| 1448 |  | \begin{eqnarray} | 
| 1449 |  | \varphi _{\Delta t}  &=& \varphi _{\Delta t/2,F}  \circ \varphi _{\Delta t/2,\tau }  \notag\\ | 
| 1450 |  | & & \circ \varphi _{\Delta t,T^t }  \circ \varphi _{\Delta t/2,\pi _1 }  \circ \varphi _{\Delta t/2,\pi _2 }  \circ \varphi _{\Delta t,\pi _3 }  \circ \varphi _{\Delta t/2,\pi _2 }  \circ \varphi _{\Delta t/2,\pi _1 }  \notag\\ | 
| 1451 | < | & & \circ \varphi _{\Delta t/2,\tau }  \circ \varphi _{\Delta t/2,F}  .\\ | 
| 1451 | > | & & \circ \varphi _{\Delta t/2,\tau }  \circ \varphi _{\Delta t/2,F}  . | 
| 1452 |  | \label{introEquation:overallRBFlowMaps} | 
| 1453 |  | \end{eqnarray} | 
| 1454 |  |  | 
| 1674 |  | \left\langle {q_\alpha  (t)q_\beta  (0)} \right\rangle & = &\delta _{\alpha \beta } \left\langle {q_\alpha  (t)q_\alpha  (0)} \right\rangle  \\ | 
| 1675 |  | \left\langle {R(t)R(0)} \right\rangle & = & \sum\limits_\alpha  {\sum\limits_\beta  {g_\alpha  g_\beta  \left\langle {q_\alpha  (t)q_\beta  (0)} \right\rangle } }  \\ | 
| 1676 |  | & = &\sum\limits_\alpha  {g_\alpha ^2 \left\langle {q_\alpha ^2 (0)} \right\rangle \cos (\omega _\alpha  t)}  \\ | 
| 1677 | < | & = &kT\xi (t) \\ | 
| 1677 | > | & = &kT\xi (t) | 
| 1678 |  | \end{eqnarray*} | 
| 1679 |  | Thus, we recover the \emph{second fluctuation dissipation theorem} | 
| 1680 |  | \begin{equation} |