ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/tengDissertation/Introduction.tex
(Generate patch)

Comparing trunk/tengDissertation/Introduction.tex (file contents):
Revision 2713 by tim, Sat Apr 15 01:08:18 2006 UTC vs.
Revision 2718 by tim, Tue Apr 18 04:11:56 2006 UTC

# Line 1247 | Line 1247 | rigid body
1247   \end{equation}
1248  
1249   \section{\label{introSection:langevinDynamics}Langevin Dynamics}
1250 <
1251 < \subsection{\label{introSection:LDIntroduction}Introduction and application of Langevin Dynamics}
1250 > As an alternative to newtonian dynamics, Langevin dynamics, which
1251 > mimics a simple heat bath with stochastic and dissipative forces,
1252 > has been applied in a variety of studies. This section will review
1253 > the theory of Langevin dynamics simulation. A brief derivation of
1254 > generalized Langevin Dynamics will be given first. Follow that, we
1255 > will discuss the physical meaning of the terms appearing in the
1256 > equation as well as the calculation of friction tensor from
1257 > hydrodynamics theory.
1258  
1259   \subsection{\label{introSection:generalizedLangevinDynamics}Generalized Langevin Dynamics}
1260  
# Line 1442 | Line 1448 | And since the $q$ coordinates are harmonic oscillators
1448   \label{introEquation:secondFluctuationDissipation}
1449   \end{equation}
1450  
1445 \section{\label{introSection:hydroynamics}Hydrodynamics}
1446
1451   \subsection{\label{introSection:frictionTensor} Friction Tensor}
1452 < \subsection{\label{introSection:analyticalApproach}Analytical
1453 < Approach}
1454 <
1455 < \subsection{\label{introSection:approximationApproach}Approximation
1456 < Approach}
1452 > Theoretically, the friction kernel can be determined using velocity
1453 > autocorrelation function. However, this approach become impractical
1454 > when the system become more and more complicate. Instead, various
1455 > approaches based on hydrodynamics have been developed to calculate
1456 > the friction coefficients. The friction effect is isotropic in
1457 > Equation, \zeta can be taken as a scalar. In general, friction
1458 > tensor \Xi is a $6\times 6$ matrix given by
1459 > \[
1460 > \Xi  = \left( {\begin{array}{*{20}c}
1461 >   {\Xi _{}^{tt} } & {\Xi _{}^{rt} }  \\
1462 >   {\Xi _{}^{tr} } & {\Xi _{}^{rr} }  \\
1463 > \end{array}} \right).
1464 > \]
1465 > Here, $ {\Xi^{tt} }$ and $ {\Xi^{rr} }$ are translational friction
1466 > tensor and rotational resistance (friction) tensor respectively,
1467 > while ${\Xi^{tr} }$ is translation-rotation coupling tensor and $
1468 > {\Xi^{rt} }$ is rotation-translation coupling tensor. When a
1469 > particle moves in a fluid, it may experience friction force or
1470 > torque along the opposite direction of the velocity or angular
1471 > velocity,
1472 > \[
1473 > \left( \begin{array}{l}
1474 > F_R  \\
1475 > \tau _R  \\
1476 > \end{array} \right) =  - \left( {\begin{array}{*{20}c}
1477 >   {\Xi ^{tt} } & {\Xi ^{rt} }  \\
1478 >   {\Xi ^{tr} } & {\Xi ^{rr} }  \\
1479 > \end{array}} \right)\left( \begin{array}{l}
1480 > v \\
1481 > w \\
1482 > \end{array} \right)
1483 > \]
1484 > where $F_r$ is the friction force and $\tau _R$ is the friction
1485 > toque.
1486  
1487 < \subsection{\label{introSection:centersRigidBody}Centers of Rigid
1488 < Body}
1487 > \subsubsection{\label{introSection:resistanceTensorRegular}The Resistance Tensor for Regular Shape}
1488 >
1489 > For a spherical particle, the translational and rotational friction
1490 > constant can be calculated from Stoke's law,
1491 > \[
1492 > \Xi ^{tt}  = \left( {\begin{array}{*{20}c}
1493 >   {6\pi \eta R} & 0 & 0  \\
1494 >   0 & {6\pi \eta R} & 0  \\
1495 >   0 & 0 & {6\pi \eta R}  \\
1496 > \end{array}} \right)
1497 > \]
1498 > and
1499 > \[
1500 > \Xi ^{rr}  = \left( {\begin{array}{*{20}c}
1501 >   {8\pi \eta R^3 } & 0 & 0  \\
1502 >   0 & {8\pi \eta R^3 } & 0  \\
1503 >   0 & 0 & {8\pi \eta R^3 }  \\
1504 > \end{array}} \right)
1505 > \]
1506 > where $\eta$ is the viscosity of the solvent and $R$ is the
1507 > hydrodynamics radius.
1508  
1509 < \section{\label{introSection:correlationFunctions}Correlation Functions}
1509 > Other non-spherical shape, such as cylinder and ellipsoid
1510 > \textit{etc}, are widely used as reference for developing new
1511 > hydrodynamics theory, because their properties can be calculated
1512 > exactly. In 1936, Perrin extended Stokes's law to general ellipsoid,
1513 > also called a triaxial ellipsoid, which is given in Cartesian
1514 > coordinates by
1515 > \[
1516 > \frac{{x^2 }}{{a^2 }} + \frac{{y^2 }}{{b^2 }} + \frac{{z^2 }}{{c^2
1517 > }} = 1
1518 > \]
1519 > where the semi-axes are of lengths $a$, $b$, and $c$. Unfortunately,
1520 > due to the complexity of the elliptic integral, only the ellipsoid
1521 > with the restriction of two axes having to be equal, \textit{i.e.}
1522 > prolate($ a \ge b = c$) and oblate ($ a < b = c $), can be solved
1523 > exactly. Introducing an elliptic integral parameter $S$ for prolate,
1524 > \[
1525 > S = \frac{2}{{\sqrt {a^2  - b^2 } }}\ln \frac{{a + \sqrt {a^2  - b^2
1526 > } }}{b},
1527 > \]
1528 > and oblate,
1529 > \[
1530 > S = \frac{2}{{\sqrt {b^2  - a^2 } }}arctg\frac{{\sqrt {b^2  - a^2 }
1531 > }}{a}
1532 > \],
1533 > one can write down the translational and rotational resistance
1534 > tensors
1535 > \[
1536 > \begin{array}{l}
1537 > \Xi _a^{tt}  = 16\pi \eta \frac{{a^2  - b^2 }}{{(2a^2  - b^2 )S - 2a}} \\
1538 > \Xi _b^{tt}  = \Xi _c^{tt}  = 32\pi \eta \frac{{a^2  - b^2 }}{{(2a^2  - 3b^2 )S + 2a}} \\
1539 > \end{array},
1540 > \]
1541 > and
1542 > \[
1543 > \begin{array}{l}
1544 > \Xi _a^{rr}  = \frac{{32\pi }}{3}\eta \frac{{(a^2  - b^2 )b^2 }}{{2a - b^2 S}} \\
1545 > \Xi _b^{rr}  = \Xi _c^{rr}  = \frac{{32\pi }}{3}\eta \frac{{(a^4  - b^4 )}}{{(2a^2  - b^2 )S - 2a}} \\
1546 > \end{array}.
1547 > \]
1548 >
1549 > \subsubsection{\label{introSection:resistanceTensorRegularArbitrary}The Resistance Tensor for Arbitrary Shape}
1550 >
1551 > Unlike spherical and other regular shaped molecules, there is not
1552 > analytical solution for friction tensor of any arbitrary shaped
1553 > rigid molecules. The ellipsoid of revolution model and general
1554 > triaxial ellipsoid model have been used to approximate the
1555 > hydrodynamic properties of rigid bodies. However, since the mapping
1556 > from all possible ellipsoidal space, $r$-space, to all possible
1557 > combination of rotational diffusion coefficients, $D$-space is not
1558 > unique\cite{Wegener79} as well as the intrinsic coupling between
1559 > translational and rotational motion of rigid body\cite{}, general
1560 > ellipsoid is not always suitable for modeling arbitrarily shaped
1561 > rigid molecule. A number of studies have been devoted to determine
1562 > the friction tensor for irregularly shaped rigid bodies using more
1563 > advanced method\cite{} where the molecule of interest was modeled by
1564 > combinations of spheres(beads)\cite{} and the hydrodynamics
1565 > properties of the molecule can be calculated using the hydrodynamic
1566 > interaction tensor. Let us consider a rigid assembly of $N$ beads
1567 > immersed in a continuous medium. Due to hydrodynamics interaction,
1568 > the ``net'' velocity of $i$th bead, $v'_i$ is different than its
1569 > unperturbed velocity $v_i$,
1570 > \[
1571 > v'_i  = v_i  - \sum\limits_{j \ne i} {T_{ij} F_j }
1572 > \]
1573 > where $F_i$ is the frictional force, and $T_{ij}$ is the
1574 > hydrodynamic interaction tensor. The friction force of $i$th bead is
1575 > proportional to its ``net'' velocity
1576 > \begin{equation}
1577 > F_i  = \zeta _i v_i  - \zeta _i \sum\limits_{j \ne i} {T_{ij} F_j }.
1578 > \label{introEquation:tensorExpression}
1579 > \end{equation}
1580 > This equation is the basis for deriving the hydrodynamic tensor. In
1581 > 1930, Oseen and Burgers gave a simple solution to Equation
1582 > \ref{introEquation:tensorExpression}
1583 > \begin{equation}
1584 > T_{ij}  = \frac{1}{{8\pi \eta r_{ij} }}\left( {I + \frac{{R_{ij}
1585 > R_{ij}^T }}{{R_{ij}^2 }}} \right).
1586 > \label{introEquation:oseenTensor}
1587 > \end{equation}
1588 > Here $R_{ij}$ is the distance vector between bead $i$ and bead $j$.
1589 > A second order expression for element of different size was
1590 > introduced by Rotne and Prager\cite{} and improved by Garc\'{i}a de
1591 > la Torre and Bloomfield,
1592 > \begin{equation}
1593 > T_{ij}  = \frac{1}{{8\pi \eta R_{ij} }}\left[ {\left( {I +
1594 > \frac{{R_{ij} R_{ij}^T }}{{R_{ij}^2 }}} \right) + R\frac{{\sigma
1595 > _i^2  + \sigma _j^2 }}{{r_{ij}^2 }}\left( {\frac{I}{3} -
1596 > \frac{{R_{ij} R_{ij}^T }}{{R_{ij}^2 }}} \right)} \right].
1597 > \label{introEquation:RPTensorNonOverlapped}
1598 > \end{equation}
1599 > Both of the Equation \ref{introEquation:oseenTensor} and Equation
1600 > \ref{introEquation:RPTensorNonOverlapped} have an assumption $R_{ij}
1601 > \ge \sigma _i  + \sigma _j$. An alternative expression for
1602 > overlapping beads with the same radius, $\sigma$, is given by
1603 > \begin{equation}
1604 > T_{ij}  = \frac{1}{{6\pi \eta R_{ij} }}\left[ {\left( {1 -
1605 > \frac{2}{{32}}\frac{{R_{ij} }}{\sigma }} \right)I +
1606 > \frac{2}{{32}}\frac{{R_{ij} R_{ij}^T }}{{R_{ij} \sigma }}} \right]
1607 > \label{introEquation:RPTensorOverlapped}
1608 > \end{equation}
1609 >
1610 > To calculate the resistance tensor at an arbitrary origin $O$, we
1611 > construct a $3N \times 3N$ matrix consisting of $N \times N$
1612 > $B_{ij}$ blocks
1613 > \begin{equation}
1614 > B = \left( {\begin{array}{*{20}c}
1615 >   {B_{11} } &  \ldots  & {B_{1N} }  \\
1616 >    \vdots  &  \ddots  &  \vdots   \\
1617 >   {B_{N1} } &  \cdots  & {B_{NN} }  \\
1618 > \end{array}} \right),
1619 > \end{equation}
1620 > where $B_{ij}$ is given by
1621 > \[
1622 > B_{ij}  = \delta _{ij} \frac{I}{{6\pi \eta R}} + (1 - \delta _{ij}
1623 > )T_{ij}
1624 > \]
1625 > where \delta _{ij} is Kronecker delta function. Inverting matrix
1626 > $B$, we obtain
1627 >
1628 > \[
1629 > C = B^{ - 1}  = \left( {\begin{array}{*{20}c}
1630 >   {C_{11} } &  \ldots  & {C_{1N} }  \\
1631 >    \vdots  &  \ddots  &  \vdots   \\
1632 >   {C_{N1} } &  \cdots  & {C_{NN} }  \\
1633 > \end{array}} \right)
1634 > \]
1635 > , which can be partitioned into $N \times N$ $3 \times 3$ block
1636 > $C_{ij}$. With the help of $C_{ij}$ and skew matrix $U_i$
1637 > \[
1638 > U_i  = \left( {\begin{array}{*{20}c}
1639 >   0 & { - z_i } & {y_i }  \\
1640 >   {z_i } & 0 & { - x_i }  \\
1641 >   { - y_i } & {x_i } & 0  \\
1642 > \end{array}} \right)
1643 > \]
1644 > where $x_i$, $y_i$, $z_i$ are the components of the vector joining
1645 > bead $i$ and origin $O$. Hence, the elements of resistance tensor at
1646 > arbitrary origin $O$ can be written as
1647 > \begin{equation}
1648 > \begin{array}{l}
1649 > \Xi _{}^{tt}  = \sum\limits_i {\sum\limits_j {C_{ij} } } , \\
1650 > \Xi _{}^{tr}  = \Xi _{}^{rt}  = \sum\limits_i {\sum\limits_j {U_i C_{ij} } } , \\
1651 > \Xi _{}^{rr}  =  - \sum\limits_i {\sum\limits_j {U_i C_{ij} } } U_j  \\
1652 > \end{array}
1653 > \label{introEquation:ResistanceTensorArbitraryOrigin}
1654 > \end{equation}
1655 >
1656 > The resistance tensor depends on the origin to which they refer. The
1657 > proper location for applying friction force is the center of
1658 > resistance (reaction), at which the trace of rotational resistance
1659 > tensor, $ \Xi ^{rr}$ reaches minimum. Mathematically, the center of
1660 > resistance is defined as an unique point of the rigid body at which
1661 > the translation-rotation coupling tensor are symmetric,
1662 > \begin{equation}
1663 > \Xi^{tr}  = \left( {\Xi^{tr} } \right)^T
1664 > \label{introEquation:definitionCR}
1665 > \end{equation}
1666 > Form Equation \ref{introEquation:ResistanceTensorArbitraryOrigin},
1667 > we can easily find out that the translational resistance tensor is
1668 > origin independent, while the rotational resistance tensor and
1669 > translation-rotation coupling resistance tensor do depend on the
1670 > origin. Given resistance tensor at an arbitrary origin $O$, and a
1671 > vector ,$r_{OP}(x_{OP}, y_{OP}, z_{OP})$, from $O$ to $P$, we can
1672 > obtain the resistance tensor at $P$ by
1673 > \begin{equation}
1674 > \begin{array}{l}
1675 > \Xi _P^{tt}  = \Xi _O^{tt}  \\
1676 > \Xi _P^{tr}  = \Xi _P^{rt}  = \Xi _O^{tr}  - U_{OP} \Xi _O^{tt}  \\
1677 > \Xi _P^{rr}  = \Xi _O^{rr}  - U_{OP} \Xi _O^{tt} U_{OP}  + \Xi _O^{tr} U_{OP}  - U_{OP} \Xi _O^{tr} ^{^T }  \\
1678 > \end{array}
1679 > \label{introEquation:resistanceTensorTransformation}
1680 > \end{equation}
1681 > where
1682 > \[
1683 > U_{OP}  = \left( {\begin{array}{*{20}c}
1684 >   0 & { - z_{OP} } & {y_{OP} }  \\
1685 >   {z_i } & 0 & { - x_{OP} }  \\
1686 >   { - y_{OP} } & {x_{OP} } & 0  \\
1687 > \end{array}} \right)
1688 > \]
1689 > Using Equations \ref{introEquation:definitionCR} and
1690 > \ref{introEquation:resistanceTensorTransformation}, one can locate
1691 > the position of center of resistance,
1692 > \[
1693 > \left( \begin{array}{l}
1694 > x_{OR}  \\
1695 > y_{OR}  \\
1696 > z_{OR}  \\
1697 > \end{array} \right) = \left( {\begin{array}{*{20}c}
1698 >   {(\Xi _O^{rr} )_{yy}  + (\Xi _O^{rr} )_{zz} } & { - (\Xi _O^{rr} )_{xy} } & { - (\Xi _O^{rr} )_{xz} }  \\
1699 >   { - (\Xi _O^{rr} )_{xy} } & {(\Xi _O^{rr} )_{zz}  + (\Xi _O^{rr} )_{xx} } & { - (\Xi _O^{rr} )_{yz} }  \\
1700 >   { - (\Xi _O^{rr} )_{xz} } & { - (\Xi _O^{rr} )_{yz} } & {(\Xi _O^{rr} )_{xx}  + (\Xi _O^{rr} )_{yy} }  \\
1701 > \end{array}} \right)^{ - 1} \left( \begin{array}{l}
1702 > (\Xi _O^{tr} )_{yz}  - (\Xi _O^{tr} )_{zy}  \\
1703 > (\Xi _O^{tr} )_{zx}  - (\Xi _O^{tr} )_{xz}  \\
1704 > (\Xi _O^{tr} )_{xy}  - (\Xi _O^{tr} )_{yx}  \\
1705 > \end{array} \right).
1706 > \]
1707 > where $x_OR$, $y_OR$, $z_OR$ are the components of the vector
1708 > joining center of resistance $R$ and origin $O$.
1709 >
1710 > %\section{\label{introSection:correlationFunctions}Correlation Functions}

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines