ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/tengDissertation/Introduction.tex
(Generate patch)

Comparing trunk/tengDissertation/Introduction.tex (file contents):
Revision 2938 by tim, Mon Jul 17 15:28:44 2006 UTC vs.
Revision 2942 by tim, Mon Jul 17 20:54:17 2006 UTC

# Line 67 | Line 67 | All of these conserved quantities are important factor
67   \begin{equation}E = T + V. \label{introEquation:energyConservation}
68   \end{equation}
69   All of these conserved quantities are important factors to determine
70 < the quality of numerical integration schemes for rigid bodies
71 < \cite{Dullweber1997}.
70 > the quality of numerical integration schemes for rigid
71 > bodies.\cite{Dullweber1997}
72  
73   \subsection{\label{introSection:lagrangian}Lagrangian Mechanics}
74  
# Line 178 | Line 178 | equation of motion. Due to their symmetrical formula,
178   where Eq.~\ref{introEquation:motionHamiltonianCoordinate} and
179   Eq.~\ref{introEquation:motionHamiltonianMomentum} are Hamilton's
180   equation of motion. Due to their symmetrical formula, they are also
181 < known as the canonical equations of motions \cite{Goldstein2001}.
181 > known as the canonical equations of motions.\cite{Goldstein2001}
182  
183   An important difference between Lagrangian approach and the
184   Hamiltonian approach is that the Lagrangian is considered to be a
# Line 188 | Line 188 | coordinate and its time derivative as independent vari
188   Hamiltonian Mechanics is more appropriate for application to
189   statistical mechanics and quantum mechanics, since it treats the
190   coordinate and its time derivative as independent variables and it
191 < only works with 1st-order differential equations\cite{Marion1990}.
191 > only works with 1st-order differential equations.\cite{Marion1990}
192   In Newtonian Mechanics, a system described by conservative forces
193   conserves the total energy
194   (Eq.~\ref{introEquation:energyConservation}). It follows that
# Line 416 | Line 416 | average. It states that the time average and average o
416   many-body system in Statistical Mechanics. Fortunately, the Ergodic
417   Hypothesis makes a connection between time average and the ensemble
418   average. It states that the time average and average over the
419 < statistical ensemble are identical \cite{Frenkel1996, Leach2001}:
419 > statistical ensemble are identical:\cite{Frenkel1996, Leach2001}
420   \begin{equation}
421   \langle A(q , p) \rangle_t = \mathop {\lim }\limits_{t \to \infty }
422   \frac{1}{t}\int\limits_0^t {A(q(t),p(t))dt = \int\limits_\Gamma
# Line 434 | Line 434 | Sec.~\ref{introSection:molecularDynamics} will be the
434   utilized. Or if the system lends itself to a time averaging
435   approach, the Molecular Dynamics techniques in
436   Sec.~\ref{introSection:molecularDynamics} will be the best
437 < choice\cite{Frenkel1996}.
437 > choice.\cite{Frenkel1996}
438  
439   \section{\label{introSection:geometricIntegratos}Geometric Integrators}
440   A variety of numerical integrators have been proposed to simulate
441   the motions of atoms in MD simulation. They usually begin with
442 < initial conditions and move the objects in the direction governed
443 < by the differential equations. However, most of them ignore the
444 < hidden physical laws contained within the equations. Since 1990,
445 < geometric integrators, which preserve various phase-flow invariants
446 < such as symplectic structure, volume and time reversal symmetry,
447 < were developed to address this issue\cite{Dullweber1997,
448 < McLachlan1998, Leimkuhler1999}. The velocity Verlet method, which
449 < happens to be a simple example of symplectic integrator, continues
450 < to gain popularity in the molecular dynamics community. This fact
451 < can be partly explained by its geometric nature.
442 > initial conditions and move the objects in the direction governed by
443 > the differential equations. However, most of them ignore the hidden
444 > physical laws contained within the equations. Since 1990, geometric
445 > integrators, which preserve various phase-flow invariants such as
446 > symplectic structure, volume and time reversal symmetry, were
447 > developed to address this issue.\cite{Dullweber1997, McLachlan1998,
448 > Leimkuhler1999} The velocity Verlet method, which happens to be a
449 > simple example of symplectic integrator, continues to gain
450 > popularity in the molecular dynamics community. This fact can be
451 > partly explained by its geometric nature.
452  
453   \subsection{\label{introSection:symplecticManifold}Symplectic Manifolds}
454   A \emph{manifold} is an abstract mathematical space. It looks
# Line 457 | Line 457 | viewed as a whole. A \emph{differentiable manifold} (a
457   surface of Earth. It seems to be flat locally, but it is round if
458   viewed as a whole. A \emph{differentiable manifold} (also known as
459   \emph{smooth manifold}) is a manifold on which it is possible to
460 < apply calculus\cite{Hirsch1997}. A \emph{symplectic manifold} is
460 > apply calculus.\cite{Hirsch1997} A \emph{symplectic manifold} is
461   defined as a pair $(M, \omega)$ which consists of a
462   \emph{differentiable manifold} $M$ and a close, non-degenerate,
463   bilinear symplectic form, $\omega$. A symplectic form on a vector
464   space $V$ is a function $\omega(x, y)$ which satisfies
465   $\omega(\lambda_1x_1+\lambda_2x_2, y) = \lambda_1\omega(x_1, y)+
466   \lambda_2\omega(x_2, y)$, $\omega(x, y) = - \omega(y, x)$ and
467 < $\omega(x, x) = 0$\cite{McDuff1998}. The cross product operation in
467 > $\omega(x, x) = 0$.\cite{McDuff1998} The cross product operation in
468   vector field is an example of symplectic form. One of the
469   motivations to study \emph{symplectic manifolds} in Hamiltonian
470   Mechanics is that a symplectic manifold can represent all possible
471   configurations of the system and the phase space of the system can
472 < be described by it's cotangent bundle\cite{Jost2002}. Every
472 > be described by it's cotangent bundle.\cite{Jost2002} Every
473   symplectic manifold is even dimensional. For instance, in Hamilton
474   equations, coordinate and momentum always appear in pairs.
475  
# Line 496 | Line 496 | called a \emph{Hamiltonian vector field}. Another gene
496   \label{introEquation:compactHamiltonian}
497   \end{equation}In this case, $f$ is
498   called a \emph{Hamiltonian vector field}. Another generalization of
499 < Hamiltonian dynamics is Poisson Dynamics\cite{Olver1986},
499 > Hamiltonian dynamics is Poisson Dynamics,\cite{Olver1986}
500   \begin{equation}
501   \dot x = J(x)\nabla _x H \label{introEquation:poissonHamiltonian}
502   \end{equation}
503 < The most obvious change being that matrix $J$ now depends on $x$.
503 > where the most obvious change being that matrix $J$ now depends on
504 > $x$.
505  
506   \subsection{\label{introSection:exactFlow}Exact Propagator}
507  
# Line 620 | Line 621 | variational methods can capture the decay of energy
621   Generating functions\cite{Channell1990} tend to lead to methods
622   which are cumbersome and difficult to use. In dissipative systems,
623   variational methods can capture the decay of energy
624 < accurately\cite{Kane2000}. Since they are geometrically unstable
624 > accurately.\cite{Kane2000} Since they are geometrically unstable
625   against non-Hamiltonian perturbations, ordinary implicit Runge-Kutta
626 < methods are not suitable for Hamiltonian system. Recently, various
627 < high-order explicit Runge-Kutta methods \cite{Owren1992,Chen2003}
628 < have been developed to overcome this instability. However, due to
629 < computational penalty involved in implementing the Runge-Kutta
630 < methods, they have not attracted much attention from the Molecular
631 < Dynamics community. Instead, splitting methods have been widely
632 < accepted since they exploit natural decompositions of the
633 < system\cite{Tuckerman1992, McLachlan1998}.
626 > methods are not suitable for Hamiltonian
627 > system.\cite{Cartwright1992} Recently, various high-order explicit
628 > Runge-Kutta methods \cite{Owren1992,Chen2003} have been developed to
629 > overcome this instability. However, due to computational penalty
630 > involved in implementing the Runge-Kutta methods, they have not
631 > attracted much attention from the Molecular Dynamics community.
632 > Instead, splitting methods have been widely accepted since they
633 > exploit natural decompositions of the system.\cite{McLachlan1998,
634 > Tuckerman1992}
635  
636   \subsubsection{\label{introSection:splittingMethod}\textbf{Splitting Methods}}
637  
# Line 652 | Line 654 | simple first order expression is then given by the Lie
654   problem. If $H_1$ and $H_2$ can be integrated using exact
655   propagators $\varphi_1(t)$ and $\varphi_2(t)$, respectively, a
656   simple first order expression is then given by the Lie-Trotter
657 < formula
657 > formula\cite{Trotter1959}
658   \begin{equation}
659   \varphi _h  = \varphi _{1,h}  \circ \varphi _{2,h},
660   \label{introEquation:firstOrderSplitting}
# Line 673 | Line 675 | local errors proportional to $h^2$, while the Strang s
675   The Lie-Trotter
676   splitting(Eq.~\ref{introEquation:firstOrderSplitting}) introduces
677   local errors proportional to $h^2$, while the Strang splitting gives
678 < a second-order decomposition,
678 > a second-order decomposition,\cite{Strang1968}
679   \begin{equation}
680   \varphi _h  = \varphi _{1,h/2}  \circ \varphi _{2,h}  \circ \varphi
681   _{1,h/2} , \label{introEquation:secondOrderSplitting}
# Line 748 | Line 750 | q(\Delta t)} \right]. %
750  
751   \subsubsection{\label{introSection:errorAnalysis}\textbf{Error Analysis and Higher Order Methods}}
752  
753 < The Baker-Campbell-Hausdorff formula can be used to determine the
754 < local error of a splitting method in terms of the commutator of the
755 < operators(Eq.~\ref{introEquation:exponentialOperator}) associated with
756 < the sub-propagator. For operators $hX$ and $hY$ which are associated
757 < with $\varphi_1(t)$ and $\varphi_2(t)$ respectively , we have
753 > The Baker-Campbell-Hausdorff formula\cite{Gilmore1974} can be used
754 > to determine the local error of a splitting method in terms of the
755 > commutator of the
756 > operators(Eq.~\ref{introEquation:exponentialOperator}) associated
757 > with the sub-propagator. For operators $hX$ and $hY$ which are
758 > associated with $\varphi_1(t)$ and $\varphi_2(t)$ respectively , we
759 > have
760   \begin{equation}
761   \exp (hX + hY) = \exp (hZ)
762   \end{equation}
# Line 782 | Line 786 | order methods. Yoshida proposed an elegant way to comp
786   \end{equation}
787   A careful choice of coefficient $a_1 \ldots b_m$ will lead to higher
788   order methods. Yoshida proposed an elegant way to compose higher
789 < order methods based on symmetric splitting\cite{Yoshida1990}. Given
789 > order methods based on symmetric splitting.\cite{Yoshida1990} Given
790   a symmetric second order base method $ \varphi _h^{(2)} $, a
791   fourth-order symmetric method can be constructed by composing,
792   \[
# Line 943 | Line 947 | evaluation is to apply spherical cutoffs where particl
947   %cutoff and minimum image convention
948   Another important technique to improve the efficiency of force
949   evaluation is to apply spherical cutoffs where particles farther
950 < than a predetermined distance are not included in the calculation
951 < \cite{Frenkel1996}. The use of a cutoff radius will cause a
952 < discontinuity in the potential energy curve. Fortunately, one can
950 > than a predetermined distance are not included in the
951 > calculation.\cite{Frenkel1996} The use of a cutoff radius will cause
952 > a discontinuity in the potential energy curve. Fortunately, one can
953   shift a simple radial potential to ensure the potential curve go
954   smoothly to zero at the cutoff radius. The cutoff strategy works
955   well for Lennard-Jones interaction because of its short range
# Line 954 | Line 958 | with rapid and absolute convergence, has proved to min
958   in simulations. The Ewald summation, in which the slowly decaying
959   Coulomb potential is transformed into direct and reciprocal sums
960   with rapid and absolute convergence, has proved to minimize the
961 < periodicity artifacts in liquid simulations. Taking advantage
962 < of fast Fourier transform (FFT) techniques for calculating discrete Fourier
963 < transforms, the particle mesh-based
961 > periodicity artifacts in liquid simulations. Taking advantage of
962 > fast Fourier transform (FFT) techniques for calculating discrete
963 > Fourier transforms, the particle mesh-based
964   methods\cite{Hockney1981,Shimada1993, Luty1994} are accelerated from
965   $O(N^{3/2})$ to $O(N logN)$. An alternative approach is the
966   \emph{fast multipole method}\cite{Greengard1987, Greengard1994},
# Line 966 | Line 970 | charge-neutralized Coulomb potential method developed
970   simulation community, these two methods are difficult to implement
971   correctly and efficiently. Instead, we use a damped and
972   charge-neutralized Coulomb potential method developed by Wolf and
973 < his coworkers\cite{Wolf1999}. The shifted Coulomb potential for
973 > his coworkers.\cite{Wolf1999} The shifted Coulomb potential for
974   particle $i$ and particle $j$ at distance $r_{rj}$ is given by:
975   \begin{equation}
976   V(r_{ij})= \frac{q_i q_j \textrm{erfc}(\alpha
# Line 1029 | Line 1033 | Fourier transforming raw data from a series of neutron
1033   function}, is of most fundamental importance to liquid theory.
1034   Experimentally, pair distribution functions can be gathered by
1035   Fourier transforming raw data from a series of neutron diffraction
1036 < experiments and integrating over the surface factor
1037 < \cite{Powles1973}. The experimental results can serve as a criterion
1038 < to justify the correctness of a liquid model. Moreover, various
1039 < equilibrium thermodynamic and structural properties can also be
1040 < expressed in terms of the radial distribution function
1041 < \cite{Allen1987}. The pair distribution functions $g(r)$ gives the
1042 < probability that a particle $i$ will be located at a distance $r$
1043 < from a another particle $j$ in the system
1036 > experiments and integrating over the surface
1037 > factor.\cite{Powles1973} The experimental results can serve as a
1038 > criterion to justify the correctness of a liquid model. Moreover,
1039 > various equilibrium thermodynamic and structural properties can also
1040 > be expressed in terms of the radial distribution
1041 > function.\cite{Allen1987} The pair distribution functions $g(r)$
1042 > gives the probability that a particle $i$ will be located at a
1043 > distance $r$ from a another particle $j$ in the system
1044   \begin{equation}
1045   g(r) = \frac{V}{{N^2 }}\left\langle {\sum\limits_i {\sum\limits_{j
1046   \ne i} {\delta (r - r_{ij} )} } } \right\rangle = \frac{\rho
# Line 1097 | Line 1101 | simulations, rigid bodies are used to simplify protein
1101   movement of the objects in 3D gaming engines or other physics
1102   simulators is governed by rigid body dynamics. In molecular
1103   simulations, rigid bodies are used to simplify protein-protein
1104 < docking studies\cite{Gray2003}.
1104 > docking studies.\cite{Gray2003}
1105  
1106   It is very important to develop stable and efficient methods to
1107   integrate the equations of motion for orientational degrees of
# Line 1109 | Line 1113 | still remain. A singularity-free representation utiliz
1113   angles can overcome this difficulty\cite{Barojas1973}, the
1114   computational penalty and the loss of angular momentum conservation
1115   still remain. A singularity-free representation utilizing
1116 < quaternions was developed by Evans in 1977\cite{Evans1977}.
1116 > quaternions was developed by Evans in 1977.\cite{Evans1977}
1117   Unfortunately, this approach used a nonseparable Hamiltonian
1118   resulting from the quaternion representation, which prevented the
1119   symplectic algorithm from being utilized. Another different approach
# Line 1118 | Line 1122 | the SHAKE and Rattle algorithms also converge very slo
1122   deriving from potential energy and constraint forces which are used
1123   to guarantee the rigidness. However, due to their iterative nature,
1124   the SHAKE and Rattle algorithms also converge very slowly when the
1125 < number of constraints increases\cite{Ryckaert1977, Andersen1983}.
1125 > number of constraints increases.\cite{Ryckaert1977, Andersen1983}
1126  
1127   A break-through in geometric literature suggests that, in order to
1128   develop a long-term integration scheme, one should preserve the
# Line 1128 | Line 1132 | An alternative method using the quaternion representat
1132   proposed to evolve the Hamiltonian system in a constraint manifold
1133   by iteratively satisfying the orthogonality constraint $Q^T Q = 1$.
1134   An alternative method using the quaternion representation was
1135 < developed by Omelyan\cite{Omelyan1998}. However, both of these
1135 > developed by Omelyan.\cite{Omelyan1998} However, both of these
1136   methods are iterative and inefficient. In this section, we descibe a
1137   symplectic Lie-Poisson integrator for rigid bodies developed by
1138   Dullweber and his coworkers\cite{Dullweber1997} in depth.
1139  
1140   \subsection{\label{introSection:constrainedHamiltonianRB}Constrained Hamiltonian for Rigid Bodies}
1141 < The Hamiltonian of a rigid body is given by
1141 > The Hamiltonian of a rigid body is given by
1142   \begin{equation}
1143   H = \frac{1}{2}(p^T m^{ - 1} p) + \frac{1}{2}tr(PJ^{ - 1} P) +
1144   V(q,Q) + \frac{1}{2}tr[(QQ^T  - 1)\Lambda ].
# Line 1248 | Line 1252 | motion. This unique property eliminates the requiremen
1252   Eq.~\ref{introEquation:skewMatrixPI} is zero, which implies the
1253   Lagrange multiplier $\Lambda$ is absent from the equations of
1254   motion. This unique property eliminates the requirement of
1255 < iterations which can not be avoided in other methods\cite{Kol1997,
1256 < Omelyan1998}. Applying the hat-map isomorphism, we obtain the
1255 > iterations which can not be avoided in other methods.\cite{Kol1997,
1256 > Omelyan1998} Applying the hat-map isomorphism, we obtain the
1257   equation of motion for angular momentum in the body frame
1258   \begin{equation}
1259   \dot \pi  = \pi  \times I^{ - 1} \pi  + \sum\limits_i {\left( {Q^T
# Line 1355 | Line 1359 | norm of the angular momentum, $\parallel \pi
1359   function $G$ is zero, $F$ is a \emph{Casimir}, which is the
1360   conserved quantity in Poisson system. We can easily verify that the
1361   norm of the angular momentum, $\parallel \pi
1362 < \parallel$, is a \emph{Casimir}\cite{McLachlan1993}. Let $F(\pi ) = S(\frac{{\parallel
1362 > \parallel$, is a \emph{Casimir}.\cite{McLachlan1993} Let $F(\pi ) = S(\frac{{\parallel
1363   \pi \parallel ^2 }}{2})$ for an arbitrary function $ S:R \to R$ ,
1364   then by the chain rule
1365   \[
# Line 1376 | Line 1380 | of motion corresponding to potential energy and kineti
1380   The Hamiltonian of rigid body can be separated in terms of kinetic
1381   energy and potential energy, $H = T(p,\pi ) + V(q,Q)$. The equations
1382   of motion corresponding to potential energy and kinetic energy are
1383 < listed in Table~\ref{introTable:rbEquations}.
1383 > listed in Table~\ref{introTable:rbEquations}.
1384   \begin{table}
1385   \caption{EQUATIONS OF MOTION DUE TO POTENTIAL AND KINETIC ENERGIES}
1386   \label{introTable:rbEquations}

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines