ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/tengDissertation/Appendix.tex
(Generate patch)

Comparing trunk/tengDissertation/Appendix.tex (file contents):
Revision 2815 by tim, Wed Jun 7 18:34:05 2006 UTC vs.
Revision 2821 by tim, Thu Jun 8 06:39:37 2006 UTC

# Line 118 | Line 118 | OOPSE}.
118   OOPSE}.
119  
120   \subsection{\label{appendixSection:singleton}Singleton}
121 < The Singleton pattern ensures that only one instance of a class is
122 < created. All objects that use an instance of that class use the same
123 < instance.
121 > The Singleton pattern not only provides a mechanism to restrict
122 > instantiation of a class to one object, but also provides a global
123 > point of access to the object. Currently implemented as a global
124 > variable, the logging utility which reports error and warning
125 > messages to the console in {\sc OOPSE} is a good candidate for
126 > applying the Singleton pattern to avoid the global namespace
127 > pollution.Although the singleton pattern can be implemented in
128 > various ways  to account for different aspects of the software
129 > designs, such as lifespan control \textit{etc}, we only use the
130 > static data approach in {\sc OOPSE}. {\tt IntegratorFactory} class
131 > is declared as
132 > \begin{lstlisting}[float,caption={[A classic Singleton design pattern implementation(I)] Declaration of {\tt IntegratorFactory} class.},label={appendixScheme:singletonDeclaration}]
133  
134 +  class IntegratorFactory {
135 +    public:
136 +      static IntegratorFactory* getInstance();
137 +    protected:
138 +      IntegratorFactory();
139 +    private:
140 +      static IntegratorFactory* instance_;
141 +  };
142 + \end{lstlisting}
143 + The corresponding implementation is
144 + \begin{lstlisting}[float,caption={[A classic Singleton design pattern implementation(II)] Implementation of {\tt IntegratorFactory} class.},label={appendixScheme:singletonImplementation}]
145 +
146 + IntegratorFactory::instance_ = NULL;
147 +
148 + IntegratorFactory* getInstance() {
149 +  if (instance_ == NULL){
150 +    instance_ = new IntegratorFactory;
151 +  }
152 +  return instance_;
153 + }
154 + \end{lstlisting}
155 + Since constructor is declared as {\tt protected}, a client can not
156 + instantiate {\tt IntegratorFactory} directly. Moreover, since the
157 + member function {\tt getInstance} serves as the only entry of access
158 + to {\tt IntegratorFactory}, this approach fulfills the basic
159 + requirement, a single instance. Another consequence of this approach
160 + is the automatic destruction since static data are destroyed upon
161 + program termination.
162 +
163   \subsection{\label{appendixSection:factoryMethod}Factory Method}
126 The Factory Method pattern is a creational pattern which deals with
127 the problem of creating objects without specifying the exact class
128 of object that will be created. Factory Method solves this problem
129 by defining a separate method for creating the objects, which
130 subclasses can then override to specify the derived type of product
131 that will be created.
164  
165 + Categoried as a creational pattern, the Factory Method pattern deals
166 + with the problem of creating objects without specifying the exact
167 + class of object that will be created. Factory Method is typically
168 + implemented by delegating the creation operation to the subclasses.
169 + \begin{lstlisting}[float,caption={[].},label={appendixScheme:factoryDeclaration}]
170 +  class IntegratorCreator;
171 +  class IntegratorFactory {
172 +    public:
173 +      typedef std::map<std::string, IntegratorCreator*> CreatorMapType;
174 +
175 +      /**
176 +       * Registers a creator with a type identifier
177 +       * @return true if registration is successful, otherwise return false
178 +       * @id the identification of the concrete object
179 +       * @creator the object responsible to create the concrete object
180 +       */
181 +      bool registerIntegrator(IntegratorCreator* creator);
182 +
183 +      /**
184 +       * Looks up the type identifier in the internal map. If it is found, it invokes the
185 +       * corresponding creator for the type identifier and returns its result.
186 +       * @return a pointer of the concrete object, return NULL if no creator is registed for
187 +       * creating this concrete object
188 +       * @param id the identification of the concrete object
189 +       */
190 +      Integrator* createIntegrator(const std::string& id, SimInfo* info);
191 +
192 +    private:
193 +      CreatorMapType creatorMap_;
194 +  };
195 + \end{lstlisting}
196 +
197 + \begin{lstlisting}[float,caption={[].},label={appendixScheme:factoryDeclarationImplementation}]
198 +  bool IntegratorFactory::unregisterIntegrator(const std::string& id) {
199 +    return creatorMap_.erase(id) == 1;
200 +  }
201 +
202 +  Integrator* IntegratorFactory::createIntegrator(const std::string& id, SimInfo* info) {
203 +    CreatorMapType::iterator i = creatorMap_.find(id);
204 +    if (i != creatorMap_.end()) {
205 +      //invoke functor to create object
206 +      return (i->second)->create(info);
207 +    } else {
208 +      return NULL;
209 +    }
210 +  }
211 + \end{lstlisting}
212 +
213 + \begin{lstlisting}[float,caption={[].},label={appendixScheme:integratorCreator}]
214 +
215 +  class IntegratorCreator {
216 +  public:
217 +    IntegratorCreator(const std::string& ident) : ident_(ident) {}
218 +    virtual ~IntegratorCreator() {}
219 +    const std::string& getIdent() const { return ident_; }
220 +
221 +    virtual Integrator* create(SimInfo* info) const = 0;
222 +
223 +  private:
224 +    std::string ident_;
225 +  };
226 +
227 +  template<class ConcreteIntegrator>
228 +  class IntegratorBuilder : public IntegratorCreator {
229 +  public:
230 +    IntegratorBuilder(const std::string& ident) : IntegratorCreator(ident) {}
231 +    virtual  Integrator* create(SimInfo* info) const {return new ConcreteIntegrator(info);}
232 +  };
233 + \end{lstlisting}
234 +
235   \subsection{\label{appendixSection:visitorPattern}Visitor}
236 +
237   The purpose of the Visitor Pattern is to encapsulate an operation
238   that you want to perform on the elements of a data structure. In
239   this way, you can change the operation being performed on a
240 < structure without the need of changing the classes of the elements
241 < that you are operating on.
240 > structure without the need of changing the class heirarchy of the
241 > elements that you are operating on.
242 >
243 > \begin{lstlisting}[float,caption={[].},label={appendixScheme:visitor}]
244 >  class BaseVisitor{
245 >    public:
246 >      virtual void visit(Atom* atom);
247 >      virtual void visit(DirectionalAtom* datom);
248 >      virtual void visit(RigidBody* rb);
249 >  };
250 > \end{lstlisting}
251 > \begin{lstlisting}[float,caption={[].},label={appendixScheme:element}]
252 >  class StuntDouble {
253 >    public:
254 >      virtual void accept(BaseVisitor* v) = 0;
255 >  };
256 >
257 >  class Atom: public StuntDouble {
258 >    public:
259 >      virtual void accept{BaseVisitor* v*} {v->visit(this);}
260 >  };
261 >
262 >  class DirectionalAtom: public Atom {
263 >    public:
264 >      virtual void accept{BaseVisitor* v*} {v->visit(this);}
265 >  };
266 >
267 >  class RigidBody: public StuntDouble {
268 >    public:
269 >      virtual void accept{BaseVisitor* v*} {v->visit(this);}
270 >  };
271  
272 + \end{lstlisting}
273   \section{\label{appendixSection:concepts}Concepts}
274  
275   OOPSE manipulates both traditional atoms as well as some objects
# Line 377 | Line 510 | Fig.~\ref{oopseFig:staticPropsProcess}.
510   \centering
511   \includegraphics[width=\linewidth]{staticPropsProcess.eps}
512   \caption[A representation of the three-stage correlations in
513 < \texttt{StaticProps}]{Three-stage processing in
514 < \texttt{StaticProps}. $S_1$ and $S_2$ are the numbers of selected
515 < stuntdobules from {\tt -{}-sele1} and {\tt -{}-sele2} respectively,
516 < while $C$ is the number of stuntdobules appearing at both sets. The
517 < first stage($S_1-C$ and $S_2$) and second stages ($S_1$ and $S_2-C$)
518 < are completely non-overlapping. On the contrary, the third stage($C$
519 < and $C$) are completely overlapping}
520 < \label{oopseFig:staticPropsProcess}
513 > \texttt{StaticProps}]{This diagram illustrates three-stage
514 > processing used by \texttt{StaticProps}. $S_1$ and $S_2$ are the
515 > numbers of selected stuntdobules from {\tt -{}-sele1} and {\tt
516 > -{}-sele2} respectively, while $C$ is the number of stuntdobules
517 > appearing at both sets. The first stage($S_1-C$ and $S_2$) and
518 > second stages ($S_1$ and $S_2-C$) are completely non-overlapping. On
519 > the contrary, the third stage($C$ and $C$) are completely
520 > overlapping} \label{oopseFig:staticPropsProcess}
521   \end{figure}
522  
523   The options available for {\tt StaticProps} are as follows:
# Line 462 | Line 595 | incremented, until all frame pairs have been correlate
595   incremented and the process repeated until the end of the
596   trajectory. Once the end is reached, the first block is freed then
597   incremented, until all frame pairs have been correlated in time.
598 + This process is illustrated in
599 + Fig.~\ref{oopseFig:dynamicPropsProcess}.
600 +
601 + \begin{figure}
602 + \centering
603 + \includegraphics[width=\linewidth]{dynamicPropsProcess.eps}
604 + \caption[A representation of the block correlations in
605 + \texttt{dynamicProps}]{This diagram illustrates block correlations
606 + processing in \texttt{dynamicProps}. The shaded region represents
607 + the self correlation of the block, and the open blocks are read one
608 + at a time and the cross correlations between blocks are calculated.}
609 + \label{oopseFig:dynamicPropsProcess}
610 + \end{figure}
611  
612   The options available for DynamicProps are as follows:
613   \begin{longtable}[c]{|EFG|}
# Line 489 | Line 635 | The options available for DynamicProps are as follows:
635  
636   \subsection{\label{appendixSection:Dump2XYZ}Dump2XYZ}
637  
638 < Dump2XYZ can transform an OOPSE dump file into a xyz file which can
639 < be opened by other molecular dynamics viewers such as Jmol and
640 < VMD\cite{Humphrey1996}. The options available for Dump2XYZ are as
641 < follows:
638 > {\tt Dump2XYZ} can transform an OOPSE dump file into a xyz file
639 > which can be opened by other molecular dynamics viewers such as Jmol
640 > and VMD\cite{Humphrey1996}. The options available for Dump2XYZ are
641 > as follows:
642  
643  
644   \begin{longtable}[c]{|EFG|}
# Line 523 | Line 669 | converted. \\
669   \end{longtable}
670  
671   \subsection{\label{appendixSection:hydrodynamics}Hydro}
672 < The options available for Hydro are as follows:
672 >
673 > {\tt Hydro} can calculate resistance and diffusion tensors at the
674 > center of resistance. Both tensors at the center of diffusion can
675 > also be reported from the program, as well as the coordinates for
676 > the beads which are used to approximate the arbitrary shapes. The
677 > options available for Hydro are as follows:
678   \begin{longtable}[c]{|EFG|}
679   \caption{Hydrodynamics Command-line Options}
680   \\ \hline

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines