_i^t
1021 > \]
1022 > respectively.
1023 >
1024 > As a common choice to describe the rotation dynamics of the rigid
1025 > body, angular momentum on body frame $\Pi  = Q^t P$ is introduced to
1026 > rewrite the equations of motion,
1027 > \begin{equation}
1028 > \begin{array}{l}
1029 > \mathop \Pi \limits^ \bullet   = J^{ - 1} \Pi ^T \Pi  + Q^T \sum\limits_i {F_i (q,Q)X_i^T }  - \Lambda  \\
1030 > \mathop Q\limits^{{\rm{   }} \bullet }  = Q\Pi {\rm{ }}J^{ - 1}  \\
1031 > \end{array}
1032 > \label{introEqaution:RBMotionPI}
1033 > \end{equation}
1034 > , as well as holonomic constraints,
1035 > \[
1036 > \begin{array}{l}
1037 > \Pi J^{ - 1}  + J^{ - 1} \Pi ^t  = 0 \\
1038 > Q^T Q = 1 \\
1039 > \end{array}
1040 > \]
1041 >
1042 > For a vector $v(v_1 ,v_2 ,v_3 ) \in R^3$ and a matrix $\hat v \in
1043 > so(3)^ \star$, the hat-map isomorphism,
1044 > \begin{equation}
1045 > v(v_1 ,v_2 ,v_3 ) \Leftrightarrow \hat v = \left(
1046 > {\begin{array}{*{20}c}
1047 >   0 & { - v_3 } & {v_2 }  \\
1048 >   {v_3 } & 0 & { - v_1 }  \\
1049 >   { - v_2 } & {v_1 } & 0  \\
1050 > \end{array}} \right),
1051 > \label{introEquation:hatmapIsomorphism}
1052 > \end{equation}
1053 > will let us associate the matrix products with traditional vector
1054 > operations
1055 > \[
1056 > \hat vu = v \times u
1057 > \]
1058 >
1059 > Using \ref{introEqaution:RBMotionPI}, one can construct a skew
1060 > matrix,
1061 > \begin{equation}
1062 > (\mathop \Pi \limits^ \bullet   - \mathop \Pi \limits^ \bullet  ^T
1063 > ){\rm{ }} = {\rm{ }}(\Pi  - \Pi ^T ){\rm{ }}(J^{ - 1} \Pi  + \Pi J^{
1064 > - 1} ) + \sum\limits_i {[Q^T F_i (r,Q)X_i^T  - X_i F_i (r,Q)^T Q]} -
1065 > (\Lambda  - \Lambda ^T ) . \label{introEquation:skewMatrixPI}
1066 > \end{equation}
1067 > Since $\Lambda$ is symmetric, the last term of Equation
1068 > \ref{introEquation:skewMatrixPI} is zero, which implies the Lagrange
1069 > multiplier $\Lambda$ is absent from the equations of motion. This
1070 > unique property eliminate the requirement of iterations which can
1071 > not be avoided in other methods\cite{}.
1072 >
1073 > Applying hat-map isomorphism, we obtain the equation of motion for
1074 > angular momentum on body frame
1075 > \begin{equation}
1076 > \dot \pi  = \pi  \times I^{ - 1} \pi  + \sum\limits_i {\left( {Q^T
1077 > F_i (r,Q)} \right) \times X_i }.
1078 > \label{introEquation:bodyAngularMotion}
1079 > \end{equation}
1080 > In the same manner, the equation of motion for rotation matrix is
1081 > given by
1082 > \[
1083 > \dot Q = Qskew(I^{ - 1} \pi )
1084 > \]
1085 >
1086 > \subsection{\label{introSection:SymplecticFreeRB}Symplectic
1087 > Lie-Poisson Integrator for Free Rigid Body}
1088 >
1089 > If there is not external forces exerted on the rigid body, the only
1090 > contribution to the rotational is from the kinetic potential (the
1091 > first term of \ref{ introEquation:bodyAngularMotion}). The free
1092 > rigid body is an example of Lie-Poisson system with Hamiltonian
1093 > function
1094 > \begin{equation}
1095 > T^r (\pi ) = T_1 ^r (\pi _1 ) + T_2^r (\pi _2 ) + T_3^r (\pi _3 )
1096 > \label{introEquation:rotationalKineticRB}
1097 > \end{equation}
1098 > where $T_i^r (\pi _i ) = \frac{{\pi _i ^2 }}{{2I_i }}$ and
1099 > Lie-Poisson structure matrix,
1100 > \begin{equation}
1101 > J(\pi ) = \left( {\begin{array}{*{20}c}
1102 >   0 & {\pi _3 } & { - \pi _2 }  \\
1103 >   { - \pi _3 } & 0 & {\pi _1 }  \\
1104 >   {\pi _2 } & { - \pi _1 } & 0  \\
1105 > \end{array}} \right)
1106 > \end{equation}
1107 > Thus, the dynamics of free rigid body is governed by
1108 > \begin{equation}
1109 > \frac{d}{{dt}}\pi  = J(\pi )\nabla _\pi  T^r (\pi )
1110 > \end{equation}
1111 >
1112 > One may notice that each $T_i^r$ in Equation
1113 > \ref{introEquation:rotationalKineticRB} can be solved exactly. For
1114 > instance, the equations of motion due to $T_1^r$ are given by
1115 > \begin{equation}
1116 > \frac{d}{{dt}}\pi  = R_1 \pi ,\frac{d}{{dt}}Q = QR_1
1117 > \label{introEqaution:RBMotionSingleTerm}
1118 > \end{equation}
1119 > where
1120 > \[ R_1  = \left( {\begin{array}{*{20}c}
1121 >   0 & 0 & 0  \\
1122 >   0 & 0 & {\pi _1 }  \\
1123 >   0 & { - \pi _1 } & 0  \\
1124 > \end{array}} \right).
1125 > \]
1126 > The solutions of Equation \ref{introEqaution:RBMotionSingleTerm} is
1127 > \[
1128 > \pi (\Delta t) = e^{\Delta tR_1 } \pi (0),Q(\Delta t) =
1129 > Q(0)e^{\Delta tR_1 }
1130 > \]
1131 > with
1132 > \[
1133 > e^{\Delta tR_1 }  = \left( {\begin{array}{*{20}c}
1134 >   0 & 0 & 0  \\
1135 >   0 & {\cos \theta _1 } & {\sin \theta _1 }  \\
1136 >   0 & { - \sin \theta _1 } & {\cos \theta _1 }  \\
1137 > \end{array}} \right),\theta _1  = \frac{{\pi _1 }}{{I_1 }}\Delta t.
1138 > \]
1139 > To reduce the cost of computing expensive functions in e^{\Delta
1140 > tR_1 }, we can use Cayley transformation,
1141 > \[
1142 > e^{\Delta tR_1 }  \approx (1 - \Delta tR_1 )^{ - 1} (1 + \Delta tR_1
1143 > )
1144 > \]
1145 >
1146 > The flow maps for $T_2^r$ and $T_2^r$ can be found in the same
1147 > manner.
1148 >
1149 > In order to construct a second-order symplectic method, we split the
1150 > angular kinetic Hamiltonian function can into five terms
1151 > \[
1152 > T^r (\pi ) = \frac{1}{2}T_1 ^r (\pi _1 ) + \frac{1}{2}T_2^r (\pi _2
1153 > ) + T_3^r (\pi _3 ) + \frac{1}{2}T_2^r (\pi _2 ) + \frac{1}{2}T_1 ^r
1154 > (\pi _1 )
1155 > \].
1156 > Concatenating flows corresponding to these five terms, we can obtain
1157 > an symplectic integrator,
1158 > \[
1159 > \varphi _{\Delta t,T^r }  = \varphi _{\Delta t/2,\pi _1 }  \circ
1160 > \varphi _{\Delta t/2,\pi _2 }  \circ \varphi _{\Delta t,\pi _3 }
1161 > \circ \varphi _{\Delta t/2,\pi _2 }  \circ \varphi _{\Delta t/2,\pi
1162 > _1 }.
1163 > \]
1164 >
1165 > The non-canonical Lie-Poisson bracket ${F, G}$ of two function
1166 > $F(\pi )$ and $G(\pi )$ is defined by
1167 > \[
1168 > \{ F,G\} (\pi ) = [\nabla _\pi  F(\pi )]^T J(\pi )\nabla _\pi  G(\pi
1169 > )
1170 > \]
1171 > If the Poisson bracket of a function $F$ with an arbitrary smooth
1172 > function $G$ is zero, $F$ is a \emph{Casimir}, which is the
1173 > conserved quantity in Poisson system. We can easily verify that the
1174 > norm of the angular momentum, $\parallel \pi
1175 > \parallel$, is a \emph{Casimir}. Let$ F(\pi ) = S(\frac{{\parallel
1176 > \pi \parallel ^2 }}{2})$ for an arbitrary function $ S:R \to R$ ,
1177 > then by the chain rule
1178 > \[
1179 > \nabla _\pi  F(\pi ) = S'(\frac{{\parallel \pi \parallel ^2
1180 > }}{2})\pi
1181 > \]
1182 > Thus $ [\nabla _\pi  F(\pi )]^T J(\pi ) =  - S'(\frac{{\parallel \pi
1183 > \parallel ^2 }}{2})\pi  \times \pi  = 0 $. This explicit
1184 > Lie-Poisson integrator is found to be extremely efficient and stable
1185 > which can be explained by the fact the small angle approximation is
1186 > used and the norm of the angular momentum is conserved.
1187 >
1188 > \subsection{\label{introSection:RBHamiltonianSplitting} Hamiltonian
1189 > Splitting for Rigid Body}
1190 >
1191 > The Hamiltonian of rigid body can be separated in terms of kinetic
1192 > energy and potential energy,
1193 > \[
1194 > H = T(p,\pi ) + V(q,Q)
1195 > \]
1196 > The equations of motion corresponding to potential energy and
1197 > kinetic energy are listed in the below table,
1198 > \begin{center}
1199 > \begin{tabular}{|l|l|}
1200 >  \hline
1201 >  % after \\: \hline or \cline{col1-col2} \cline{col3-col4} ...
1202 >  Potential & Kinetic \\
1203 >  $\frac{{dq}}{{dt}} = \frac{p}{m}$ & $\frac{d}{{dt}}q = p$ \\
1204 >  $\frac{d}{{dt}}p =  - \frac{{\partial V}}{{\partial q}}$ & $ \frac{d}{{dt}}p = 0$ \\
1205 >  $\frac{d}{{dt}}Q = 0$ & $ \frac{d}{{dt}}Q = Qskew(I^{ - 1} j)$ \\
1206 >  $ \frac{d}{{dt}}\pi  = \sum\limits_i {\left( {Q^T F_i (r,Q)} \right) \times X_i }$ & $\frac{d}{{dt}}\pi  = \pi  \times I^{ - 1} \pi$\\
1207 >  \hline
1208 > \end{tabular}
1209 > \end{center}
1210 > A second-order symplectic method is now obtained by the composition
1211 > of the flow maps,
1212 > \[
1213 > \varphi _{\Delta t}  = \varphi _{\Delta t/2,V}  \circ \varphi
1214 > _{\Delta t,T}  \circ \varphi _{\Delta t/2,V}.
1215 > \]
1216 > Moreover, \varphi _{\Delta t/2,V} can be divided into two sub-flows
1217 > which corresponding to force and torque respectively,
1218 > \[
1219 > \varphi _{\Delta t/2,V}  = \varphi _{\Delta t/2,F}  \circ \varphi
1220 > _{\Delta t/2,\tau }.
1221 > \]
1222 > Since the associated operators of $\varphi _{\Delta t/2,F} $ and
1223 > $\circ \varphi _{\Delta t/2,\tau }$ are commuted, the composition
1224 > order inside \varphi _{\Delta t/2,V} does not matter.
1225 >
1226 > Furthermore, kinetic potential can be separated to translational
1227 > kinetic term, $T^t (p)$, and rotational kinetic term, $T^r (\pi )$,
1228 > \begin{equation}
1229 > T(p,\pi ) =T^t (p) + T^r (\pi ).
1230 > \end{equation}
1231 > where $ T^t (p) = \frac{1}{2}p^T m^{ - 1} p $ and $T^r (\pi )$ is
1232 > defined by \ref{introEquation:rotationalKineticRB}. Therefore, the
1233 > corresponding flow maps are given by
1234 > \[
1235 > \varphi _{\Delta t,T}  = \varphi _{\Delta t,T^t }  \circ \varphi
1236 > _{\Delta t,T^r }.
1237 > \]
1238 > Finally, we obtain the overall symplectic flow maps for free moving
1239 > rigid body
1240 > \begin{equation}
1241 > \begin{array}{c}
1242 > \varphi _{\Delta t}  = \varphi _{\Delta t/2,F}  \circ \varphi _{\Delta t/2,\tau }  \\
1243 >  \circ \varphi _{\Delta t,T^t }  \circ \varphi _{\Delta t/2,\pi _1 }  \circ \varphi _{\Delta t/2,\pi _2 }  \circ \varphi _{\Delta t,\pi _3 }  \circ \varphi _{\Delta t/2,\pi _2 }  \circ \varphi _{\Delta t/2,\pi _1 }  \\
1244 >  \circ \varphi _{\Delta t/2,\tau }  \circ \varphi _{\Delta t/2,F}  .\\
1245 > \end{array}
1246 > \label{introEquation:overallRBFlowMaps}
1247 > \end{equation}
1248 >
1249 > \section{\label{introSection:langevinDynamics}Langevin Dynamics}
1250 > As an alternative to newtonian dynamics, Langevin dynamics, which
1251 > mimics a simple heat bath with stochastic and dissipative forces,
1252 > has been applied in a variety of studies. This section will review
1253 > the theory of Langevin dynamics simulation. A brief derivation of
1254 > generalized Langevin Dynamics will be given first. Follow that, we
1255 > will discuss the physical meaning of the terms appearing in the
1256 > equation as well as the calculation of friction tensor from
1257 > hydrodynamics theory.
1258 >
1259 > \subsection{\label{introSection:generalizedLangevinDynamics}Generalized Langevin Dynamics}
1260 >
1261 > \begin{equation}
1262 > H = \frac{{p^2 }}{{2m}} + U(x) + H_B  + \Delta U(x,x_1 , \ldots x_N)
1263 > \label{introEquation:bathGLE}
1264 > \end{equation}
1265 > where $H_B$ is harmonic bath Hamiltonian,
1266 > \[
1267 > H_B  =\sum\limits_{\alpha  = 1}^N {\left\{ {\frac{{p_\alpha ^2
1268 > }}{{2m_\alpha  }} + \frac{1}{2}m_\alpha  w_\alpha ^2 } \right\}}
1269 > \]
1270 > and $\Delta U$ is bilinear system-bath coupling,
1271 > \[
1272 > \Delta U =  - \sum\limits_{\alpha  = 1}^N {g_\alpha  x_\alpha  x}
1273 > \]
1274 > Completing the square,
1275 > \[
1276 > H_B  + \Delta U = \sum\limits_{\alpha  = 1}^N {\left\{
1277 > {\frac{{p_\alpha ^2 }}{{2m_\alpha  }} + \frac{1}{2}m_\alpha
1278 > w_\alpha ^2 \left( {x_\alpha   - \frac{{g_\alpha  }}{{m_\alpha
1279 > w_\alpha ^2 }}x} \right)^2 } \right\}}  - \sum\limits_{\alpha  =
1280 > 1}^N {\frac{{g_\alpha ^2 }}{{2m_\alpha  w_\alpha ^2 }}} x^2
1281 > \]
1282 > and putting it back into Eq.~\ref{introEquation:bathGLE},
1283 > \[
1284 > H = \frac{{p^2 }}{{2m}} + W(x) + \sum\limits_{\alpha  = 1}^N
1285 > {\left\{ {\frac{{p_\alpha ^2 }}{{2m_\alpha  }} + \frac{1}{2}m_\alpha
1286 > w_\alpha ^2 \left( {x_\alpha   - \frac{{g_\alpha  }}{{m_\alpha
1287 > w_\alpha ^2 }}x} \right)^2 } \right\}}
1288 > \]
1289 > where
1290 > \[
1291 > W(x) = U(x) - \sum\limits_{\alpha  = 1}^N {\frac{{g_\alpha ^2
1292 > }}{{2m_\alpha  w_\alpha ^2 }}} x^2
1293 > \]
1294 > Since the first two terms of the new Hamiltonian depend only on the
1295 > system coordinates, we can get the equations of motion for
1296 > Generalized Langevin Dynamics by Hamilton's equations
1297 > \ref{introEquation:motionHamiltonianCoordinate,
1298 > introEquation:motionHamiltonianMomentum},
1299 > \begin{align}
1300 > \dot p &=  - \frac{{\partial H}}{{\partial x}}
1301 >       &= m\ddot x
1302 >       &= - \frac{{\partial W(x)}}{{\partial x}} - \sum\limits_{\alpha  = 1}^N {g_\alpha  \left( {x_\alpha   - \frac{{g_\alpha  }}{{m_\alpha  w_\alpha ^2 }}x} \right)}
1303 > \label{introEquation:Lp5}
1304 > \end{align}
1305 > , and
1306 > \begin{align}
1307 > \dot p_\alpha   &=  - \frac{{\partial H}}{{\partial x_\alpha  }}
1308 >                &= m\ddot x_\alpha
1309 >                &= \- m_\alpha  w_\alpha ^2 \left( {x_\alpha   - \frac{{g_\alpha}}{{m_\alpha  w_\alpha ^2 }}x} \right)
1310 > \end{align}
1311 >
1312 > \subsection{\label{introSection:laplaceTransform}The Laplace Transform}
1313 >
1314 > \[
1315 > L(x) = \int_0^\infty  {x(t)e^{ - pt} dt}
1316 > \]
1317 >
1318 > \[
1319 > L(x + y) = L(x) + L(y)
1320 > \]
1321 >
1322 > \[
1323 > L(ax) = aL(x)
1324 > \]
1325 >
1326 > \[
1327 > L(\dot x) = pL(x) - px(0)
1328 > \]
1329 >
1330 > \[
1331 > L(\ddot x) = p^2 L(x) - px(0) - \dot x(0)
1332 > \]
1333 >
1334 > \[
1335 > L\left( {\int_0^t {g(t - \tau )h(\tau )d\tau } } \right) = G(p)H(p)
1336 > \]
1337 >
1338 > Some relatively important transformation,
1339 > \[
1340 > L(\cos at) = \frac{p}{{p^2  + a^2 }}
1341 > \]
1342 >
1343 > \[
1344 > L(\sin at) = \frac{a}{{p^2  + a^2 }}
1345 > \]
1346 >
1347 > \[
1348 > L(1) = \frac{1}{p}
1349 > \]
1350 >
1351 > First, the bath coordinates,
1352 > \[
1353 > p^2 L(x_\alpha  ) - px_\alpha  (0) - \dot x_\alpha  (0) =  - \omega
1354 > _\alpha ^2 L(x_\alpha  ) + \frac{{g_\alpha  }}{{\omega _\alpha
1355 > }}L(x)
1356 > \]
1357 > \[
1358 > L(x_\alpha  ) = \frac{{\frac{{g_\alpha  }}{{\omega _\alpha  }}L(x) +
1359 > px_\alpha  (0) + \dot x_\alpha  (0)}}{{p^2  + \omega _\alpha ^2 }}
1360 > \]
1361 > Then, the system coordinates,
1362 > \begin{align}
1363 > mL(\ddot x) &=  - \frac{1}{p}\frac{{\partial W(x)}}{{\partial x}} -
1364 > \sum\limits_{\alpha  = 1}^N {\left\{ {\frac{{\frac{{g_\alpha
1365 > }}{{\omega _\alpha  }}L(x) + px_\alpha  (0) + \dot x_\alpha
1366 > (0)}}{{p^2  + \omega _\alpha ^2 }} - \frac{{g_\alpha ^2 }}{{m_\alpha
1367 > }}\omega _\alpha ^2 L(x)} \right\}}
1368 > %
1369 > &= - \frac{1}{p}\frac{{\partial W(x)}}{{\partial x}} -
1370 > \sum\limits_{\alpha  = 1}^N {\left\{ { - \frac{{g_\alpha ^2 }}{{m_\alpha  \omega _\alpha ^2 }}\frac{p}{{p^2  + \omega _\alpha ^2 }}pL(x)
1371 > - \frac{p}{{p^2  + \omega _\alpha ^2 }}g_\alpha  x_\alpha  (0)
1372 > - \frac{1}{{p^2  + \omega _\alpha ^2 }}g_\alpha  \dot x_\alpha  (0)} \right\}}
1373 > \end{align}
1374 > Then, the inverse transform,
1375 >
1376 > \begin{align}
1377 > m\ddot x &=  - \frac{{\partial W(x)}}{{\partial x}} -
1378 > \sum\limits_{\alpha  = 1}^N {\left\{ {\left( { - \frac{{g_\alpha ^2
1379 > }}{{m_\alpha  \omega _\alpha ^2 }}} \right)\int_0^t {\cos (\omega
1380 > _\alpha  t)\dot x(t - \tau )d\tau  - \left[ {g_\alpha  x_\alpha  (0)
1381 > - \frac{{g_\alpha  }}{{m_\alpha  \omega _\alpha  }}} \right]\cos
1382 > (\omega _\alpha  t) - \frac{{g_\alpha  \dot x_\alpha  (0)}}{{\omega
1383 > _\alpha  }}\sin (\omega _\alpha  t)} } \right\}}
1384 > %
1385 > &= - \frac{{\partial W(x)}}{{\partial x}} - \int_0^t
1386 > {\sum\limits_{\alpha  = 1}^N {\left( { - \frac{{g_\alpha ^2
1387 > }}{{m_\alpha  \omega _\alpha ^2 }}} \right)\cos (\omega _\alpha
1388 > t)\dot x(t - \tau )d} \tau }  + \sum\limits_{\alpha  = 1}^N {\left\{
1389 > {\left[ {g_\alpha  x_\alpha  (0) - \frac{{g_\alpha  }}{{m_\alpha
1390 > \omega _\alpha  }}} \right]\cos (\omega _\alpha  t) +
1391 > \frac{{g_\alpha  \dot x_\alpha  (0)}}{{\omega _\alpha  }}\sin
1392 > (\omega _\alpha  t)} \right\}}
1393 > \end{align}
1394 >
1395 > \begin{equation}
1396 > m\ddot x =  - \frac{{\partial W}}{{\partial x}} - \int_0^t {\xi
1397 > (t)\dot x(t - \tau )d\tau }  + R(t)
1398 > \label{introEuqation:GeneralizedLangevinDynamics}
1399 > \end{equation}
1400 > %where $ {\xi (t)}$ is friction kernel, $R(t)$ is random force and
1401 > %$W$ is the potential of mean force. $W(x) =  - kT\ln p(x)$
1402 > \[
1403 > \xi (t) = \sum\limits_{\alpha  = 1}^N {\left( { - \frac{{g_\alpha ^2
1404 > }}{{m_\alpha  \omega _\alpha ^2 }}} \right)\cos (\omega _\alpha  t)}
1405 > \]
1406 > For an infinite harmonic bath, we can use the spectral density and
1407 > an integral over frequencies.
1408 >
1409 > \[
1410 > R(t) = \sum\limits_{\alpha  = 1}^N {\left( {g_\alpha  x_\alpha  (0)
1411 > - \frac{{g_\alpha ^2 }}{{m_\alpha  \omega _\alpha ^2 }}x(0)}
1412 > \right)\cos (\omega _\alpha  t)}  + \frac{{\dot x_\alpha
1413 > (0)}}{{\omega _\alpha  }}\sin (\omega _\alpha  t)
1414 > \]
1415 > The random forces depend only on initial conditions.
1416 >
1417 > \subsubsection{\label{introSection:secondFluctuationDissipation}The Second Fluctuation Dissipation Theorem}
1418 > So we can define a new set of coordinates,
1419 > \[
1420 > q_\alpha  (t) = x_\alpha  (t) - \frac{1}{{m_\alpha  \omega _\alpha
1421 > ^2 }}x(0)
1422 > \]
1423 > This makes
1424 > \[
1425 > R(t) = \sum\limits_{\alpha  = 1}^N {g_\alpha  q_\alpha  (t)}
1426 > \]
1427 > And since the $q$ coordinates are harmonic oscillators,
1428 > \[
1429 > \begin{array}{l}
1430 > \left\langle {q_\alpha  (t)q_\alpha  (0)} \right\rangle  = \left\langle {q_\alpha ^2 (0)} \right\rangle \cos (\omega _\alpha  t) \\
1431 > \left\langle {q_\alpha  (t)q_\beta  (0)} \right\rangle  = \delta _{\alpha \beta } \left\langle {q_\alpha  (t)q_\alpha  (0)} \right\rangle  \\
1432 > \end{array}
1433 > \]
1434 >
1435 > \begin{align}
1436 > \left\langle {R(t)R(0)} \right\rangle  &= \sum\limits_\alpha
1437 > {\sum\limits_\beta  {g_\alpha  g_\beta  \left\langle {q_\alpha
1438 > (t)q_\beta  (0)} \right\rangle } }
1439 > %
1440 > &= \sum\limits_\alpha  {g_\alpha ^2 \left\langle {q_\alpha ^2 (0)}
1441 > \right\rangle \cos (\omega _\alpha  t)}
1442 > %
1443 > &= kT\xi (t)
1444 > \end{align}
1445 >
1446 > \begin{equation}
1447 > \xi (t) = \left\langle {R(t)R(0)} \right\rangle
1448 > \label{introEquation:secondFluctuationDissipation}
1449 > \end{equation}
1450 >
1451 > \subsection{\label{introSection:frictionTensor} Friction Tensor}
1452 > Theoretically, the friction kernel can be determined using velocity
1453 > autocorrelation function. However, this approach become impractical
1454 > when the system become more and more complicate. Instead, various
1455 > approaches based on hydrodynamics have been developed to calculate
1456 > the friction coefficients. The friction effect is isotropic in
1457 > Equation, \zeta can be taken as a scalar. In general, friction
1458 > tensor \Xi is a $6\times 6$ matrix given by
1459 > \[
1460 > \Xi  = \left( {\begin{array}{*{20}c}
1461 >   {\Xi _{}^{tt} } & {\Xi _{}^{rt} }  \\
1462 >   {\Xi _{}^{tr} } & {\Xi _{}^{rr} }  \\
1463 > \end{array}} \right).
1464 > \]
1465 > Here, $ {\Xi^{tt} }$ and $ {\Xi^{rr} }$ are translational friction
1466 > tensor and rotational friction tensor respectively, while ${\Xi^{tr}
1467 > }$ is translation-rotation coupling tensor and $ {\Xi^{rt} }$ is
1468 > rotation-translation coupling tensor.
1469 >
1470 > \[
1471 > \left( \begin{array}{l}
1472 > F_t  \\
1473 > \tau  \\
1474 > \end{array} \right) =  - \left( {\begin{array}{*{20}c}
1475 >   {\Xi ^{tt} } & {\Xi ^{rt} }  \\
1476 >   {\Xi ^{tr} } & {\Xi ^{rr} }  \\
1477 > \end{array}} \right)\left( \begin{array}{l}
1478 > v \\
1479 > w \\
1480 > \end{array} \right)
1481 > \]
1482 >
1483 > \subsubsection{\label{introSection:analyticalApproach}The Friction Tensor for Regular Shape}
1484 > For a spherical particle, the translational and rotational friction
1485 > constant can be calculated from Stoke's law,
1486 > \[
1487 > \Xi ^{tt}  = \left( {\begin{array}{*{20}c}
1488 >   {6\pi \eta R} & 0 & 0  \\
1489 >   0 & {6\pi \eta R} & 0  \\
1490 >   0 & 0 & {6\pi \eta R}  \\
1491 > \end{array}} \right)
1492 > \]
1493 > and
1494 > \[
1495 > \Xi ^{rr}  = \left( {\begin{array}{*{20}c}
1496 >   {8\pi \eta R^3 } & 0 & 0  \\
1497 >   0 & {8\pi \eta R^3 } & 0  \\
1498 >   0 & 0 & {8\pi \eta R^3 }  \\
1499 > \end{array}} \right)
1500 > \]
1501 > where $\eta$ is the viscosity of the solvent and $R$ is the
1502 > hydrodynamics radius.
1503 >
1504 > Other non-spherical particles have more complex properties.
1505 >
1506 > \[
1507 > S = \frac{2}{{\sqrt {a^2  - b^2 } }}\ln \frac{{a + \sqrt {a^2  - b^2
1508 > } }}{b}
1509 > \]
1510 >
1511 >
1512 > \[
1513 > S = \frac{2}{{\sqrt {b^2  - a^2 } }}arctg\frac{{\sqrt {b^2  - a^2 }
1514 > }}{a}
1515 > \]
1516 >
1517 > \[
1518 > \begin{array}{l}
1519 > \Xi _a^{tt}  = 16\pi \eta \frac{{a^2  - b^2 }}{{(2a^2  - b^2 )S - 2a}} \\
1520 > \Xi _b^{tt}  = \Xi _c^{tt}  = 32\pi \eta \frac{{a^2  - b^2 }}{{(2a^2  - 3b^2 )S + 2a}} \\
1521 > \end{array}
1522 > \]
1523 >
1524 > \[
1525 > \begin{array}{l}
1526 > \Xi _a^{rr}  = \frac{{32\pi }}{3}\eta \frac{{(a^2  - b^2 )b^2 }}{{2a - b^2 S}} \\
1527 > \Xi _b^{rr}  = \Xi _c^{rr}  = \frac{{32\pi }}{3}\eta \frac{{(a^4  - b^4 )}}{{(2a^2  - b^2 )S - 2a}} \\
1528 > \end{array}
1529 > \]
1530 >
1531 >
1532 > \subsubsection{\label{introSection:approximationApproach}The Friction Tensor for Arbitrary Shape}
1533 > Unlike spherical and other regular shaped molecules, there is not
1534 > analytical solution for friction tensor of any arbitrary shaped
1535 > rigid molecules. The ellipsoid of revolution model and general
1536 > triaxial ellipsoid model have been used to approximate the
1537 > hydrodynamic properties of rigid bodies. However, since the mapping
1538 > from all possible ellipsoidal space, $r$-space, to all possible
1539 > combination of rotational diffusion coefficients, $D$-space is not
1540 > unique\cite{Wegener79} as well as the intrinsic coupling between
1541 > translational and rotational motion of rigid body\cite{}, general
1542 > ellipsoid is not always suitable for modeling arbitrarily shaped
1543 > rigid molecule. A number of studies have been devoted to determine
1544 > the friction tensor for irregularly shaped rigid bodies using more
1545 > advanced method\cite{} where the molecule of interest was modeled by
1546 > combinations of spheres(beads)\cite{} and the hydrodynamics
1547 > properties of the molecule can be calculated using the hydrodynamic
1548 > interaction tensor. Let us consider a rigid assembly of $N$ beads
1549 > immersed in a continuous medium. Due to hydrodynamics interaction,
1550 > the ``net'' velocity of $i$th bead, $v'_i$ is different than its
1551 > unperturbed velocity $v_i$,
1552 > \[
1553 > v'_i  = v_i  - \sum\limits_{j \ne i} {T_{ij} F_j }
1554 > \]
1555 > where $F_i$ is the frictional force, and $T_{ij}$ is the
1556 > hydrodynamic interaction tensor. The friction force of $i$th bead is
1557 > proportional to its ``net'' velocity
1558 > \begin{equation}
1559 > F_i  = \zeta _i v_i  - \zeta _i \sum\limits_{j \ne i} {T_{ij} F_j }.
1560 > \label{introEquation:tensorExpression}
1561 > \end{equation}
1562 > This equation is the basis for deriving the hydrodynamic tensor. In
1563 > 1930, Oseen and Burgers gave a simple solution to Equation
1564 > \ref{introEquation:tensorExpression}
1565 > \begin{equation}
1566 > T_{ij}  = \frac{1}{{8\pi \eta r_{ij} }}\left( {I + \frac{{R_{ij}
1567 > R_{ij}^T }}{{R_{ij}^2 }}} \right).
1568 > \label{introEquation:oseenTensor}
1569 > \end{equation}
1570 > Here $R_{ij}$ is the distance vector between bead $i$ and bead $j$.
1571 > A second order expression for element of different size was
1572 > introduced by Rotne and Prager\cite{} and improved by Garc\'{i}a de
1573 > la Torre and Bloomfield,
1574 > \begin{equation}
1575 > T_{ij}  = \frac{1}{{8\pi \eta R_{ij} }}\left[ {\left( {I +
1576 > \frac{{R_{ij} R_{ij}^T }}{{R_{ij}^2 }}} \right) + R\frac{{\sigma
1577 > _i^2  + \sigma _j^2 }}{{r_{ij}^2 }}\left( {\frac{I}{3} -
1578 > \frac{{R_{ij} R_{ij}^T }}{{R_{ij}^2 }}} \right)} \right].
1579 > \label{introEquation:RPTensorNonOverlapped}
1580 > \end{equation}
1581 > Both of the Equation \ref{introEquation:oseenTensor} and Equation
1582 > \ref{introEquation:RPTensorNonOverlapped} have an assumption $R_{ij}
1583 > \ge \sigma _i  + \sigma _j$. An alternative expression for
1584 > overlapping beads with the same radius, $\sigma$, is given by
1585 > \begin{equation}
1586 > T_{ij}  = \frac{1}{{6\pi \eta R_{ij} }}\left[ {\left( {1 -
1587 > \frac{2}{{32}}\frac{{R_{ij} }}{\sigma }} \right)I +
1588 > \frac{2}{{32}}\frac{{R_{ij} R_{ij}^T }}{{R_{ij} \sigma }}} \right]
1589 > \label{introEquation:RPTensorOverlapped}
1590 > \end{equation}
1591 >
1592 > %Bead Modeling
1593 >
1594 > \[
1595 > B = \left( {\begin{array}{*{20}c}
1596 >   {T_{11} } &  \ldots  & {T_{1N} }  \\
1597 >    \vdots  &  \ddots  &  \vdots   \\
1598 >   {T_{N1} } &  \cdots  & {T_{NN} }  \\
1599 > \end{array}} \right)
1600 > \]
1601 >
1602 > \[
1603 > C = B^{ - 1}  = \left( {\begin{array}{*{20}c}
1604 >   {C_{11} } &  \ldots  & {C_{1N} }  \\
1605 >    \vdots  &  \ddots  &  \vdots   \\
1606 >   {C_{N1} } &  \cdots  & {C_{NN} }  \\
1607 > \end{array}} \right)
1608 > \]
1609 >
1610 > \begin{equation}
1611 > \begin{array}{l}
1612 > \Xi _{}^{tt}  = \sum\limits_i {\sum\limits_j {C_{ij} } } , \\
1613 > \Xi _{}^{tr}  = \Xi _{}^{rt}  = \sum\limits_i {\sum\limits_j {U_i C_{ij} } } , \\
1614 > \Xi _{}^{rr}  =  - \sum\limits_i {\sum\limits_j {U_i C_{ij} } } U_j  \\
1615 > \end{array}
1616 > \end{equation}
1617 > where
1618 > \[
1619 > U_i  = \left( {\begin{array}{*{20}c}
1620 >   0 & { - z_i } & {y_i }  \\
1621 >   {z_i } & 0 & { - x_i }  \\
1622 >   { - y_i } & {x_i } & 0  \\
1623 > \end{array}} \right)
1624 > \]
1625 >
1626 > \[
1627 > r_{OR}  = \left( \begin{array}{l}
1628 > x_{OR}  \\
1629 > y_{OR}  \\
1630 > z_{OR}  \\
1631 > \end{array} \right) = \left( {\begin{array}{*{20}c}
1632 >   {\Xi _{yy}^{rr}  + \Xi _{zz}^{rr} } & { - \Xi _{xy}^{rr} } & { - \Xi _{xz}^{rr} }  \\
1633 >   { - \Xi _{yx}^{rr} } & {\Xi _{zz}^{rr}  + \Xi _{xx}^{rr} } & { - \Xi _{yz}^{rr} }  \\
1634 >   { - \Xi _{zx}^{rr} } & { - \Xi _{yz}^{rr} } & {\Xi _{xx}^{rr}  + \Xi _{yy}^{rr} }  \\
1635 > \end{array}} \right)^{ - 1} \left( \begin{array}{l}
1636 > \Xi _{yz}^{tr}  - \Xi _{zy}^{tr}  \\
1637 > \Xi _{zx}^{tr}  - \Xi _{xz}^{tr}  \\
1638 > \Xi _{xy}^{tr}  - \Xi _{yx}^{tr}  \\
1639 > \end{array} \right)
1640 > \]
1641 >
1642 > \[
1643 > U_{OR}  = \left( {\begin{array}{*{20}c}
1644 >   0 & { - z_{OR} } & {y_{OR} }  \\
1645 >   {z_i } & 0 & { - x_{OR} }  \\
1646 >   { - y_{OR} } & {x_{OR} } & 0  \\
1647 > \end{array}} \right)
1648 > \]
1649 >
1650 > \[
1651 > \begin{array}{l}
1652 > \Xi _R^{tt}  = \Xi _{}^{tt}  \\
1653 > \Xi _R^{tr}  = \Xi _R^{rt}  = \Xi _{}^{tr}  - U_{OR} \Xi _{}^{tt}  \\
1654 > \Xi _R^{rr}  = \Xi _{}^{rr}  - U_{OR} \Xi _{}^{tt} U_{OR}  + \Xi _{}^{tr} U_{OR}  - U_{OR} \Xi _{}^{tr} ^{^T }  \\
1655 > \end{array}
1656 > \]
1657 >
1658 > \[
1659 > D_R  = \left( {\begin{array}{*{20}c}
1660 >   {D_R^{tt} } & {D_R^{rt} }  \\
1661 >   {D_R^{tr} } & {D_R^{rr} }  \\
1662 > \end{array}} \right) = k_b T\left( {\begin{array}{*{20}c}
1663 >   {\Xi _R^{tt} } & {\Xi _R^{rt} }  \\
1664 >   {\Xi _R^{tr} } & {\Xi _R^{rr} }  \\
1665 > \end{array}} \right)^{ - 1}
1666 > \]
1667 >
1668 >
1669 > %Approximation Methods
1670 >
1671 > %\section{\label{introSection:correlationFunctions}Correlation Functions}

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines