ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/tengDissertation/Introduction.tex
(Generate patch)

Comparing trunk/tengDissertation/Introduction.tex (file contents):
Revision 2685 by tim, Mon Apr 3 18:07:54 2006 UTC vs.
Revision 2694 by tim, Wed Apr 5 21:00:19 2006 UTC

# Line 1 | Line 1
1   \chapter{\label{chapt:introduction}INTRODUCTION AND THEORETICAL BACKGROUND}
2  
3 < \section{\label{introSection:classicalMechanics}Classical Mechanics}
3 > \section{\label{introSection:classicalMechanics}Classical
4 > Mechanics}
5  
6 < \section{\label{introSection:rigidBody}Dynamics of Rigid Bodies}
6 > Closely related to Classical Mechanics, Molecular Dynamics
7 > simulations are carried out by integrating the equations of motion
8 > for a given system of particles. There are three fundamental ideas
9 > behind classical mechanics. Firstly, One can determine the state of
10 > a mechanical system at any time of interest; Secondly, all the
11 > mechanical properties of the system at that time can be determined
12 > by combining the knowledge of the properties of the system with the
13 > specification of this state; Finally, the specification of the state
14 > when further combine with the laws of mechanics will also be
15 > sufficient to predict the future behavior of the system.
16  
17 < \section{\label{introSection:statisticalMechanics}Statistical Mechanics}
17 > \subsection{\label{introSection:newtonian}Newtonian Mechanics}
18 > The discovery of Newton's three laws of mechanics which govern the
19 > motion of particles is the foundation of the classical mechanics.
20 > Newton¡¯s first law defines a class of inertial frames. Inertial
21 > frames are reference frames where a particle not interacting with
22 > other bodies will move with constant speed in the same direction.
23 > With respect to inertial frames Newton¡¯s second law has the form
24 > \begin{equation}
25 > F = \frac {dp}{dt} = \frac {mv}{dt}
26 > \label{introEquation:newtonSecondLaw}
27 > \end{equation}
28 > A point mass interacting with other bodies moves with the
29 > acceleration along the direction of the force acting on it. Let
30 > $F_ij$ be the force that particle $i$ exerts on particle $j$, and
31 > $F_ji$ be the force that particle $j$ exerts on particle $i$.
32 > Newton¡¯s third law states that
33 > \begin{equation}
34 > F_ij = -F_ji
35 > \label{introEquation:newtonThirdLaw}
36 > \end{equation}
37  
38 + Conservation laws of Newtonian Mechanics play very important roles
39 + in solving mechanics problems. The linear momentum of a particle is
40 + conserved if it is free or it experiences no force. The second
41 + conservation theorem concerns the angular momentum of a particle.
42 + The angular momentum $L$ of a particle with respect to an origin
43 + from which $r$ is measured is defined to be
44 + \begin{equation}
45 + L \equiv r \times p \label{introEquation:angularMomentumDefinition}
46 + \end{equation}
47 + The torque $\tau$ with respect to the same origin is defined to be
48 + \begin{equation}
49 + N \equiv r \times F \label{introEquation:torqueDefinition}
50 + \end{equation}
51 + Differentiating Eq.~\ref{introEquation:angularMomentumDefinition},
52 + \[
53 + \dot L = \frac{d}{{dt}}(r \times p) = (\dot r \times p) + (r \times
54 + \dot p)
55 + \]
56 + since
57 + \[
58 + \dot r \times p = \dot r \times mv = m\dot r \times \dot r \equiv 0
59 + \]
60 + thus,
61 + \begin{equation}
62 + \dot L = r \times \dot p = N
63 + \end{equation}
64 + If there are no external torques acting on a body, the angular
65 + momentum of it is conserved. The last conservation theorem state
66 + that if all forces are conservative, Energy $E = T + V$ is
67 + conserved. All of these conserved quantities are important factors
68 + to determine the quality of numerical integration scheme for rigid
69 + body \cite{Dullweber1997}.
70 +
71 + \subsection{\label{introSection:lagrangian}Lagrangian Mechanics}
72 +
73 + Newtonian Mechanics suffers from two important limitations: it
74 + describes their motion in special cartesian coordinate systems.
75 + Another limitation of Newtonian mechanics becomes obvious when we
76 + try to describe systems with large numbers of particles. It becomes
77 + very difficult to predict the properties of the system by carrying
78 + out calculations involving the each individual interaction between
79 + all the particles, even if we know all of the details of the
80 + interaction. In order to overcome some of the practical difficulties
81 + which arise in attempts to apply Newton's equation to complex
82 + system, alternative procedures may be developed.
83 +
84 + \subsubsection{\label{introSection:halmiltonPrinciple}Hamilton's
85 + Principle}
86 +
87 + Hamilton introduced the dynamical principle upon which it is
88 + possible to base all of mechanics and, indeed, most of classical
89 + physics. Hamilton's Principle may be stated as follow,
90 +
91 + The actual trajectory, along which a dynamical system may move from
92 + one point to another within a specified time, is derived by finding
93 + the path which minimizes the time integral of the difference between
94 + the kinetic, $K$, and potential energies, $U$ \cite{tolman79}.
95 + \begin{equation}
96 + \delta \int_{t_1 }^{t_2 } {(K - U)dt = 0} ,
97 + \label{introEquation:halmitonianPrinciple1}
98 + \end{equation}
99 +
100 + For simple mechanical systems, where the forces acting on the
101 + different part are derivable from a potential and the velocities are
102 + small compared with that of light, the Lagrangian function $L$ can
103 + be define as the difference between the kinetic energy of the system
104 + and its potential energy,
105 + \begin{equation}
106 + L \equiv K - U = L(q_i ,\dot q_i ) ,
107 + \label{introEquation:lagrangianDef}
108 + \end{equation}
109 + then Eq.~\ref{introEquation:halmitonianPrinciple1} becomes
110 + \begin{equation}
111 + \delta \int_{t_1 }^{t_2 } {L dt = 0} ,
112 + \label{introEquation:halmitonianPrinciple2}
113 + \end{equation}
114 +
115 + \subsubsection{\label{introSection:equationOfMotionLagrangian}The
116 + Equations of Motion in Lagrangian Mechanics}
117 +
118 + for a holonomic system of $f$ degrees of freedom, the equations of
119 + motion in the Lagrangian form is
120 + \begin{equation}
121 + \frac{d}{{dt}}\frac{{\partial L}}{{\partial \dot q_i }} -
122 + \frac{{\partial L}}{{\partial q_i }} = 0,{\rm{ }}i = 1, \ldots,f
123 + \label{introEquation:eqMotionLagrangian}
124 + \end{equation}
125 + where $q_{i}$ is generalized coordinate and $\dot{q_{i}}$ is
126 + generalized velocity.
127 +
128 + \subsection{\label{introSection:hamiltonian}Hamiltonian Mechanics}
129 +
130 + Arising from Lagrangian Mechanics, Hamiltonian Mechanics was
131 + introduced by William Rowan Hamilton in 1833 as a re-formulation of
132 + classical mechanics. If the potential energy of a system is
133 + independent of generalized velocities, the generalized momenta can
134 + be defined as
135 + \begin{equation}
136 + p_i = \frac{\partial L}{\partial \dot q_i}
137 + \label{introEquation:generalizedMomenta}
138 + \end{equation}
139 + The Lagrange equations of motion are then expressed by
140 + \begin{equation}
141 + p_i  = \frac{{\partial L}}{{\partial q_i }}
142 + \label{introEquation:generalizedMomentaDot}
143 + \end{equation}
144 +
145 + With the help of the generalized momenta, we may now define a new
146 + quantity $H$ by the equation
147 + \begin{equation}
148 + H = \sum\limits_k {p_k \dot q_k }  - L ,
149 + \label{introEquation:hamiltonianDefByLagrangian}
150 + \end{equation}
151 + where $ \dot q_1  \ldots \dot q_f $ are generalized velocities and
152 + $L$ is the Lagrangian function for the system.
153 +
154 + Differentiating Eq.~\ref{introEquation:hamiltonianDefByLagrangian},
155 + one can obtain
156 + \begin{equation}
157 + dH = \sum\limits_k {\left( {p_k d\dot q_k  + \dot q_k dp_k  -
158 + \frac{{\partial L}}{{\partial q_k }}dq_k  - \frac{{\partial
159 + L}}{{\partial \dot q_k }}d\dot q_k } \right)}  - \frac{{\partial
160 + L}}{{\partial t}}dt \label{introEquation:diffHamiltonian1}
161 + \end{equation}
162 + Making use of  Eq.~\ref{introEquation:generalizedMomenta}, the
163 + second and fourth terms in the parentheses cancel. Therefore,
164 + Eq.~\ref{introEquation:diffHamiltonian1} can be rewritten as
165 + \begin{equation}
166 + dH = \sum\limits_k {\left( {\dot q_k dp_k  - \dot p_k dq_k }
167 + \right)}  - \frac{{\partial L}}{{\partial t}}dt
168 + \label{introEquation:diffHamiltonian2}
169 + \end{equation}
170 + By identifying the coefficients of $dq_k$, $dp_k$ and dt, we can
171 + find
172 + \begin{equation}
173 + \frac{{\partial H}}{{\partial p_k }} = q_k
174 + \label{introEquation:motionHamiltonianCoordinate}
175 + \end{equation}
176 + \begin{equation}
177 + \frac{{\partial H}}{{\partial q_k }} =  - p_k
178 + \label{introEquation:motionHamiltonianMomentum}
179 + \end{equation}
180 + and
181 + \begin{equation}
182 + \frac{{\partial H}}{{\partial t}} =  - \frac{{\partial L}}{{\partial
183 + t}}
184 + \label{introEquation:motionHamiltonianTime}
185 + \end{equation}
186 +
187 + Eq.~\ref{introEquation:motionHamiltonianCoordinate} and
188 + Eq.~\ref{introEquation:motionHamiltonianMomentum} are Hamilton's
189 + equation of motion. Due to their symmetrical formula, they are also
190 + known as the canonical equations of motions \cite{Goldstein01}.
191 +
192 + An important difference between Lagrangian approach and the
193 + Hamiltonian approach is that the Lagrangian is considered to be a
194 + function of the generalized velocities $\dot q_i$ and the
195 + generalized coordinates $q_i$, while the Hamiltonian is considered
196 + to be a function of the generalized momenta $p_i$ and the conjugate
197 + generalized coordinate $q_i$. Hamiltonian Mechanics is more
198 + appropriate for application to statistical mechanics and quantum
199 + mechanics, since it treats the coordinate and its time derivative as
200 + independent variables and it only works with 1st-order differential
201 + equations\cite{Marion90}.
202 +
203 + When studying Hamiltonian system, it is more convenient to use
204 + notation
205 + \begin{equation}
206 + r = r(q,p)^T
207 + \end{equation}
208 + and to introduce a $2n \times 2n$ canonical structure matrix $J$,
209 + \begin{equation}
210 + J = \left( {\begin{array}{*{20}c}
211 +   0 & I  \\
212 +   { - I} & 0  \\
213 + \end{array}} \right)
214 + \label{introEquation:canonicalMatrix}
215 + \end{equation}
216 + Thus, Hamiltonian system can be rewritten as,
217 + \begin{equation}
218 + \frac{d}{{dt}}r = J\nabla _r H(r)
219 + \label{introEquation:compactHamiltonian}
220 + \end{equation}
221 + where $I$ is an identity matrix and $J$ is a skew-symmetrix matrix
222 + ($ J^T  =  - J $).
223 +
224 + %\subsection{\label{introSection:canonicalTransformation}Canonical
225 + Transformation}
226 +
227 + \section{\label{introSection:geometricIntegratos}Geometric Integrators}
228 +
229 + \subsection{\label{introSection:symplecticMaps}Symplectic Maps and Methods}
230 +
231 + \subsection{\label{Construction of Symplectic Methods}}
232 +
233 + \section{\label{introSection:statisticalMechanics}Statistical
234 + Mechanics}
235 +
236 + The thermodynamic behaviors and properties of Molecular Dynamics
237 + simulation are governed by the principle of Statistical Mechanics.
238 + The following section will give a brief introduction to some of the
239 + Statistical Mechanics concepts presented in this dissertation.
240 +
241 + \subsection{\label{introSection::ensemble}Ensemble}
242 +
243 + \subsection{\label{introSection:ergodic}The Ergodic Hypothesis}
244 +
245 +
246   \section{\label{introSection:molecularDynamics}Molecular Dynamics}
247  
248 < \section{\label{introSection:langevinDynamics}Langevin Dynamics}
248 > As a special discipline of molecular modeling, Molecular dynamics
249 > has proven to be a powerful tool for studying the functions of
250 > biological systems, providing structural, thermodynamic and
251 > dynamical information.
252  
253 < \section{\label{introSection:hydroynamics}Hydrodynamics}
253 > \subsection{\label{introSec:mdInit}Initialization}
254  
255 + \subsection{\label{introSection:mdIntegration} Integration of the Equations of Motion}
256 +
257 + \section{\label{introSection:rigidBody}Dynamics of Rigid Bodies}
258 +
259 + A rigid body is a body in which the distance between any two given
260 + points of a rigid body remains constant regardless of external
261 + forces exerted on it. A rigid body therefore conserves its shape
262 + during its motion.
263 +
264 + Applications of dynamics of rigid bodies.
265 +
266 +
267 + %\subsection{\label{introSection:poissonBrackets}Poisson Brackets}
268 +
269   \section{\label{introSection:correlationFunctions}Correlation Functions}
270 +
271 + \section{\label{introSection:langevinDynamics}Langevin Dynamics}
272 +
273 + \subsection{\label{introSection:generalizedLangevinDynamics}Generalized Langevin Dynamics}
274 +
275 + \subsection{\label{introSection:hydroynamics}Hydrodynamics}

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines