ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/tengDissertation/Introduction.tex
(Generate patch)

Comparing trunk/tengDissertation/Introduction.tex (file contents):
Revision 2693 by tim, Wed Apr 5 03:44:32 2006 UTC vs.
Revision 2700 by tim, Tue Apr 11 03:38:09 2006 UTC

# Line 1 | Line 1
1   \chapter{\label{chapt:introduction}INTRODUCTION AND THEORETICAL BACKGROUND}
2  
3 \section{\label{introSection:molecularDynamics}Molecular Dynamics}
4
5 As a special discipline of molecular modeling, Molecular dynamics
6 has proven to be a powerful tool for studying the functions of
7 biological systems, providing structural, thermodynamic and
8 dynamical information.
9
3   \section{\label{introSection:classicalMechanics}Classical
4   Mechanics}
5  
# Line 22 | Line 15 | sufficient to predict the future behavior of the syste
15   sufficient to predict the future behavior of the system.
16  
17   \subsection{\label{introSection:newtonian}Newtonian Mechanics}
18 + The discovery of Newton's three laws of mechanics which govern the
19 + motion of particles is the foundation of the classical mechanics.
20 + Newton¡¯s first law defines a class of inertial frames. Inertial
21 + frames are reference frames where a particle not interacting with
22 + other bodies will move with constant speed in the same direction.
23 + With respect to inertial frames Newton¡¯s second law has the form
24 + \begin{equation}
25 + F = \frac {dp}{dt} = \frac {mv}{dt}
26 + \label{introEquation:newtonSecondLaw}
27 + \end{equation}
28 + A point mass interacting with other bodies moves with the
29 + acceleration along the direction of the force acting on it. Let
30 + $F_ij$ be the force that particle $i$ exerts on particle $j$, and
31 + $F_ji$ be the force that particle $j$ exerts on particle $i$.
32 + Newton¡¯s third law states that
33 + \begin{equation}
34 + F_ij = -F_ji
35 + \label{introEquation:newtonThirdLaw}
36 + \end{equation}
37  
38 + Conservation laws of Newtonian Mechanics play very important roles
39 + in solving mechanics problems. The linear momentum of a particle is
40 + conserved if it is free or it experiences no force. The second
41 + conservation theorem concerns the angular momentum of a particle.
42 + The angular momentum $L$ of a particle with respect to an origin
43 + from which $r$ is measured is defined to be
44 + \begin{equation}
45 + L \equiv r \times p \label{introEquation:angularMomentumDefinition}
46 + \end{equation}
47 + The torque $\tau$ with respect to the same origin is defined to be
48 + \begin{equation}
49 + N \equiv r \times F \label{introEquation:torqueDefinition}
50 + \end{equation}
51 + Differentiating Eq.~\ref{introEquation:angularMomentumDefinition},
52 + \[
53 + \dot L = \frac{d}{{dt}}(r \times p) = (\dot r \times p) + (r \times
54 + \dot p)
55 + \]
56 + since
57 + \[
58 + \dot r \times p = \dot r \times mv = m\dot r \times \dot r \equiv 0
59 + \]
60 + thus,
61 + \begin{equation}
62 + \dot L = r \times \dot p = N
63 + \end{equation}
64 + If there are no external torques acting on a body, the angular
65 + momentum of it is conserved. The last conservation theorem state
66 + that if all forces are conservative, Energy
67 + \begin{equation}E = T + V \label{introEquation:energyConservation}
68 + \end{equation}
69 + is conserved. All of these conserved quantities are
70 + important factors to determine the quality of numerical integration
71 + scheme for rigid body \cite{Dullweber1997}.
72 +
73   \subsection{\label{introSection:lagrangian}Lagrangian Mechanics}
74  
75   Newtonian Mechanics suffers from two important limitations: it
# Line 36 | Line 83 | system, alternative procedures may be developed.
83   which arise in attempts to apply Newton's equation to complex
84   system, alternative procedures may be developed.
85  
86 < \subsection{\label{introSection:halmiltonPrinciple}Hamilton's
86 > \subsubsection{\label{introSection:halmiltonPrinciple}Hamilton's
87   Principle}
88  
89   Hamilton introduced the dynamical principle upon which it is
# Line 46 | Line 93 | the path which minimizes the time integral of the diff
93   The actual trajectory, along which a dynamical system may move from
94   one point to another within a specified time, is derived by finding
95   the path which minimizes the time integral of the difference between
96 < the kinetic, $K$, and potential energies, $U$.
96 > the kinetic, $K$, and potential energies, $U$ \cite{tolman79}.
97   \begin{equation}
98   \delta \int_{t_1 }^{t_2 } {(K - U)dt = 0} ,
99   \label{introEquation:halmitonianPrinciple1}
# Line 67 | Line 114 | then Eq.~\ref{introEquation:halmitonianPrinciple1} bec
114   \label{introEquation:halmitonianPrinciple2}
115   \end{equation}
116  
117 < \subsection{\label{introSection:equationOfMotionLagrangian}The
117 > \subsubsection{\label{introSection:equationOfMotionLagrangian}The
118   Equations of Motion in Lagrangian Mechanics}
119  
120 < for a holonomic system of $f$ degrees of freedom, the equations of
120 > For a holonomic system of $f$ degrees of freedom, the equations of
121   motion in the Lagrangian form is
122   \begin{equation}
123   \frac{d}{{dt}}\frac{{\partial L}}{{\partial \dot q_i }} -
# Line 142 | Line 189 | equation of motion. Due to their symmetrical formula,
189   Eq.~\ref{introEquation:motionHamiltonianCoordinate} and
190   Eq.~\ref{introEquation:motionHamiltonianMomentum} are Hamilton's
191   equation of motion. Due to their symmetrical formula, they are also
192 < known as the canonical equations of motions.
192 > known as the canonical equations of motions \cite{Goldstein01}.
193  
194   An important difference between Lagrangian approach and the
195   Hamiltonian approach is that the Lagrangian is considered to be a
# Line 153 | Line 200 | independent variables and it only works with 1st-order
200   appropriate for application to statistical mechanics and quantum
201   mechanics, since it treats the coordinate and its time derivative as
202   independent variables and it only works with 1st-order differential
203 < equations.
203 > equations\cite{Marion90}.
204  
205 < \subsection{\label{introSection:poissonBrackets}Poisson Brackets}
205 > In Newtonian Mechanics, a system described by conservative forces
206 > conserves the total energy \ref{introEquation:energyConservation}.
207 > It follows that Hamilton's equations of motion conserve the total
208 > Hamiltonian.
209 > \begin{equation}
210 > \frac{{dH}}{{dt}} = \sum\limits_i {\left( {\frac{{\partial
211 > H}}{{\partial q_i }}\dot q_i  + \frac{{\partial H}}{{\partial p_i
212 > }}\dot p_i } \right)}  = \sum\limits_i {\left( {\frac{{\partial
213 > H}}{{\partial q_i }}\frac{{\partial H}}{{\partial p_i }} -
214 > \frac{{\partial H}}{{\partial p_i }}\frac{{\partial H}}{{\partial
215 > q_i }}} \right) = 0} \label{introEquation:conserveHalmitonian}
216 > \end{equation}
217  
160 \subsection{\label{introSection:canonicalTransformation}Canonical
161 Transformation}
162
218   \section{\label{introSection:statisticalMechanics}Statistical
219   Mechanics}
220  
221 < The thermodynamic behaviors and properties  of Molecular Dynamics
221 > The thermodynamic behaviors and properties of Molecular Dynamics
222   simulation are governed by the principle of Statistical Mechanics.
223   The following section will give a brief introduction to some of the
224 < Statistical Mechanics concepts presented in this dissertation.
224 > Statistical Mechanics concepts and theorem presented in this
225 > dissertation.
226  
227 < \subsection{\label{introSection::ensemble}Ensemble}
227 > \subsection{\label{introSection:ensemble}Phase Space and Ensemble}
228 >
229 > Mathematically, phase space is the space which represents all
230 > possible states. Each possible state of the system corresponds to
231 > one unique point in the phase space. For mechanical systems, the
232 > phase space usually consists of all possible values of position and
233 > momentum variables. Consider a dynamic system in a cartesian space,
234 > where each of the $6f$ coordinates and momenta is assigned to one of
235 > $6f$ mutually orthogonal axes, the phase space of this system is a
236 > $6f$ dimensional space. A point, $x = (q_1 , \ldots ,q_f ,p_1 ,
237 > \ldots ,p_f )$, with a unique set of values of $6f$ coordinates and
238 > momenta is a phase space vector.
239 >
240 > A microscopic state or microstate of a classical system is
241 > specification of the complete phase space vector of a system at any
242 > instant in time. An ensemble is defined as a collection of systems
243 > sharing one or more macroscopic characteristics but each being in a
244 > unique microstate. The complete ensemble is specified by giving all
245 > systems or microstates consistent with the common macroscopic
246 > characteristics of the ensemble. Although the state of each
247 > individual system in the ensemble could be precisely described at
248 > any instance in time by a suitable phase space vector, when using
249 > ensembles for statistical purposes, there is no need to maintain
250 > distinctions between individual systems, since the numbers of
251 > systems at any time in the different states which correspond to
252 > different regions of the phase space are more interesting. Moreover,
253 > in the point of view of statistical mechanics, one would prefer to
254 > use ensembles containing a large enough population of separate
255 > members so that the numbers of systems in such different states can
256 > be regarded as changing continuously as we traverse different
257 > regions of the phase space. The condition of an ensemble at any time
258 > can be regarded as appropriately specified by the density $\rho$
259 > with which representative points are distributed over the phase
260 > space. The density of distribution for an ensemble with $f$ degrees
261 > of freedom is defined as,
262 > \begin{equation}
263 > \rho  = \rho (q_1 , \ldots ,q_f ,p_1 , \ldots ,p_f ,t).
264 > \label{introEquation:densityDistribution}
265 > \end{equation}
266 > Governed by the principles of mechanics, the phase points change
267 > their value which would change the density at any time at phase
268 > space. Hence, the density of distribution is also to be taken as a
269 > function of the time.
270 >
271 > The number of systems $\delta N$ at time $t$ can be determined by,
272 > \begin{equation}
273 > \delta N = \rho (q,p,t)dq_1  \ldots dq_f dp_1  \ldots dp_f.
274 > \label{introEquation:deltaN}
275 > \end{equation}
276 > Assuming a large enough population of systems are exploited, we can
277 > sufficiently approximate $\delta N$ without introducing
278 > discontinuity when we go from one region in the phase space to
279 > another. By integrating over the whole phase space,
280 > \begin{equation}
281 > N = \int { \ldots \int {\rho (q,p,t)dq_1 } ...dq_f dp_1 } ...dp_f
282 > \label{introEquation:totalNumberSystem}
283 > \end{equation}
284 > gives us an expression for the total number of the systems. Hence,
285 > the probability per unit in the phase space can be obtained by,
286 > \begin{equation}
287 > \frac{{\rho (q,p,t)}}{N} = \frac{{\rho (q,p,t)}}{{\int { \ldots \int
288 > {\rho (q,p,t)dq_1 } ...dq_f dp_1 } ...dp_f }}.
289 > \label{introEquation:unitProbability}
290 > \end{equation}
291 > With the help of Equation(\ref{introEquation:unitProbability}) and
292 > the knowledge of the system, it is possible to calculate the average
293 > value of any desired quantity which depends on the coordinates and
294 > momenta of the system. Even when the dynamics of the real system is
295 > complex, or stochastic, or even discontinuous, the average
296 > properties of the ensemble of possibilities as a whole may still
297 > remain well defined. For a classical system in thermal equilibrium
298 > with its environment, the ensemble average of a mechanical quantity,
299 > $\langle A(q , p) \rangle_t$, takes the form of an integral over the
300 > phase space of the system,
301 > \begin{equation}
302 > \langle  A(q , p) \rangle_t = \frac{{\int { \ldots \int {A(q,p)\rho
303 > (q,p,t)dq_1 } ...dq_f dp_1 } ...dp_f }}{{\int { \ldots \int {\rho
304 > (q,p,t)dq_1 } ...dq_f dp_1 } ...dp_f }}
305 > \label{introEquation:ensembelAverage}
306 > \end{equation}
307 >
308 > There are several different types of ensembles with different
309 > statistical characteristics. As a function of macroscopic
310 > parameters, such as temperature \textit{etc}, partition function can
311 > be used to describe the statistical properties of a system in
312 > thermodynamic equilibrium.
313 >
314 > As an ensemble of systems, each of which is known to be thermally
315 > isolated and conserve energy, Microcanonical ensemble(NVE) has a
316 > partition function like,
317 > \begin{equation}
318 > \Omega (N,V,E) = e^{\beta TS}
319 > \label{introEqaution:NVEPartition}.
320 > \end{equation}
321 > A canonical ensemble(NVT)is an ensemble of systems, each of which
322 > can share its energy with a large heat reservoir. The distribution
323 > of the total energy amongst the possible dynamical states is given
324 > by the partition function,
325 > \begin{equation}
326 > \Omega (N,V,T) = e^{ - \beta A}
327 > \label{introEquation:NVTPartition}
328 > \end{equation}
329 > Here, $A$ is the Helmholtz free energy which is defined as $ A = U -
330 > TS$. Since most experiment are carried out under constant pressure
331 > condition, isothermal-isobaric ensemble(NPT) play a very important
332 > role in molecular simulation. The isothermal-isobaric ensemble allow
333 > the system to exchange energy with a heat bath of temperature $T$
334 > and to change the volume as well. Its partition function is given as
335 > \begin{equation}
336 > \Delta (N,P,T) =  - e^{\beta G}.
337 > \label{introEquation:NPTPartition}
338 > \end{equation}
339 > Here, $G = U - TS + PV$, and $G$ is called Gibbs free energy.
340  
341 + \subsection{\label{introSection:liouville}Liouville's theorem}
342 +
343 + The Liouville's theorem is the foundation on which statistical
344 + mechanics rests. It describes the time evolution of phase space
345 + distribution function. In order to calculate the rate of change of
346 + $\rho$, we begin from Equation(\ref{introEquation:deltaN}). If we
347 + consider the two faces perpendicular to the $q_1$ axis, which are
348 + located at $q_1$ and $q_1 + \delta q_1$, the number of phase points
349 + leaving the opposite face is given by the expression,
350 + \begin{equation}
351 + \left( {\rho  + \frac{{\partial \rho }}{{\partial q_1 }}\delta q_1 }
352 + \right)\left( {\dot q_1  + \frac{{\partial \dot q_1 }}{{\partial q_1
353 + }}\delta q_1 } \right)\delta q_2  \ldots \delta q_f \delta p_1
354 + \ldots \delta p_f .
355 + \end{equation}
356 + Summing all over the phase space, we obtain
357 + \begin{equation}
358 + \frac{{d(\delta N)}}{{dt}} =  - \sum\limits_{i = 1}^f {\left[ {\rho
359 + \left( {\frac{{\partial \dot q_i }}{{\partial q_i }} +
360 + \frac{{\partial \dot p_i }}{{\partial p_i }}} \right) + \left(
361 + {\frac{{\partial \rho }}{{\partial q_i }}\dot q_i  + \frac{{\partial
362 + \rho }}{{\partial p_i }}\dot p_i } \right)} \right]} \delta q_1
363 + \ldots \delta q_f \delta p_1  \ldots \delta p_f .
364 + \end{equation}
365 + Differentiating the equations of motion in Hamiltonian formalism
366 + (\ref{introEquation:motionHamiltonianCoordinate},
367 + \ref{introEquation:motionHamiltonianMomentum}), we can show,
368 + \begin{equation}
369 + \sum\limits_i {\left( {\frac{{\partial \dot q_i }}{{\partial q_i }}
370 + + \frac{{\partial \dot p_i }}{{\partial p_i }}} \right)}  = 0 ,
371 + \end{equation}
372 + which cancels the first terms of the right hand side. Furthermore,
373 + divining $ \delta q_1  \ldots \delta q_f \delta p_1  \ldots \delta
374 + p_f $ in both sides, we can write out Liouville's theorem in a
375 + simple form,
376 + \begin{equation}
377 + \frac{{\partial \rho }}{{\partial t}} + \sum\limits_{i = 1}^f
378 + {\left( {\frac{{\partial \rho }}{{\partial q_i }}\dot q_i  +
379 + \frac{{\partial \rho }}{{\partial p_i }}\dot p_i } \right)}  = 0 .
380 + \label{introEquation:liouvilleTheorem}
381 + \end{equation}
382 +
383 + Liouville's theorem states that the distribution function is
384 + constant along any trajectory in phase space. In classical
385 + statistical mechanics, since the number of particles in the system
386 + is huge, we may be able to believe the system is stationary,
387 + \begin{equation}
388 + \frac{{\partial \rho }}{{\partial t}} = 0.
389 + \label{introEquation:stationary}
390 + \end{equation}
391 + In such stationary system, the density of distribution $\rho$ can be
392 + connected to the Hamiltonian $H$ through Maxwell-Boltzmann
393 + distribution,
394 + \begin{equation}
395 + \rho  \propto e^{ - \beta H}
396 + \label{introEquation:densityAndHamiltonian}
397 + \end{equation}
398 +
399 + Liouville's theorem can be expresses in a variety of different forms
400 + which are convenient within different contexts. For any two function
401 + $F$ and $G$ of the coordinates and momenta of a system, the Poisson
402 + bracket ${F, G}$ is defined as
403 + \begin{equation}
404 + \left\{ {F,G} \right\} = \sum\limits_i {\left( {\frac{{\partial
405 + F}}{{\partial q_i }}\frac{{\partial G}}{{\partial p_i }} -
406 + \frac{{\partial F}}{{\partial p_i }}\frac{{\partial G}}{{\partial
407 + q_i }}} \right)}.
408 + \label{introEquation:poissonBracket}
409 + \end{equation}
410 + Substituting equations of motion in Hamiltonian formalism(
411 + \ref{introEquation:motionHamiltonianCoordinate} ,
412 + \ref{introEquation:motionHamiltonianMomentum} ) into
413 + (\ref{introEquation:liouvilleTheorem}), we can rewrite Liouville's
414 + theorem using Poisson bracket notion,
415 + \begin{equation}
416 + \left( {\frac{{\partial \rho }}{{\partial t}}} \right) =  - \left\{
417 + {\rho ,H} \right\}.
418 + \label{introEquation:liouvilleTheromInPoissin}
419 + \end{equation}
420 + Moreover, the Liouville operator is defined as
421 + \begin{equation}
422 + iL = \sum\limits_{i = 1}^f {\left( {\frac{{\partial H}}{{\partial
423 + p_i }}\frac{\partial }{{\partial q_i }} - \frac{{\partial
424 + H}}{{\partial q_i }}\frac{\partial }{{\partial p_i }}} \right)}
425 + \label{introEquation:liouvilleOperator}
426 + \end{equation}
427 + In terms of Liouville operator, Liouville's equation can also be
428 + expressed as
429 + \begin{equation}
430 + \left( {\frac{{\partial \rho }}{{\partial t}}} \right) =  - iL\rho
431 + \label{introEquation:liouvilleTheoremInOperator}
432 + \end{equation}
433 +
434 +
435   \subsection{\label{introSection:ergodic}The Ergodic Hypothesis}
436  
437 + Various thermodynamic properties can be calculated from Molecular
438 + Dynamics simulation. By comparing experimental values with the
439 + calculated properties, one can determine the accuracy of the
440 + simulation and the quality of the underlying model. However, both of
441 + experiment and computer simulation are usually performed during a
442 + certain time interval and the measurements are averaged over a
443 + period of them which is different from the average behavior of
444 + many-body system in Statistical Mechanics. Fortunately, Ergodic
445 + Hypothesis is proposed to make a connection between time average and
446 + ensemble average. It states that time average and average over the
447 + statistical ensemble are identical \cite{Frenkel1996, leach01:mm}.
448 + \begin{equation}
449 + \langle A(q , p) \rangle_t = \mathop {\lim }\limits_{t \to \infty }
450 + \frac{1}{t}\int\limits_0^t {A(q(t),p(t))dt = \int\limits_\Gamma
451 + {A(q(t),p(t))} } \rho (q(t), p(t)) dqdp
452 + \end{equation}
453 + where $\langle  A(q , p) \rangle_t$ is an equilibrium value of a
454 + physical quantity and $\rho (p(t), q(t))$ is the equilibrium
455 + distribution function. If an observation is averaged over a
456 + sufficiently long time (longer than relaxation time), all accessible
457 + microstates in phase space are assumed to be equally probed, giving
458 + a properly weighted statistical average. This allows the researcher
459 + freedom of choice when deciding how best to measure a given
460 + observable. In case an ensemble averaged approach sounds most
461 + reasonable, the Monte Carlo techniques\cite{metropolis:1949} can be
462 + utilized. Or if the system lends itself to a time averaging
463 + approach, the Molecular Dynamics techniques in
464 + Sec.~\ref{introSection:molecularDynamics} will be the best
465 + choice\cite{Frenkel1996}.
466 +
467 + \section{\label{introSection:geometricIntegratos}Geometric Integrators}
468 + A variety of numerical integrators were proposed to simulate the
469 + motions. They usually begin with an initial conditionals and move
470 + the objects in the direction governed by the differential equations.
471 + However, most of them ignore the hidden physical law contained
472 + within the equations. Since 1990, geometric integrators, which
473 + preserve various phase-flow invariants such as symplectic structure,
474 + volume and time reversal symmetry, are developed to address this
475 + issue. The velocity verlet method, which happens to be a simple
476 + example of symplectic integrator, continues to gain its popularity
477 + in molecular dynamics community. This fact can be partly explained
478 + by its geometric nature.
479 +
480 + \subsection{\label{introSection:symplecticManifold}Symplectic Manifold}
481 + A \emph{manifold} is an abstract mathematical space. It locally
482 + looks like Euclidean space, but when viewed globally, it may have
483 + more complicate structure. A good example of manifold is the surface
484 + of Earth. It seems to be flat locally, but it is round if viewed as
485 + a whole. A \emph{differentiable manifold} (also known as
486 + \emph{smooth manifold}) is a manifold with an open cover in which
487 + the covering neighborhoods are all smoothly isomorphic to one
488 + another. In other words,it is possible to apply calculus on
489 + \emph{differentiable manifold}. A \emph{symplectic manifold} is
490 + defined as a pair $(M, \omega)$ which consisting of a
491 + \emph{differentiable manifold} $M$ and a close, non-degenerated,
492 + bilinear symplectic form, $\omega$. A symplectic form on a vector
493 + space $V$ is a function $\omega(x, y)$ which satisfies
494 + $\omega(\lambda_1x_1+\lambda_2x_2, y) = \lambda_1\omega(x_1, y)+
495 + \lambda_2\omega(x_2, y)$, $\omega(x, y) = - \omega(y, x)$ and
496 + $\omega(x, x) = 0$. Cross product operation in vector field is an
497 + example of symplectic form.
498 +
499 + One of the motivations to study \emph{symplectic manifold} in
500 + Hamiltonian Mechanics is that a symplectic manifold can represent
501 + all possible configurations of the system and the phase space of the
502 + system can be described by it's cotangent bundle. Every symplectic
503 + manifold is even dimensional. For instance, in Hamilton equations,
504 + coordinate and momentum always appear in pairs.
505 +
506 + Let  $(M,\omega)$ and $(N, \eta)$ be symplectic manifolds. A map
507 + \[
508 + f : M \rightarrow N
509 + \]
510 + is a \emph{symplectomorphism} if it is a \emph{diffeomorphims} and
511 + the \emph{pullback} of $\eta$ under f is equal to $\omega$.
512 + Canonical transformation is an example of symplectomorphism in
513 + classical mechanics.
514 +
515 + \subsection{\label{introSection:ODE}Ordinary Differential Equations}
516 +
517 + For a ordinary differential system defined as
518 + \begin{equation}
519 + \dot x = f(x)
520 + \end{equation}
521 + where $x = x(q,p)^T$, this system is canonical Hamiltonian, if
522 + \begin{equation}
523 + f(r) = J\nabla _x H(r).
524 + \end{equation}
525 + $H = H (q, p)$ is Hamiltonian function and $J$ is the skew-symmetric
526 + matrix
527 + \begin{equation}
528 + J = \left( {\begin{array}{*{20}c}
529 +   0 & I  \\
530 +   { - I} & 0  \\
531 + \end{array}} \right)
532 + \label{introEquation:canonicalMatrix}
533 + \end{equation}
534 + where $I$ is an identity matrix. Using this notation, Hamiltonian
535 + system can be rewritten as,
536 + \begin{equation}
537 + \frac{d}{{dt}}x = J\nabla _x H(x)
538 + \label{introEquation:compactHamiltonian}
539 + \end{equation}In this case, $f$ is
540 + called a \emph{Hamiltonian vector field}.
541 +
542 + Another generalization of Hamiltonian dynamics is Poisson Dynamics,
543 + \begin{equation}
544 + \dot x = J(x)\nabla _x H \label{introEquation:poissonHamiltonian}
545 + \end{equation}
546 + The most obvious change being that matrix $J$ now depends on $x$.
547 + The free rigid body is an example of Poisson system (actually a
548 + Lie-Poisson system) with Hamiltonian function of angular kinetic
549 + energy.
550 + \begin{equation}
551 + J(\pi ) = \left( {\begin{array}{*{20}c}
552 +   0 & {\pi _3 } & { - \pi _2 }  \\
553 +   { - \pi _3 } & 0 & {\pi _1 }  \\
554 +   {\pi _2 } & { - \pi _1 } & 0  \\
555 + \end{array}} \right)
556 + \end{equation}
557 +
558 + \begin{equation}
559 + H = \frac{1}{2}\left( {\frac{{\pi _1^2 }}{{I_1 }} + \frac{{\pi _2^2
560 + }}{{I_2 }} + \frac{{\pi _3^2 }}{{I_3 }}} \right)
561 + \end{equation}
562 +
563 + \subsection{\label{introSection:geometricProperties}Geometric Properties}
564 + Let $x(t)$ be the exact solution of the ODE system,
565 + \begin{equation}
566 + \frac{{dx}}{{dt}} = f(x) \label{introEquation:ODE}
567 + \end{equation}
568 + The exact flow(solution) $\varphi_\tau$ is defined by
569 + \[
570 + x(t+\tau) =\varphi_\tau(x(t))
571 + \]
572 + where $\tau$ is a fixed time step and $\varphi$ is a map from phase
573 + space to itself. In most cases, it is not easy to find the exact
574 + flow $\varphi_\tau$. Instead, we use a approximate map, $\psi_\tau$,
575 + which is usually called integrator. The order of an integrator
576 + $\psi_\tau$ is $p$, if the Taylor series of $\psi_\tau$ agree to
577 + order $p$,
578 + \begin{equation}
579 + \psi_tau(x) = x + \tau f(x) + O(\tau^{p+1})
580 + \end{equation}
581 +
582 + The hidden geometric properties of ODE and its flow play important
583 + roles in numerical studies. Let $\varphi$ be the flow of Hamiltonian
584 + vector field, $\varphi$ is a \emph{symplectic} flow if it satisfies,
585 + \begin{equation}
586 + '\varphi^T J '\varphi = J.
587 + \end{equation}
588 + According to Liouville's theorem, the symplectic volume is invariant
589 + under a Hamiltonian flow, which is the basis for classical
590 + statistical mechanics. Furthermore, the flow of a Hamiltonian vector
591 + field on a symplectic manifold can be shown to be a
592 + symplectomorphism. As to the Poisson system,
593 + \begin{equation}
594 + '\varphi ^T J '\varphi  = J \circ \varphi
595 + \end{equation}
596 + is the property must be preserved by the integrator. It is possible
597 + to construct a \emph{volume-preserving} flow for a source free($
598 + \nabla \cdot f = 0 $) ODE, if the flow satisfies $ \det d\varphi  =
599 + 1$. Changing the variables $y = h(x)$ in a
600 + ODE\ref{introEquation:ODE} will result in a new system,
601 + \[
602 + \dot y = \tilde f(y) = ((dh \cdot f)h^{ - 1} )(y).
603 + \]
604 + The vector filed $f$ has reversing symmetry $h$ if $f = - \tilde f$.
605 + In other words, the flow of this vector field is reversible if and
606 + only if $ h \circ \varphi ^{ - 1}  = \varphi  \circ h $. When
607 + designing any numerical methods, one should always try to preserve
608 + the structural properties of the original ODE and its flow.
609 +
610 + \subsection{\label{introSection:constructionSymplectic}Construction of Symplectic Methods}
611 + A lot of well established and very effective numerical methods have
612 + been successful precisely because of their symplecticities even
613 + though this fact was not recognized when they were first
614 + constructed. The most famous example is leapfrog methods in
615 + molecular dynamics. In general, symplectic integrators can be
616 + constructed using one of four different methods.
617 + \begin{enumerate}
618 + \item Generating functions
619 + \item Variational methods
620 + \item Runge-Kutta methods
621 + \item Splitting methods
622 + \end{enumerate}
623 +
624 + Generating function tends to lead to methods which are cumbersome
625 + and difficult to use\cite{}. In dissipative systems, variational
626 + methods can capture the decay of energy accurately\cite{}. Since
627 + their geometrically unstable nature against non-Hamiltonian
628 + perturbations, ordinary implicit Runge-Kutta methods are not
629 + suitable for Hamiltonian system. Recently, various high-order
630 + explicit Runge--Kutta methods have been developed to overcome this
631 + instability \cite{}. However, due to computational penalty involved
632 + in implementing the Runge-Kutta methods, they do not attract too
633 + much attention from Molecular Dynamics community. Instead, splitting
634 + have been widely accepted since they exploit natural decompositions
635 + of the system\cite{Tuckerman92}. The main idea behind splitting
636 + methods is to decompose the discrete $\varphi_h$ as a composition of
637 + simpler flows,
638 + \begin{equation}
639 + \varphi _h  = \varphi _{h_1 }  \circ \varphi _{h_2 }  \ldots  \circ
640 + \varphi _{h_n }
641 + \label{introEquation:FlowDecomposition}
642 + \end{equation}
643 + where each of the sub-flow is chosen such that each represent a
644 + simpler integration of the system. Let $\phi$ and $\psi$ both be
645 + symplectic maps, it is easy to show that any composition of
646 + symplectic flows yields a symplectic map,
647 + \begin{equation}
648 + (\varphi '\phi ')^T J\varphi '\phi ' = \phi '^T \varphi '^T J\varphi
649 + '\phi ' = \phi '^T J\phi ' = J.
650 + \label{introEquation:SymplecticFlowComposition}
651 + \end{equation}
652 + Suppose that a Hamiltonian system has a form with $H = T + V$
653 +
654 + \section{\label{introSection:molecularDynamics}Molecular Dynamics}
655 +
656 + As a special discipline of molecular modeling, Molecular dynamics
657 + has proven to be a powerful tool for studying the functions of
658 + biological systems, providing structural, thermodynamic and
659 + dynamical information.
660 +
661 + \subsection{\label{introSec:mdInit}Initialization}
662 +
663 + \subsection{\label{introSection:mdIntegration} Integration of the Equations of Motion}
664 +
665   \section{\label{introSection:rigidBody}Dynamics of Rigid Bodies}
666  
667 + A rigid body is a body in which the distance between any two given
668 + points of a rigid body remains constant regardless of external
669 + forces exerted on it. A rigid body therefore conserves its shape
670 + during its motion.
671 +
672 + Applications of dynamics of rigid bodies.
673 +
674 + \subsection{\label{introSection:lieAlgebra}Lie Algebra}
675 +
676 + \subsection{\label{introSection:DLMMotionEquation}The Euler Equations of Rigid Body Motion}
677 +
678 + \subsection{\label{introSection:otherRBMotionEquation}Other Formulations for Rigid Body Motion}
679 +
680 + %\subsection{\label{introSection:poissonBrackets}Poisson Brackets}
681 +
682   \section{\label{introSection:correlationFunctions}Correlation Functions}
683  
684   \section{\label{introSection:langevinDynamics}Langevin Dynamics}
685  
686 + \subsection{\label{introSection:LDIntroduction}Introduction and application of Langevin Dynamics}
687 +
688   \subsection{\label{introSection:generalizedLangevinDynamics}Generalized Langevin Dynamics}
689  
690 < \subsection{\label{introSection:hydroynamics}Hydrodynamics}
690 > \begin{equation}
691 > H = \frac{{p^2 }}{{2m}} + U(x) + H_B  + \Delta U(x,x_1 , \ldots x_N)
692 > \label{introEquation:bathGLE}
693 > \end{equation}
694 > where $H_B$ is harmonic bath Hamiltonian,
695 > \[
696 > H_B  =\sum\limits_{\alpha  = 1}^N {\left\{ {\frac{{p_\alpha ^2
697 > }}{{2m_\alpha  }} + \frac{1}{2}m_\alpha  w_\alpha ^2 } \right\}}
698 > \]
699 > and $\Delta U$ is bilinear system-bath coupling,
700 > \[
701 > \Delta U =  - \sum\limits_{\alpha  = 1}^N {g_\alpha  x_\alpha  x}
702 > \]
703 > Completing the square,
704 > \[
705 > H_B  + \Delta U = \sum\limits_{\alpha  = 1}^N {\left\{
706 > {\frac{{p_\alpha ^2 }}{{2m_\alpha  }} + \frac{1}{2}m_\alpha
707 > w_\alpha ^2 \left( {x_\alpha   - \frac{{g_\alpha  }}{{m_\alpha
708 > w_\alpha ^2 }}x} \right)^2 } \right\}}  - \sum\limits_{\alpha  =
709 > 1}^N {\frac{{g_\alpha ^2 }}{{2m_\alpha  w_\alpha ^2 }}} x^2
710 > \]
711 > and putting it back into Eq.~\ref{introEquation:bathGLE},
712 > \[
713 > H = \frac{{p^2 }}{{2m}} + W(x) + \sum\limits_{\alpha  = 1}^N
714 > {\left\{ {\frac{{p_\alpha ^2 }}{{2m_\alpha  }} + \frac{1}{2}m_\alpha
715 > w_\alpha ^2 \left( {x_\alpha   - \frac{{g_\alpha  }}{{m_\alpha
716 > w_\alpha ^2 }}x} \right)^2 } \right\}}
717 > \]
718 > where
719 > \[
720 > W(x) = U(x) - \sum\limits_{\alpha  = 1}^N {\frac{{g_\alpha ^2
721 > }}{{2m_\alpha  w_\alpha ^2 }}} x^2
722 > \]
723 > Since the first two terms of the new Hamiltonian depend only on the
724 > system coordinates, we can get the equations of motion for
725 > Generalized Langevin Dynamics by Hamilton's equations
726 > \ref{introEquation:motionHamiltonianCoordinate,
727 > introEquation:motionHamiltonianMomentum},
728 > \begin{align}
729 > \dot p &=  - \frac{{\partial H}}{{\partial x}}
730 >       &= m\ddot x
731 >       &= - \frac{{\partial W(x)}}{{\partial x}} - \sum\limits_{\alpha  = 1}^N {g_\alpha  \left( {x_\alpha   - \frac{{g_\alpha  }}{{m_\alpha  w_\alpha ^2 }}x} \right)}
732 > \label{introEq:Lp5}
733 > \end{align}
734 > , and
735 > \begin{align}
736 > \dot p_\alpha   &=  - \frac{{\partial H}}{{\partial x_\alpha  }}
737 >                &= m\ddot x_\alpha
738 >                &= \- m_\alpha  w_\alpha ^2 \left( {x_\alpha   - \frac{{g_\alpha}}{{m_\alpha  w_\alpha ^2 }}x} \right)
739 > \end{align}
740 >
741 > \subsection{\label{introSection:laplaceTransform}The Laplace Transform}
742 >
743 > \[
744 > L(x) = \int_0^\infty  {x(t)e^{ - pt} dt}
745 > \]
746 >
747 > \[
748 > L(x + y) = L(x) + L(y)
749 > \]
750 >
751 > \[
752 > L(ax) = aL(x)
753 > \]
754 >
755 > \[
756 > L(\dot x) = pL(x) - px(0)
757 > \]
758 >
759 > \[
760 > L(\ddot x) = p^2 L(x) - px(0) - \dot x(0)
761 > \]
762 >
763 > \[
764 > L\left( {\int_0^t {g(t - \tau )h(\tau )d\tau } } \right) = G(p)H(p)
765 > \]
766 >
767 > Some relatively important transformation,
768 > \[
769 > L(\cos at) = \frac{p}{{p^2  + a^2 }}
770 > \]
771 >
772 > \[
773 > L(\sin at) = \frac{a}{{p^2  + a^2 }}
774 > \]
775 >
776 > \[
777 > L(1) = \frac{1}{p}
778 > \]
779 >
780 > First, the bath coordinates,
781 > \[
782 > p^2 L(x_\alpha  ) - px_\alpha  (0) - \dot x_\alpha  (0) =  - \omega
783 > _\alpha ^2 L(x_\alpha  ) + \frac{{g_\alpha  }}{{\omega _\alpha
784 > }}L(x)
785 > \]
786 > \[
787 > L(x_\alpha  ) = \frac{{\frac{{g_\alpha  }}{{\omega _\alpha  }}L(x) +
788 > px_\alpha  (0) + \dot x_\alpha  (0)}}{{p^2  + \omega _\alpha ^2 }}
789 > \]
790 > Then, the system coordinates,
791 > \begin{align}
792 > mL(\ddot x) &=  - \frac{1}{p}\frac{{\partial W(x)}}{{\partial x}} -
793 > \sum\limits_{\alpha  = 1}^N {\left\{ {\frac{{\frac{{g_\alpha
794 > }}{{\omega _\alpha  }}L(x) + px_\alpha  (0) + \dot x_\alpha
795 > (0)}}{{p^2  + \omega _\alpha ^2 }} - \frac{{g_\alpha ^2 }}{{m_\alpha
796 > }}\omega _\alpha ^2 L(x)} \right\}}
797 > %
798 > &= - \frac{1}{p}\frac{{\partial W(x)}}{{\partial x}} -
799 > \sum\limits_{\alpha  = 1}^N {\left\{ { - \frac{{g_\alpha ^2 }}{{m_\alpha  \omega _\alpha ^2 }}\frac{p}{{p^2  + \omega _\alpha ^2 }}pL(x)
800 > - \frac{p}{{p^2  + \omega _\alpha ^2 }}g_\alpha  x_\alpha  (0)
801 > - \frac{1}{{p^2  + \omega _\alpha ^2 }}g_\alpha  \dot x_\alpha  (0)} \right\}}
802 > \end{align}
803 > Then, the inverse transform,
804 >
805 > \begin{align}
806 > m\ddot x &=  - \frac{{\partial W(x)}}{{\partial x}} -
807 > \sum\limits_{\alpha  = 1}^N {\left\{ {\left( { - \frac{{g_\alpha ^2
808 > }}{{m_\alpha  \omega _\alpha ^2 }}} \right)\int_0^t {\cos (\omega
809 > _\alpha  t)\dot x(t - \tau )d\tau  - \left[ {g_\alpha  x_\alpha  (0)
810 > - \frac{{g_\alpha  }}{{m_\alpha  \omega _\alpha  }}} \right]\cos
811 > (\omega _\alpha  t) - \frac{{g_\alpha  \dot x_\alpha  (0)}}{{\omega
812 > _\alpha  }}\sin (\omega _\alpha  t)} } \right\}}
813 > %
814 > &= - \frac{{\partial W(x)}}{{\partial x}} - \int_0^t
815 > {\sum\limits_{\alpha  = 1}^N {\left( { - \frac{{g_\alpha ^2
816 > }}{{m_\alpha  \omega _\alpha ^2 }}} \right)\cos (\omega _\alpha
817 > t)\dot x(t - \tau )d} \tau }  + \sum\limits_{\alpha  = 1}^N {\left\{
818 > {\left[ {g_\alpha  x_\alpha  (0) - \frac{{g_\alpha  }}{{m_\alpha
819 > \omega _\alpha  }}} \right]\cos (\omega _\alpha  t) +
820 > \frac{{g_\alpha  \dot x_\alpha  (0)}}{{\omega _\alpha  }}\sin
821 > (\omega _\alpha  t)} \right\}}
822 > \end{align}
823 >
824 > \begin{equation}
825 > m\ddot x =  - \frac{{\partial W}}{{\partial x}} - \int_0^t {\xi
826 > (t)\dot x(t - \tau )d\tau }  + R(t)
827 > \label{introEuqation:GeneralizedLangevinDynamics}
828 > \end{equation}
829 > %where $ {\xi (t)}$ is friction kernel, $R(t)$ is random force and
830 > %$W$ is the potential of mean force. $W(x) =  - kT\ln p(x)$
831 > \[
832 > \xi (t) = \sum\limits_{\alpha  = 1}^N {\left( { - \frac{{g_\alpha ^2
833 > }}{{m_\alpha  \omega _\alpha ^2 }}} \right)\cos (\omega _\alpha  t)}
834 > \]
835 > For an infinite harmonic bath, we can use the spectral density and
836 > an integral over frequencies.
837 >
838 > \[
839 > R(t) = \sum\limits_{\alpha  = 1}^N {\left( {g_\alpha  x_\alpha  (0)
840 > - \frac{{g_\alpha ^2 }}{{m_\alpha  \omega _\alpha ^2 }}x(0)}
841 > \right)\cos (\omega _\alpha  t)}  + \frac{{\dot x_\alpha
842 > (0)}}{{\omega _\alpha  }}\sin (\omega _\alpha  t)
843 > \]
844 > The random forces depend only on initial conditions.
845 >
846 > \subsubsection{\label{introSection:secondFluctuationDissipation}The Second Fluctuation Dissipation Theorem}
847 > So we can define a new set of coordinates,
848 > \[
849 > q_\alpha  (t) = x_\alpha  (t) - \frac{1}{{m_\alpha  \omega _\alpha
850 > ^2 }}x(0)
851 > \]
852 > This makes
853 > \[
854 > R(t) = \sum\limits_{\alpha  = 1}^N {g_\alpha  q_\alpha  (t)}
855 > \]
856 > And since the $q$ coordinates are harmonic oscillators,
857 > \[
858 > \begin{array}{l}
859 > \left\langle {q_\alpha  (t)q_\alpha  (0)} \right\rangle  = \left\langle {q_\alpha ^2 (0)} \right\rangle \cos (\omega _\alpha  t) \\
860 > \left\langle {q_\alpha  (t)q_\beta  (0)} \right\rangle  = \delta _{\alpha \beta } \left\langle {q_\alpha  (t)q_\alpha  (0)} \right\rangle  \\
861 > \end{array}
862 > \]
863 >
864 > \begin{align}
865 > \left\langle {R(t)R(0)} \right\rangle  &= \sum\limits_\alpha
866 > {\sum\limits_\beta  {g_\alpha  g_\beta  \left\langle {q_\alpha
867 > (t)q_\beta  (0)} \right\rangle } }
868 > %
869 > &= \sum\limits_\alpha  {g_\alpha ^2 \left\langle {q_\alpha ^2 (0)}
870 > \right\rangle \cos (\omega _\alpha  t)}
871 > %
872 > &= kT\xi (t)
873 > \end{align}
874 >
875 > \begin{equation}
876 > \xi (t) = \left\langle {R(t)R(0)} \right\rangle
877 > \label{introEquation:secondFluctuationDissipation}
878 > \end{equation}
879 >
880 > \section{\label{introSection:hydroynamics}Hydrodynamics}
881 >
882 > \subsection{\label{introSection:frictionTensor} Friction Tensor}
883 > \subsection{\label{introSection:analyticalApproach}Analytical
884 > Approach}
885 >
886 > \subsection{\label{introSection:approximationApproach}Approximation
887 > Approach}
888 >
889 > \subsection{\label{introSection:centersRigidBody}Centers of Rigid
890 > Body}

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines