| 129 |
|
designs, such as lifespan control \textit{etc}, we only use the |
| 130 |
|
static data approach in {\sc OOPSE}. {\tt IntegratorFactory} class |
| 131 |
|
is declared as |
| 132 |
< |
\begin{lstlisting}[float,caption={[A classic Singleton design pattern implementation(I)] Declaration of {\tt IntegratorFactory} class.},label={appendixScheme:singletonDeclaration}] |
| 132 |
> |
\begin{lstlisting}[float,caption={[A classic Singleton design pattern implementation(I)] The declaration of of simple Singleton pattern.},label={appendixScheme:singletonDeclaration}] |
| 133 |
|
|
| 134 |
|
class IntegratorFactory { |
| 135 |
|
public: |
| 143 |
|
|
| 144 |
|
\end{lstlisting} |
| 145 |
|
The corresponding implementation is |
| 146 |
< |
\begin{lstlisting}[float,caption={[A classic implementation of Singleton design pattern (II)] Implementation of {\tt IntegratorFactory} class.},label={appendixScheme:singletonImplementation}] |
| 146 |
> |
\begin{lstlisting}[float,caption={[A classic implementation of Singleton design pattern (II)] The implementation of simple Singleton pattern.},label={appendixScheme:singletonImplementation}] |
| 147 |
|
|
| 148 |
|
IntegratorFactory::instance_ = NULL; |
| 149 |
|
|
| 169 |
|
with the problem of creating objects without specifying the exact |
| 170 |
|
class of object that will be created. Factory Method is typically |
| 171 |
|
implemented by delegating the creation operation to the subclasses. |
| 172 |
+ |
{\tt Integrator} class Parameterized Factory pattern where factory |
| 173 |
+ |
method ({\tt createIntegrator} member function) creates products |
| 174 |
+ |
based on the identifier (see |
| 175 |
+ |
List.~\ref{appendixScheme:factoryDeclaration}). If the identifier |
| 176 |
+ |
has been already registered, the factory method will invoke the |
| 177 |
+ |
corresponding creator (see List.~\ref{integratorCreator}) which |
| 178 |
+ |
utilizes the modern C++ template technique to avoid subclassing. |
| 179 |
+ |
\begin{lstlisting}[float,caption={[The implementation of Parameterized Factory pattern (I)]Source code of {\tt IntegratorFactory} class.},label={appendixScheme:factoryDeclaration}] |
| 180 |
|
|
| 173 |
– |
Registers a creator with a type identifier. Looks up the type |
| 174 |
– |
identifier in the internal map. If it is found, it invokes the |
| 175 |
– |
corresponding creator for the type identifier and returns its |
| 176 |
– |
result. |
| 177 |
– |
\begin{lstlisting}[float,caption={[The implementation of Factory pattern (I)].},label={appendixScheme:factoryDeclaration}] |
| 178 |
– |
|
| 181 |
|
class IntegratorFactory { |
| 182 |
|
public: |
| 183 |
|
typedef std::map<string, IntegratorCreator*> CreatorMapType; |
| 199 |
|
CreatorMapType creatorMap_; |
| 200 |
|
}; |
| 201 |
|
\end{lstlisting} |
| 202 |
< |
\begin{lstlisting}[float,caption={[The implementation of Factory pattern (III)]Souce code of creator classes.},label={appendixScheme:integratorCreator}] |
| 202 |
> |
\begin{lstlisting}[float,caption={[The implementation of Parameterized Factory pattern (III)]Source code of creator classes.},label={appendixScheme:integratorCreator}] |
| 203 |
|
|
| 204 |
|
class IntegratorCreator { |
| 205 |
|
public: |
| 229 |
|
The purpose of the Visitor Pattern is to encapsulate an operation |
| 230 |
|
that you want to perform on the elements. The operation being |
| 231 |
|
performed on a structure can be switched without changing the |
| 232 |
< |
interfaces of the elements. In other words, one can add virtual |
| 232 |
> |
interfaces of the elements. In other words, one can add virtual |
| 233 |
|
functions into a set of classes without modifying their interfaces. |
| 234 |
< |
The UML class diagram of Visitor patten is shown in |
| 235 |
< |
Fig.~\ref{appendixFig:visitorUML}. {\tt Dump2XYZ} program in |
| 236 |
< |
Sec.~\ref{appendixSection:Dump2XYZ} uses Visitor pattern |
| 237 |
< |
extensively. |
| 234 |
> |
Fig.~\ref{appendixFig:visitorUML} demonstrates the structure of |
| 235 |
> |
Visitor pattern which is used extensively in {\tt Dump2XYZ}. In |
| 236 |
> |
order to convert an OOPSE dump file, a series of distinct and |
| 237 |
> |
unrelated operations are performed on different StuntDoubles. |
| 238 |
> |
Visitor allows one to keep related operations together by packing |
| 239 |
> |
them into one class. {\tt BaseAtomVisitor} is a typical example of |
| 240 |
> |
visitor in {\tt Dump2XYZ} program{see |
| 241 |
> |
List.~\ref{appendixScheme:visitor}}. In contrast to the operations, |
| 242 |
> |
the object structure or element classes rarely change(See |
| 243 |
> |
Fig.~\ref{oopseFig:heirarchy} and |
| 244 |
> |
List.~\ref{appendixScheme:element}). |
| 245 |
|
|
| 246 |
+ |
|
| 247 |
|
\begin{figure} |
| 248 |
|
\centering |
| 249 |
|
\includegraphics[width=\linewidth]{visitor.eps} |
| 250 |
< |
\caption[The architecture of {\sc OOPSE}] {Overview of the structure |
| 251 |
< |
of {\sc OOPSE}} \label{appendixFig:visitorUML} |
| 250 |
> |
\caption[The UML class diagram of Visitor patten] {The UML class |
| 251 |
> |
diagram of Visitor patten.} \label{appendixFig:visitorUML} |
| 252 |
|
\end{figure} |
| 253 |
|
|
| 254 |
|
\begin{lstlisting}[float,caption={[The implementation of Visitor pattern (I)]Source code of the visitor classes.},label={appendixScheme:visitor}] |
| 260 |
|
virtual void visit(RigidBody* rb); |
| 261 |
|
}; |
| 262 |
|
|
| 263 |
+ |
class BaseAtomVisitor:public BaseVisitor{ public: |
| 264 |
+ |
virtual void visit(Atom* atom); |
| 265 |
+ |
virtual void visit(DirectionalAtom* datom); |
| 266 |
+ |
virtual void visit(RigidBody* rb); |
| 267 |
+ |
}; |
| 268 |
+ |
|
| 269 |
|
\end{lstlisting} |
| 270 |
|
|
| 271 |
|
\begin{lstlisting}[float,caption={[The implementation of Visitor pattern (II)]Source code of the element classes.},label={appendixScheme:element}] |
| 312 |
|
on the specifics of the simulation). The names of rigid bodies are |
| 313 |
|
generated automatically. For example, the name of the first rigid |
| 314 |
|
body in a DMPC molecule is DMPC\_RB\_0. |
| 315 |
< |
\begin{figure} |
| 316 |
< |
\centering |
| 317 |
< |
\includegraphics[width=\linewidth]{heirarchy.eps} |
| 318 |
< |
\caption[Class heirarchy for ojects in {\sc OOPSE}]{ A diagram of |
| 319 |
< |
the class heirarchy. |
| 320 |
< |
\begin{itemize} |
| 321 |
< |
\item A {\bf StuntDouble} is {\it any} object that can be manipulated by the |
| 322 |
< |
integrators and minimizers. |
| 323 |
< |
\item An {\bf Atom} is a fundamental point-particle that can be moved around during a simulation. |
| 324 |
< |
\item A {\bf DirectionalAtom} is an atom which has {\it orientational} as well as translational degrees of freedom. |
| 325 |
< |
\item A {\bf RigidBody} is a collection of {\bf Atom}s or {\bf |
| 326 |
< |
DirectionalAtom}s which behaves as a single unit. |
| 327 |
< |
\end{itemize} |
| 328 |
< |
} \label{oopseFig:heirarchy} |
| 329 |
< |
\end{figure} |
| 315 |
> |
%\begin{figure} |
| 316 |
> |
%\centering |
| 317 |
> |
%\includegraphics[width=\linewidth]{heirarchy.eps} |
| 318 |
> |
%\caption[Class heirarchy for ojects in {\sc OOPSE}]{ A diagram of |
| 319 |
> |
%the class heirarchy. |
| 320 |
> |
%\begin{itemize} |
| 321 |
> |
%\item A {\bf StuntDouble} is {\it any} object that can be manipulated by the |
| 322 |
> |
%integrators and minimizers. |
| 323 |
> |
%\item An {\bf Atom} is a fundamental point-particle that can be moved around during a simulation. |
| 324 |
> |
%\item A {\bf DirectionalAtom} is an atom which has {\it orientational} as well as translational degrees of freedom. |
| 325 |
> |
%\item A {\bf RigidBody} is a collection of {\bf Atom}s or {\bf |
| 326 |
> |
%DirectionalAtom}s which behaves as a single unit. |
| 327 |
> |
%\end{itemize} |
| 328 |
> |
%} \label{oopseFig:heirarchy} |
| 329 |
> |
%\end{figure} |
| 330 |
|
|
| 331 |
|
\section{\label{appendixSection:syntax}Syntax of the Select Command} |
| 332 |
|
|