ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/openmdDocs/openmdDoc.tex
(Generate patch)

Comparing trunk/openmdDocs/openmdDoc.tex (file contents):
Revision 4101 by gezelter, Wed Apr 16 12:53:07 2014 UTC vs.
Revision 4105 by gezelter, Mon Apr 28 21:41:01 2014 UTC

# Line 9 | Line 9
9   \usepackage{longtable}
10   \pagestyle{plain}
11   \pagenumbering{arabic}
12 + \usepackage{floatrow}
13 + \usepackage[margin=0.5cm,font=small,format=hang]{caption}
14 +
15   \oddsidemargin 0.0cm
16   \evensidemargin 0.0cm
17   \topmargin -21pt
# Line 20 | Line 23
23   \usepackage[square, comma, sort&compress]{natbib}
24   \bibpunct{[}{]}{,}{n}{}{;}
25  
26 + \DeclareFloatFont{tiny}{\scriptsize}% "scriptsize" is defined by floatrow, "tiny" not
27 + \floatsetup[table]{font=tiny}
28  
29 +
30   %\renewcommand\citemid{\ } % no comma in optional reference note
31 < \lstset{language=C,frame=TB,basicstyle=\footnotesize,basicstyle=\ttfamily, %
31 > \lstset{language=C,frame=TB,basicstyle=\footnotesize\ttfamily, %
32          xleftmargin=0.25in, xrightmargin=0.25in,captionpos=b, %
33          abovecaptionskip=0.5cm, belowcaptionskip=0.5cm, escapeinside={~}{~}}
34 < \renewcommand{\lstlistingname}{Scheme}
34 > \renewcommand{\lstlistingname}{Example}
35  
36 + \lstnewenvironment{code}[1][]%
37 +  {\noindent\minipage{\linewidth}\vspace{0.5\baselineskip}
38 +   \lstset{language=C,basicstyle=\footnotesize\ttfamily,%
39 +     captionpos=b,aboveskip=0.5cm,belowskip=0.5cm,abovecaptionskip=0.5cm,%
40 +     belowcaptionskip=0.5cm,%
41 +     escapeinside={~}{~},frame=single,#1}}
42 +  {\endminipage}
43 +
44 +
45 +
46   \begin{document}
47  
48   \newcolumntype{A}{p{1.5in}}
# Line 47 | Line 63
63   \newcolumntype{M}{p{1.55in}}
64  
65  
66 < \title{{\sc OpenMD-2.1}: Molecular Dynamics in the Open}
66 > \title{{\sc OpenMD-2.2}: Molecular Dynamics in the Open}
67  
68   \author{Joseph Michalka, James Marr, Kelsey Stocker, Madan Lamichhane,
69    Patrick Louden, \\
# Line 181 | Line 197 | formats are described in the following sections.
197   $<$Snapshot$>$} block.  Both the {\tt $<$MetaData$>$} and {\tt $<$Snapshot$>$}
198   formats are described in the following sections.
199  
200 < \begin{lstlisting}[float,caption={[The structure of an {\sc OpenMD} file]
200 > \begin{code}[caption={[The structure of an {\sc OpenMD} file]
201   The basic structure of an {\sc OpenMD} file contains HTML-like tags to
202   define simulation meta-data and subsequent instantaneous configuration
203 < information. A well-formed {\sc OpenMD} file must contain one $<$MetaData$>$
204 < block and {\it at least one} $<$Snapshot$>$ block.  Each
205 < $<$Snapshot$>$ is further divided into $<$FrameData$>$ and
206 < $<$StuntDoubles$>$ sections.},
191 < label=sch:mdFormat]
203 > information. A well-formed {\sc OpenMD} file must contain one {\tt <MetaData>}
204 > block and {\it at least one} {\tt <Snapshot>} block.  Each
205 > {\tt <Snapshot>} is further divided into {\tt <FrameData>} and
206 > {\tt <StuntDoubles>} sections.},label={sch:mdFormat}]
207   <OpenMD>
208    <MetaData>
209        // see section ~\ref{sec:miscConcepts}~ for details on the formatting
# Line 214 | Line 229 | label=sch:mdFormat]
229    <Snapshot>         // Further information on <Snapshot> blocks
230    </Snapshot>        // can be found in section ~\ref{section:coordFiles}~.
231   </OpenMD>
232 < \end{lstlisting}
232 > \end{code}
233  
234  
235   \section{OpenMD Files and $<$MetaData$>$ blocks}
# Line 230 | Line 245 | Scheme~\ref{sch:mdExample}.
245   shown in Scheme~\ref{sch:mdFormat} and example file is shown in
246   Scheme~\ref{sch:mdExample}.
247  
248 < \begin{lstlisting}[float,caption={[An example of a complete OpenMD
248 > \begin{code}[caption={[An example of a complete OpenMD
249   file] An example showing a complete OpenMD file.},
250   label={sch:mdExample}]
251   <OpenMD>
# Line 269 | Line 284 | statusTime = 50;  // statistics file frequency
284      </StuntDoubles>
285    </Snapshot>
286   </OpenMD>
287 < \end{lstlisting}
287 > \end{code}
288  
289   Within the {\tt $<$MetaData$>$} block it is necessary to provide a
290   complete description of the molecule before it is actually placed in
# Line 283 | Line 298 | become Scheme~\ref{sch:mdExPrime}.
298   Scheme~\ref{sch:mdIncludeExample}, and the new {\sc OpenMD} file would
299   become Scheme~\ref{sch:mdExPrime}.
300  
301 < \begin{lstlisting}[float,caption={An example molecule definition in an
301 > \begin{code}[caption={An example molecule definition in an
302   include file.},label={sch:mdIncludeExample}]
303   molecule{
304    name = "Ar";
# Line 292 | Line 307 | molecule{
307      position( 0.0, 0.0, 0.0 );
308    }
309   }
310 < \end{lstlisting}
310 > \end{code}
311  
312 < \begin{lstlisting}[float,caption={Revised OpenMD input file
312 > \begin{code}[caption={Revised OpenMD input file
313   example.},label={sch:mdExPrime}]
314   <OpenMD>
315    <MetaData>
# Line 327 | Line 342 | statusTime = 50;
342      </StuntDoubles>
343    </Snapshot>
344   </OpenMD>
345 < \end{lstlisting}
345 > \end{code}
346  
347   \section{\label{section:atomsMolecules}Atoms, Molecules, and other
348   ways of grouping atoms}
# Line 398 | Line 413 | rigid body can be seen in Scheme
413   rigid body can be seen in Scheme
414   \ref{sch:rigidBody}.
415  
416 < \begin{lstlisting}[float,caption={[Defining rigid bodies]A sample
416 > \begin{code}[caption={[Defining rigid bodies]A sample
417   definition of a molecule containing a rigid body and a cutoff
418   group},label={sch:rigidBody}]
419   molecule{
# Line 424 | Line 439 | molecule{
439      members(0, 1, 2);
440    }
441   }
442 < \end{lstlisting}
442 > \end{code}
443  
444   \section{\label{sec:miscConcepts}Creating a $<$MetaData$>$ block}
445  
# Line 632 | Line 647 | quaternions to save space in the output files.
647   complete rotation matrix, directional entities are written out using
648   quaternions to save space in the output files.
649  
650 < \begin{lstlisting}[float,caption={[The format of the {\tt $<$Snapshot$>$} block]
650 > \begin{code}[caption={[The format of the {\tt $<$Snapshot$>$} block]
651   An example of the format of the {\tt $<$Snapshot$>$} block.  There is an
652   initial sub-block called {\tt $<$FrameData$>$} which contains the time
653   stamp, the three column vectors of $\mathsf{H}$, and optional extra
# Line 641 | Line 656 | additional information is present on the line.  Atoms
656   configuration of each integrable object.  For each integrable object,
657   the global index is followed by a short string describing what
658   additional information is present on the line.  Atoms with only
659 < position and velocity information use the ``pv'' string which must
659 > position and velocity information use the {\tt pv} string which must
660   then be followed by the position and velocity vectors for that atom.
661 < Directional atoms and Rigid Bodies typically use the ``pvqj'' string
661 > Directional atoms and Rigid Bodies typically use the {\tt pvqj} string
662   which is followed by position, velocity, quaternions, and
663 < lastly, body fixed angular momentum for that integrable object.},
649 < label=sch:dumpFormat]
663 > lastly, body fixed angular momentum for that integrable object.},label={sch:dumpFormat}]
664    <Snapshot>
665      <FrameData>
666          Time: 0
# Line 661 | Line 675 | label=sch:dumpFormat]
675           3      pvqj        x y z vx vy vz  qw qx qy qz jx jy jz
676      </StuntDoubles>
677    </Snapshot>
678 < \end{lstlisting}
678 > \end{code}
679  
680   There are three {\sc OpenMD} files that are written using the combined
681   format.  They are: the initial startup file (\texttt{.md}), the
# Line 712 | Line 726 | An example is given in the {\sc OpenMD} file in Scheme
726   \end{enumerate}
727   An example is given in the {\sc OpenMD} file in Scheme~\ref{sch:initEx1}.
728  
729 < \begin{lstlisting}[float,caption={Example declaration of the
730 < $\text{I}_2$ molecule and the HCl molecule in $<$MetaData$>$ and
731 < $<$Snapshot$>$ blocks.  Note that even though $\text{I}_2$ is
732 < declared before HCl, the $<$Snapshot$>$ block follows the order {\it in
729 > \begin{code}[caption={Example declaration of the
730 > $\text{I}_2$ molecule and the HCl molecule in {\tt <MetaData>} and
731 > {\tt <Snapshot>} blocks.  Note that even though $\text{I}_2$ is
732 > declared before HCl, the {\tt <Snapshot>} block follows the order {\it in
733   which the components were included}.}, label=sch:initEx1]
734   <OpenMD>
735    <MetaData>
# Line 759 | Line 773 | component{
773      </StuntDoubles>
774    </Snapshot>
775   </OpenMD>
776 < \end{lstlisting}
776 > \end{code}
777  
778   \section{The Statistics File}
779  
# Line 775 | Line 789 | statistics file is denoted with the \texttt{.stat} fil
789   allowing the user to gauge the stability of the integrator. The
790   statistics file is denoted with the \texttt{.stat} file extension.
791  
792 < \chapter{\label{section:forceFields}Force Fields}
792 > \chapter{\label{chapter:forceFields}Force Fields}
793  
794   Like many molecular simulation packages, {\sc OpenMD} splits the
795   potential energy into the short-ranged (bonded) portion and a
# Line 789 | Line 803 | section.
803   are defined by the force field which is selected in the MetaData
804   section.
805  
806 < \section{\label{section:shortRange}The basic interactions}
806 > \section{\label{section:divisionOfLabor}Separation into Internal and
807 >  Cross interactions}
808  
809 < The energy function for a system composed of $N$ molecules is
810 < traditionally written
809 > The classical potential energy function for a system composed of $N$
810 > molecules is traditionally written
811   \begin{equation}
812   V = \sum^{N}_{I=1} V^{I}_{\text{Internal}}
813          + \sum^{N-1}_{I=1} \sum_{J>I} V^{IJ}_{\text{Cross}},
814   \label{eq:totalPotential}
815   \end{equation}
816 < where $V^{IJ}_{\text{Cross}}$ contains all intermolecular interactions
817 < between molecules $I$ and $J$, and $V^{I}_{\text{Internal}}$ is the
818 < internal potential of molecule $I$:
819 < \begin{align*}
820 < V^{I}_{\text{Internal}} =  &
821 < \sum_{r_{ij} \in I} V_{\text{bond}}(r_{ij})
807 < + \sum_{\theta_{ijk} \in I} V_{\text{bend}}(\theta_{ijk})
808 < + \sum_{\phi_{ijkl} \in I} V_{\text{torsion}}(\phi_{ijkl})
809 < + \sum_{\omega_{ijkl} \in I} V_{\text{inversion}}(\omega_{ijkl}) \\
810 < & + \sum_{i \in I} \sum_{(j>i+4) \in I}
811 < \biggl[ V_{\text{dispersion}}(r_{ij}) +  V_{\text{electrostatic}}
812 < (\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},\boldsymbol{\Omega}_{j})
813 < \biggr].
814 < \label{eq:internalPotential}
815 < \end{align*}
816 < Here $V_{\text{bond}}, V_{\text{bend}},
817 < V_{\text{torsion}},\mathrm{~and~} V_{\text{inversion}}$ represent the
818 < bond, bend, torsion, and inversion potentials for all
819 < topologically-connected sets of atoms within the molecule.  Bonds are
820 < the primary way of specifying how the atoms are connected together to
821 < form the molecule (i.e. they define the molecular topology).  The
822 < other short-range interactions may be specified explicitly in the
823 < molecule definition, or they may be deduced from bonding information.
824 < For example, bends can be implicitly deduced from two bonds which
825 < share an atom.  Torsions can be deduced from two bends that share a
826 < bond.  Inversion potentials are utilized primarily to enforce
827 < planarity around $sp^2$-hybridized sites, and these are specified with
828 < central atoms and satellites (or an atom with bonds to exactly three
829 < satellites).  The pairwise portions of the non-bonded interactions are
830 < usually excluded for atom pairs that are involved in the same bond,
831 < bend, or torsion. All other atom pairs within a molecule are subject
832 < to non-bonded pair potentials.
816 > where $V^{I}_{\text{Internal}}$ contains all of the terms internal to
817 > molecule $I$ (e.g. bonding, bending, torsional, and inversion terms)
818 > and $V^{IJ}_{\text{Cross}}$ contains all intermolecular interactions
819 > between molecules $I$ and $J$.  For large molecules, the internal
820 > potential may also include some non-bonded terms like electrostatic or
821 > van der Waals interactions.
822  
823   The types of atoms being simulated, as well as the specific functional
824   forms and parameters of the intra-molecular functions and the
# Line 839 | Line 828 | specification of blocks that may be present within the
828  
829   \section{\label{section:frcFile}Force Field Files}
830  
831 < Force field files have a number of ``Blocks'' to demarkate different
831 > Force field files have a number of ``Blocks'' to delineate different
832   types of information.  The blocks contain AtomType data, which provide
833   properties belonging to a single AtomType, as well as interaction
834   information which provides information about bonded or non-bonded
835   interactions that cannot be deduced from AtomType information alone.
836   A simple example of a forceField file is shown in scheme
837 < \ref{sch:frcExample}.
837 > \ref{sch:frcExample}.
838  
839 < \begin{lstlisting}[float,caption={[An example of a complete OpenMD
839 > \begin{code}[caption={[An example of a complete OpenMD
840   force field file for straight-chain united-atom alkanes.] An example
841   showing a complete OpenMD force field for straight-chain united-atom
842   alkanes.}, label={sch:frcExample}]
843   begin Options
844 <  Name = "alkane" end
845 < Options
844 >  Name = "alkane"
845 > end Options
846  
847   begin BaseAtomTypes  
848   //name          mass  
# Line 894 | Line 883 | end TorsionTypes
883   CH3   CH2  CH2  CH2  Trappe  0.0  0.70544  -0.13549  1.5723  
884   CH2   CH2  CH2  CH2  Trappe  0.0  0.70544  -0.13549  1.5723  
885   end TorsionTypes
886 < \end{lstlisting}
886 > \end{code}
887  
888 < \subsection{\label{section:ffOptions}The Options block}
888 > \section{\label{section:ffOptions}The Options block}
889  
890   The Options block defines properties governing how the force field
891   interactions are carried out.  This block is delineated with the text
# Line 905 | Line 894 | the various keywords and their possible values are giv
894   the various keywords and their possible values are given in Scheme
895   \ref{sch:optionsBlock}.
896  
897 < \begin{lstlisting}[caption={[A force field Options block showing default values
897 > \begin{code}[caption={[A force field Options block showing default values
898   for many force field options.] A force field Options block showing default values
899   for many force field options.  Most of these options do not need to be
900   specified if the default values are working.},
# Line 914 | Line 903 | begin Options
903   Name                      = "alkane"       // any string
904   vdWtype                   = "Lennard-Jones"
905   DistanceMixingRule        = "arithmetic"   // can also be "geometric" or "cubic"
906 < DistanceType              = "sigma"        // can also be Rmin
906 > DistanceType              = "sigma"        // can also be "Rmin"
907   EnergyMixingRule          = "geometric"    // can also be "arithmetic" or "hhg"
908   EnergyUnitScaling         = 1.0
909   MetallicEnergyUnitScaling = 1.0
# Line 931 | Line 920 | end Options
920   GayBerneNu                = 1.0
921   EAMMixingMethod           = "Johnson"      // can also be "Daw"
922   end Options
923 < \end{lstlisting}
923 > \end{code}
924  
925 < \subsection{\label{section:ffBase}The BaseAtomTypes block}
925 > \section{\label{section:ffBase}The BaseAtomTypes block}
926  
927   An AtomType the primary data structure that OpenMD uses to store
928   static data about an atom.  Things that belong to AtomType are
# Line 959 | Line 948 | simulations in Jmol or VMD.
948   ability to print out the names of the base atom types for displaying
949   simulations in Jmol or VMD.
950  
951 < \begin{lstlisting}[caption={[A simple example of a BaseAtomType
952 < block.] A simple example of a BaseAtomType block.},
951 > \begin{code}[caption={[A simple example of a BaseAtomTypes
952 > block.] A simple example of a BaseAtomTypes block.},
953   label={sch:baseAtomTypesBlock}]
954   begin BaseAtomTypes
955   //Name  mass (amu)
# Line 979 | Line 968 | end BaseAtomTypes
968   Ba      137.327
969   Cl      35.453
970   end BaseAtomTypes
971 < \end{lstlisting}
971 > \end{code}
972  
973 < \subsection{\label{section:ffAtom}The AtomTypes block}
973 > \section{\label{section:ffAtom}The AtomTypes block}
974  
975   AtomTypes inherit most properties from BaseAtomTypes, but can override
976   their lower-level properties as well.  Scheme \ref{sch:atomTypesBlock}
977   shows an example where multiple types of oxygen atoms can inherit mass
978   from the oxygen base type.
979  
980 < \begin{lstlisting}[caption={[An example of a AtomTypes block.] A
981 < simple example of an AtomType block which
980 > \begin{code}[caption={[An example of a AtomTypes block.] A
981 > simple example of an AtomTypes block which
982   shows how multiple types can inherit from the same base type.},
983   label={sch:atomTypesBlock}]
984   begin AtomTypes    
# Line 1013 | Line 1002 | end AtomTypes
1002   feo     Fe
1003   lio     Li
1004   end AtomTypes
1005 < \end{lstlisting}
1005 > \end{code}
1006  
1007 < \subsection{\label{section:ffDirectionalAtom}The DirectionalAtomTypes
1007 > \section{\label{section:ffDirectionalAtom}The DirectionalAtomTypes
1008    block}
1009   DirectionalAtoms have orientational degrees of freedom as well as
1010 < translation, so they have moment of inertia tensors.  
1010 > translation, so moving these atoms requires information about the
1011 > moments of inertias in the same way that translational motion requires
1012 > mass.  For DirectionalAtoms, OpenMD treats the mass distribution with
1013 > higher priority than electrostatic distributions; the moment of
1014 > inertia tensor, $\overleftrightarrow{\mathsf I}$, should be
1015 > diagonalized to obtain body-fixed axes, and the three diagonal moments
1016 > should correspond to rotational motion \textit{around} each of these
1017 > body-fixed axes.  Charge distributions may then result in dipole
1018 > vectors that are oriented along a linear combination of the body-axes,
1019 > and in quadrupole tensors that are not necessarily diagonal in the
1020 > body frame.
1021  
1022 < \begin{lstlisting}[caption={[An example of a DirectionalAtomTypes block.] A
1022 > \begin{code}[caption={[An example of a DirectionalAtomTypes block.] A
1023   simple example of a DirectionalAtomTypes block.},
1024   label={sch:datomTypesBlock}]
1025   begin DirectionalAtomTypes
1026   //Name          I_xx    I_yy    I_zz    (All moments in (amu*Ang^2)
1027   SSD             1.7696  0.6145  1.1550  
1029 SSD_E           1.7696  0.6145  1.1550  
1028   GBC6H6          88.781  88.781  177.561
1029   GBCH3OH         4.056   20.258  20.999
1030   GBH2O           1.777   0.581   1.196
1031 + CO2             43.06   43.06   0.0    // single-site model for CO2
1032   end DirectionalAtomTypes                    
1033  
1034 < \end{lstlisting}
1034 > \end{code}
1035  
1036 + For a DirectionalAtom that represents a linear object, it is
1037 + appropriate for one of the moments of inertia to be zero.  In this
1038 + case, OpenMD identifies that DirectionalAtom as having only 5 degrees
1039 + of freedom (three translations and two rotations), and will alter
1040 + calculation of temperatures to reflect this.
1041  
1042 < \subsection{\label{section::ffAtomProperties}AtomType properties}
1043 < \subsubsection{\label{section:ffLJ}The LennardJonesAtomTypes block}
1044 < The most basic interatomic interaction implemented in {\sc OpenMD} is
1045 < the Lennard-Jones potential, which mimics the van der Waals
1046 < interaction at long distances and uses an empirical repulsion at short
1047 < distances. The Lennard-Jones potential is given by:
1042 > \section{\label{section::ffAtomProperties}AtomType properties}
1043 > \subsection{\label{section:ffLJ}The LennardJonesAtomTypes block}
1044 > One of the most basic interatomic interactions implemented in {\sc
1045 >  OpenMD} is the Lennard-Jones potential, which mimics the van der
1046 > Waals interaction at long distances and uses an empirical repulsion at
1047 > short distances. The Lennard-Jones potential is given by:
1048   \begin{equation}
1049   V_{\text{LJ}}(r_{ij}) =
1050          4\epsilon_{ij} \biggl[
# Line 1055 | Line 1059 | cross term parameters for $\sigma$ and $\epsilon$. The
1059  
1060   Interactions between dissimilar particles requires the generation of
1061   cross term parameters for $\sigma$ and $\epsilon$. These parameters
1062 < are determined using the Lorentz-Berthelot mixing
1062 > are usually determined using the Lorentz-Berthelot mixing
1063   rules:\cite{Allen87}
1064   \begin{equation}
1065   \sigma_{ij} = \frac{1}{2}[\sigma_{ii} + \sigma_{jj}],
# Line 1067 | Line 1071 | and
1071   \label{eq:epsilonMix}
1072   \end{equation}
1073  
1074 < \subsubsection{\label{section:ffCharge}The ChargeAtomTypes block}
1075 < \subsubsection{\label{section:ffMultipole}The MultipoleAtomTypes  block}
1076 < The dipole-dipole potential has the following form:
1074 > The values of $\sigma_{ii}$ and $\epsilon_{ii}$ are properties of atom
1075 > type $i$, and must be specified in a section of the force field file
1076 > called the {\tt LennardJonesAtomTypes} block (see listing
1077 > \ref{sch:LJatomTypesBlock}).  Separate Lennard-Jones interactions
1078 > which are not determined by the mixing rules can also be specified in
1079 > the {\tt NonbondedInteractionTypes} block (see section
1080 > \ref{section:ffNBinteraction}).
1081 >
1082 > \begin{code}[caption={[An example of a LennardJonesAtomTypes block.] A
1083 > simple example of a LennardJonesAtomTypee block.   Units for
1084 > $\epsilon$ are kcal / mol and for $\sigma$ are \AA\ .},
1085 > label={sch:LJatomTypesBlock}]
1086 > begin LennardJonesAtomTypes
1087 > //Name          epsilon             sigma      
1088 > O_TIP4P         0.1550          3.15365
1089 > O_TIP4P-Ew      0.16275         3.16435
1090 > O_TIP5P         0.16            3.12  
1091 > O_TIP5P-E       0.178           3.097  
1092 > O_SPCE          0.15532         3.16549
1093 > O_SPC           0.15532         3.16549
1094 > CH4             0.279           3.73
1095 > CH3             0.185           3.75
1096 > CH2             0.0866          3.95
1097 > CH              0.0189          4.68
1098 > end LennardJonesAtomTypes
1099 > \end{code}
1100 >
1101 > \subsection{\label{section:ffCharge}The ChargeAtomTypes block}
1102 >
1103 > In molecular simulations, proper accumulation of the electrostatic
1104 > interactions is essential and is one of the most
1105 > computationally-demanding tasks.  Most common molecular mechanics
1106 > force fields represent atomic sites with full or partial charges
1107 > protected by Lennard-Jones (short range) interactions.  Partial charge
1108 > values, $q_i$ are empirical representations of the distribution of
1109 > electronic charge in a molecule.  This means that nearly every pair
1110 > interaction involves a calculation of charge-charge forces.  Coupled
1111 > with relatively long-ranged $r^{-1}$ decay, the monopole interactions
1112 > quickly become the most expensive part of molecular simulations.  The
1113 > interactions between point charges can be handled via a number of
1114 > different algorithms, but Coulomb's law is the fundamental physical
1115 > principle governing these interactions,
1116   \begin{equation}
1117 +  V_{\text{charge}}(r_{ij}) = \sum_{ij}\frac{q_iq_je^2}{4 \pi \epsilon_0
1118 +    r_{ij}},
1119 + \end{equation}
1120 + where $q$ represents the charge on particle $i$ or $j$, and $e$ is the
1121 + charge of an electron in Coulombs.  $\epsilon_0$ is the permittivity
1122 + of free space.
1123 +
1124 + \begin{code}[caption={[An example of a ChargeAtomTypes block.] A
1125 + simple example of a ChargeAtomTypes block.   Units for
1126 + charge are in multiples of electron charge.},
1127 + label={sch:ChargeAtomTypesBlock}]
1128 + begin ChargeAtomTypes
1129 + // Name         charge
1130 + O_TIP3P        -0.834
1131 + O_SPCE         -0.8476
1132 + H_TIP3P         0.417
1133 + H_TIP4P         0.520
1134 + H_SPCE          0.4238
1135 + EP_TIP4P       -1.040
1136 + Na+             1.0
1137 + Cl-            -1.0
1138 + end ChargeAtomTypes
1139 + \end{code}
1140 +
1141 + \subsection{\label{section:ffMultipole}The MultipoleAtomTypes
1142 +  block}
1143 + For complex charge distributions that are centered on single sites, it
1144 + is convenient to write the total electrostatic potential in terms of
1145 + multipole moments,
1146 + \begin{equation}
1147 + U_{\bf{ab}}(r)=\hat{M}_{\bf a} \hat{M}_{\bf b} \frac{1}{r}  \label{kernel}.
1148 + \end{equation}
1149 + where the multipole operator on site $\bf a$,
1150 + \begin{equation}
1151 + \hat{M}_{\bf a} = C_{\bf a} - D_{{\bf a}\alpha} \frac{\partial}{\partial r_{\alpha}}
1152 + +  Q_{{\bf a}\alpha\beta}
1153 + \frac{\partial^2}{\partial r_{\alpha} \partial r_{\beta}} + \dots
1154 + \end{equation}
1155 + Here, the point charge, dipole, and quadrupole for site $\bf a$ are
1156 + given by $C_{\bf a}$, $D_{{\bf a}\alpha}$, and $Q_{{\bf
1157 +    a}\alpha\beta}$, respectively.  These are the {\it primitive}
1158 + multipoles.  If the site is representing a distribution of charges,
1159 + these can be expressed as,
1160 + \begin{align}
1161 + C_{\bf a} =&\sum_{k \, \text{in \bf a}} q_k , \label{eq:charge} \\
1162 + D_{{\bf a}\alpha} =&\sum_{k \, \text{in \bf a}} q_k r_{k\alpha}, \label{eq:dipole}\\
1163 + Q_{{\bf a}\alpha\beta} =& \frac{1}{2} \sum_{k \, \text{in \bf a}} q_k
1164 + r_{k\alpha}  r_{k\beta} . \label{eq:quadrupole}
1165 + \end{align}
1166 + Note that the definition of the primitive quadrupole here differs from
1167 + the standard traceless form, and contains an additional Taylor-series
1168 + based factor of $1/2$.  
1169 +
1170 + The details of the multipolar interactions will be given later, but
1171 + many readers are familiar with the dipole-dipole potential:
1172 + \begin{equation}
1173   V_{\text{dipole}}(\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},
1174 <        \boldsymbol{\Omega}_{j}) = \frac{|\mu_i||\mu_j|}{4\pi\epsilon_{0}r_{ij}^{3}} \biggl[
1174 >        \boldsymbol{\Omega}_{j}) = \frac{|{\bf D}_i||{\bf D}_j|}{4\pi\epsilon_{0}r_{ij}^{3}} \biggl[
1175          \boldsymbol{\hat{u}}_{i} \cdot \boldsymbol{\hat{u}}_{j}
1176          -
1177          3(\boldsymbol{\hat{u}}_i \cdot \hat{\mathbf{r}}_{ij}) %
# Line 1082 | Line 1181 | are the orientational degrees of freedom for atoms $i$
1181   Here $\mathbf{r}_{ij}$ is the vector starting at atom $i$ pointing
1182   towards $j$, and $\boldsymbol{\Omega}_i$ and $\boldsymbol{\Omega}_j$
1183   are the orientational degrees of freedom for atoms $i$ and $j$
1184 < respectively. The magnitude of the dipole moment of atom $i$ is
1185 < $|\mu_i|$, $\boldsymbol{\hat{u}}_i$ is the standard unit orientation
1184 > respectively. The magnitude of the dipole moment of atom $i$ is $|{\bf
1185 >  D}_i|$, $\boldsymbol{\hat{u}}_i$ is the standard unit orientation
1186   vector of $\boldsymbol{\Omega}_i$, and $\boldsymbol{\hat{r}}_{ij}$ is
1187   the unit vector pointing along $\mathbf{r}_{ij}$
1188   ($\boldsymbol{\hat{r}}_{ij}=\mathbf{r}_{ij}/|\mathbf{r}_{ij}|$).
1189  
1091 \subsubsection{\label{section:ffGB}The FluctuatingChargeAtomTypes  block}
1092 \subsubsection{\label{section:ffPol}The PolarizableAtomTypes block}
1093 \subsubsection{\label{section:ffGB}The GayBerneAtomTypes block}
1094 \subsubsection{\label{section:ffSticky}The StickyAtomTypes block}
1190  
1191 < One of the solvents used by {\sc OpenMD} is the extended Soft Sticky
1192 < Dipole (SSD/E) water model.\cite{fennell04} The original SSD was
1193 < developed by Ichiye \emph{et al.}\cite{liu96:new_model} as a modified
1194 < form of the hard-sphere water model proposed by Bratko, Blum, and
1191 > \begin{code}[caption={[An example of a MultipoleAtomTypes block.] A
1192 > simple example of a MultipoleAtomTypes block.   Dipoles are given in
1193 > units of Debyes, and Quadrupole moments are given in units of Debye
1194 > \AA~(or $10^{-26} \mathrm{~esu~cm}^2$)},
1195 > label={sch:MultipoleAtomTypesBlock}]
1196 > begin MultipoleAtomTypes
1197 > // Euler angles are given in zxz convention in units of degrees.
1198 > //
1199 > // point dipoles:
1200 > // name d phi theta psi dipole_moment
1201 > DIP     d 0.0 0.0   0.0     1.91   // dipole points along z-body axis
1202 > //
1203 > // point quadrupoles:
1204 > // name q phi theta psi Qxx Qyy Qzz
1205 > CO2     q 0.0 0.0   0.0 0.0 0.0 -0.430592  //quadrupole tensor has zz element
1206 > //
1207 > // Atoms with both dipole and quadrupole moments:
1208 > // name dq phi theta psi dipole_moment  Qxx    Qyy     Qzz
1209 > SSD     dq 0.0 0.0   0.0     2.35      -1.682  1.762   -0.08
1210 > end MultipoleAtomTypes
1211 > \end{code}
1212 >
1213 > Specifying a MultipoleAtomType requires declaring how the
1214 > electrostatic frame for the site is rotated relative to the body-fixed
1215 > axes for that atom. The Euler angles $(\phi, \theta, \psi)$ for this
1216 > rotation must be given, and then the dipole, quadrupole, or all of
1217 > these moments are specified in the electrostatic frame.  In OpenMD,
1218 > the Euler angles are specified in the $zxz$ convention and are entered
1219 > in units of degrees.  Dipole moments are entered in units of Debye,
1220 > and Quadrupole moments in units of Debye \AA.
1221 >
1222 > \subsection{\label{section:ffGB}The FluctuatingChargeAtomTypes  block}
1223 > %\subsubsection{\label{section:ffPol}The PolarizableAtomTypes block}
1224 >
1225 > \subsection{\label{section:ffGB}The GayBerneAtomTypes block}
1226 >
1227 > The Gay-Berne potential has been widely used in the liquid crystal
1228 > community to describe anisotropic phase
1229 > behavior.~\cite{Gay:1981yu,Berne:1972pb,Kushick:1976xy,Luckhurst:1990fy,Cleaver:1996rt}
1230 > The form of the Gay-Berne potential implemented in OpenMD was
1231 > generalized by Cleaver {\it et al.} and is appropriate for dissimilar
1232 > uniaxial ellipsoids.\cite{Cleaver:1996rt} The potential is constructed
1233 > in the familiar form of the Lennard-Jones function using
1234 > orientation-dependent $\sigma$ and $\epsilon$ parameters,
1235 > \begin{equation*}
1236 > V_{ij}({{\bf \hat u}_i}, {{\bf \hat u}_j}, {{\bf \hat
1237 > r}_{ij}}) = 4\epsilon ({{\bf \hat u}_i}, {{\bf \hat u}_j},
1238 > {{\bf \hat r}_{ij}})\left[\left(\frac{\sigma_0}{r_{ij}-\sigma({{\bf \hat u
1239 > }_i},
1240 > {{\bf \hat u}_j}, {{\bf \hat r}_{ij}})+\sigma_0}\right)^{12}
1241 > -\left(\frac{\sigma_0}{r_{ij}-\sigma({{\bf \hat u}_i}, {{\bf \hat u}_j},
1242 > {{\bf \hat r}_{ij}})+\sigma_0}\right)^6\right]
1243 > \label{eq:gb}
1244 > \end{equation*}
1245 >
1246 > The range $(\sigma({\bf \hat{u}}_{i},{\bf \hat{u}}_{j},{\bf
1247 > \hat{r}}_{ij}))$, and strength $(\epsilon({\bf \hat{u}}_{i},{\bf
1248 > \hat{u}}_{j},{\bf \hat{r}}_{ij}))$ parameters
1249 > are dependent on the relative orientations of the two ellipsoids (${\bf
1250 > \hat{u}}_{i},{\bf \hat{u}}_{j}$) as well as the direction of the
1251 > inter-ellipsoid separation (${\bf \hat{r}}_{ij}$).  The shape and
1252 > attractiveness of each ellipsoid is governed by a relatively small set
1253 > of parameters:
1254 > \begin{itemize}
1255 > \item  $d$:  range parameter for the side-by-side (S) and cross (X) configurations
1256 > \item  $l$:  range parameter for the end-to-end (E) configuration
1257 > \item  $\epsilon_X$:  well-depth parameter for the cross (X) configuration
1258 > \item  $\epsilon_S$:  well-depth parameter for the side-by-side (S) configuration
1259 > \item  $\epsilon_E$:  well depth parameter for the end-to-end (E) configuration
1260 > \item  $dw$: The ``softness'' of the potential
1261 > \end{itemize}
1262 > Additionally, there are two universal paramters to govern the overall
1263 > importance of the purely orientational ($\nu$) and the mixed
1264 > orientational / translational ($\mu$) parts of strength of the
1265 > interactions.  These parameters have default or ``canonical'' values,
1266 > but may be changed as a force field option:
1267 > \begin{itemize}
1268 >  \item $\nu$: purely orientational part : defaults to 1
1269 >  \item $\mu$: mixed orientational / translational part : defaults to
1270 >    2
1271 > \end{itemize}
1272 > Further details of the potential are given
1273 > elsewhere,\cite{Luckhurst:1990fy,Golubkov06,SunX._jp0762020} and an
1274 > excellent overview of the computational methods that can be used to
1275 > efficiently compute forces and torques for this potential can be found
1276 > in Ref. \citealp{Golubkov06}
1277 >
1278 > \begin{code}[caption={[An example of a GayBerneAtomTypes block.] A
1279 > simple example of a GayBerneAtomTypes block.  Distances ($d$ and $l$)
1280 > are given in \AA\ and energies ($\epsilon_X, \epsilon_S, \epsilon_E$)
1281 > are in units of kcal/mol. $dw$ is unitless.},
1282 > label={sch:GayBerneAtomTypes}]
1283 > begin GayBerneAtomTypes
1284 > //Name          d       l       eps_X           eps_S           eps_E     dw
1285 > GBlinear        2.8104  9.993   0.774729        0.774729        0.116839  1.0
1286 > GBC6H6          4.65    2.03    0.540           0.540           1.9818    0.6
1287 > GBCH3OH         2.55    3.18    0.542           0.542           0.55826   1.0
1288 > end GayBerneAtomTypes                  
1289 > \end{code}
1290 >
1291 > \subsection{\label{section:ffSticky}The StickyAtomTypes block}
1292 >
1293 > One of the solvents that can be simulated by {\sc OpenMD} is the
1294 > extended Soft Sticky Dipole (SSD/E) water model.\cite{fennell04} The
1295 > original SSD was developed by Ichiye \emph{et
1296 >  al.}\cite{liu96:new_model} as a modified form of the hard-sphere
1297 > water model proposed by Bratko, Blum, and
1298   Luzar.\cite{Bratko85,Bratko95} It consists of a single point dipole
1299   with a Lennard-Jones core and a sticky potential that directs the
1300   particles to assume the proper hydrogen bond orientation in the first
# Line 1179 | Line 1377 | SSD model that led to lower than expected densities at
1377  
1378   Recent constant pressure simulations revealed issues in the original
1379   SSD model that led to lower than expected densities at all target
1380 < pressures.\cite{Ichiye03,fennell04} The default model in {\sc OpenMD}
1381 < is therefore SSD/E, a density corrected derivative of SSD that
1382 < exhibits improved liquid structure and transport behavior. If the use
1383 < of a reaction field long-range interaction correction is desired, it
1384 < is recommended that the parameters be modified to those of the SSD/RF
1385 < model (an SSD variant parameterized for reaction field). These solvent
1188 < parameters are listed and can be easily modified in the {\sc duff}
1189 < force field file ({\tt DUFF.frc}).  A table of the parameter values
1190 < and the drawbacks and benefits of the different density corrected SSD
1191 < models can be found in reference~\cite{fennell04}.
1380 > pressures,\cite{Ichiye03,fennell04} so variants on the sticky
1381 > potential can be specified by using one of a number of substitute atom
1382 > types (see listing \ref{sch:StickyAtomTypes}).  A table of the
1383 > parameter values and the drawbacks and benefits of the different
1384 > density corrected SSD models can be found in
1385 > reference~\citealp{fennell04}.
1386  
1387 < \subsection{\label{section::ffMetals}Metallic Atom Types}
1388 < \subsubsection{\label{section:ffEAM}The EAMAtomTypes block}
1389 < {\sc OpenMD} implements a potential that describes bonding in
1390 < transition metal
1391 < systems.~\cite{Finnis84,Ercolessi88,Chen90,Qi99,Ercolessi02} This
1392 < potential has an attractive interaction which models ``Embedding'' a
1393 < positively charged pseudo-atom core in the electron density due to the
1394 < free valance ``sea'' of electrons created by the surrounding atoms in
1395 < the system.  A pairwise part of the potential (which is primarily
1396 < repulsive) describes the interaction of the positively charged metal
1397 < core ions with one another.  The Embedded Atom Method ({\sc
1398 < eam})~\cite{Daw84,FBD86,johnson89,Lu97} has been widely adopted in the
1399 < materials science community and has been included in {\sc OpenMD}. A
1206 < good review of {\sc eam} and other formulations of metallic potentials
1207 < was given by Voter.\cite{Voter:95}
1387 > \begin{code}[caption={[An example of a StickyAtomTypes block.] A
1388 > simple example of a StickyAtomTypes block.  Distances ($r_l$, $r_u$,
1389 > $r_{l}'$ and $r_{u}'$) are given in \AA\ and energies ($v_0, v_{0}'$)
1390 > are in units of kcal/mol. $w_0$ is unitless.},
1391 > label={sch:StickyAtomTypes}]
1392 > begin StickyAtomTypes
1393 > //name  w0      v0 (kcal/mol)   v0p     rl (Ang)  ru    rlp     rup
1394 > SSD_E   0.07715 3.90            3.90    2.40      3.80  2.75    3.35
1395 > SSD_RF  0.07715 3.90            3.90    2.40      3.80  2.75    3.35
1396 > SSD     0.07715 3.7284          3.7284  2.75      3.35  2.75    4.0
1397 > SSD1    0.07715 3.6613          3.6613  2.75      3.35  2.75    4.0
1398 > end StickyAtomTypes
1399 > \end{code}
1400  
1401 < The {\sc eam} potential has the form:
1401 > \section{\label{section::ffMetals}Metallic Atom Types}
1402 >
1403 > {\sc OpenMD} implements a number of related potentials that describe
1404 > bonding in transition metals. These potentials have an attractive
1405 > interaction which models ``Embedding'' a positively charged
1406 > pseudo-atom core in the electron density due to the free valance
1407 > ``sea'' of electrons created by the surrounding atoms in the system.
1408 > A pairwise part of the potential (which is primarily repulsive)
1409 > describes the interaction of the positively charged metal core ions
1410 > with one another.  These potentials have the form:
1411   \begin{equation}
1412   V  =  \sum_{i} F_{i}\left[\rho_{i}\right] + \sum_{i} \sum_{j \neq i}
1413   \phi_{ij}({\bf r}_{ij})
# Line 1223 | Line 1424 | to compute the inter-atomic forces.
1424   transition metal potentials require two loops through the atom pairs
1425   to compute the inter-atomic forces.
1426  
1427 < The pairwise portion of the potential, $\phi_{ij}$, is a primarily
1428 < repulsive interaction between atoms $i$ and $j$. In the original
1228 < formulation of {\sc eam}\cite{Daw84}, $\phi_{ij}$ was an entirely
1229 < repulsive term; however later refinements to {\sc eam} allowed for
1230 < more general forms for $\phi$.\cite{Daw89} The effective cutoff
1231 < distance, $r_{{\text cut}}$ is the distance at which the values of
1232 < $f(r)$ and $\phi(r)$ drop to zero for all atoms present in the
1233 < simulation.  In practice, this distance is fairly small, limiting the
1234 < summations in the {\sc eam} equation to the few dozen atoms
1235 < surrounding atom $i$ for both the density $\rho$ and pairwise $\phi$
1236 < interactions.
1427 > The pairwise portion of the potential, $\phi_{ij}$, is usually a
1428 > repulsive interaction between atoms $i$ and $j$.
1429  
1430 < In computing forces for alloys, mixing rules as outlined by
1431 < Johnson~\cite{johnson89} are used to compute the heterogenous pair
1432 < potential,
1430 > \subsection{\label{section:ffEAM}The EAMAtomTypes block}
1431 > The Embedded Atom Method ({\sc eam}) is one of the most widely-used
1432 > potentials for transition
1433 > metals.~\cite{Finnis84,Ercolessi88,Chen90,Qi99,Ercolessi02,Daw84,FBD86,johnson89,Lu97}
1434 > It has been widely adopted in the materials science community and a
1435 > good review of {\sc eam} and other formulations of metallic potentials
1436 > was given by Voter.\cite{Voter:95}
1437 >
1438 > In the original formulation of {\sc eam}\cite{Daw84}, the pair
1439 > potential, $\phi_{ij}$ was an entirely repulsive term; however later
1440 > refinements to {\sc eam} allowed for more general forms for
1441 > $\phi$.\cite{Daw89} The effective cutoff distance, $r_{{\text cut}}$
1442 > is the distance at which the values of $f(r)$ and $\phi(r)$ drop to
1443 > zero for all atoms present in the simulation.  In practice, this
1444 > distance is fairly small, limiting the summations in the {\sc eam}
1445 > equation to the few dozen atoms surrounding atom $i$ for both the
1446 > density $\rho$ and pairwise $\phi$ interactions.
1447 >
1448 > In computing forces for alloys, OpenMD uses mixing rules outlined by
1449 > Johnson~\cite{johnson89} to compute the heterogenous pair potential,
1450   \begin{equation}
1451   \label{eq:johnson}
1452   \phi_{ab}(r)=\frac{1}{2}\left(
# Line 1269 | Line 1478 | files.  
1478   $\mbox{kcal mol}^{-1}$ as in the rest of the {\sc OpenMD} force field
1479   files.  
1480  
1481 < \subsubsection{\label{section:ffSC}The SuttonChenAtomTypes block}
1481 > \begin{code}[caption={[An example of a EAMAtomTypes block.] A
1482 > simple example of a EAMAtomTypes block. Here the only data provided is
1483 > the name of a {\tt funcfl} file which contains the raw data for spline
1484 > interpolations for the density, functional, and pair potential.},
1485 > label={sch:EAMAtomTypes}]
1486 > begin EAMAtomTypes
1487 > Au      Au.u3.funcfl
1488 > Ag      Ag.u3.funcfl
1489 > Cu      Cu.u3.funcfl
1490 > Ni      Ni.u3.funcfl
1491 > Pd      Pd.u3.funcfl
1492 > Pt      Pt.u3.funcfl
1493 > end EAMAtomTypes
1494 > \end{code}
1495  
1496 + \subsection{\label{section:ffSC}The SuttonChenAtomTypes block}
1497 +
1498   The Sutton-Chen ({\sc sc})~\cite{Chen90} potential has been used to
1499 < study a wide range of phenomena in metals.  Although it is similar in
1500 < form to the {\sc eam} potential, the Sutton-Chen model takes on a
1501 < simpler form,
1499 > study a wide range of phenomena in metals.  Although it has the same
1500 > basic form as the {\sc eam} potential, the Sutton-Chen model requires
1501 > a simpler set of parameters,
1502   \begin{equation}
1503   \label{eq:SCP1}
1504   U_{tot}=\sum _{i}\left[ \frac{1}{2}\sum _{j\neq
1505 < i}D_{ij}V^{pair}_{ij}(r_{ij})-c_{i}D_{ii}\sqrt{\rho_{i}}\right] ,
1505 > i}\epsilon_{ij}V^{pair}_{ij}(r_{ij})-c_{i}\epsilon_{ii}\sqrt{\rho_{i}}\right] ,
1506   \end{equation}
1507   where $V^{pair}_{ij}$ and $\rho_{i}$ are given by
1508   \begin{equation}
1509   \label{eq:SCP2}
1510   V^{pair}_{ij}(r)=\left(
1511 < \frac{\alpha_{ij}}{r_{ij}}\right)^{n_{ij}}, \rho_{i}=\sum_{j\neq i}\left(
1511 > \frac{\alpha_{ij}}{r_{ij}}\right)^{n_{ij}} \hspace{1in} \rho_{i}=\sum_{j\neq i}\left(
1512   \frac{\alpha_{ij}}{r_{ij}}\right) ^{m_{ij}}
1513   \end{equation}
1514  
# Line 1292 | Line 1516 | the interactions between the valence electrons and the
1516   interactions of the pseudo-atom cores.  The $\sqrt{\rho_i}$ term in
1517   Eq. (\ref{eq:SCP1}) is an attractive many-body potential that models
1518   the interactions between the valence electrons and the cores of the
1519 < pseudo-atoms.  $D_{ij}$, $D_{ii}$, $c_i$ and $\alpha_{ij}$ are
1520 < parameters used to tune the potential for different transition
1521 < metals.
1519 > pseudo-atoms.  $\epsilon_{ij}$, $\epsilon_{ii}$, $c_i$ and
1520 > $\alpha_{ij}$ are parameters used to tune the potential for different
1521 > transition metals.
1522  
1523   The {\sc sc} potential form has also been parameterized by Qi {\it et
1524   al.}\cite{Qi99} These parameters were obtained via empirical and {\it
1525   ab initio} calculations to match structural features of the FCC
1526 < crystal.  To specify the original Sutton-Chen variant of the {\sc sc}
1527 < force field, the user would add the {\tt forceFieldVariant = "SC";}
1304 < line to the meta-data file, while specification of the Qi {\it et al.}
1305 < quantum-adapted variant of the {\sc sc} potential, the user would add
1306 < the {\tt forceFieldVariant = "QSC";} line to the meta-data file.
1526 > crystal.  Interested readers are encouraged to consult reference
1527 > \citealp{Qi99} for further details.
1528  
1529 < \subsection{\label{section::ffShortRange}Short Range Interactions}
1530 < \subsubsection{\label{section:ffBond}The BondTypes block}
1531 < \subsubsection{\label{section:ffBend}The BendTypes block}
1532 < A harmonic bend potential is represented by the following function:
1533 < \begin{equation}
1534 < V_{\text{bend}}(\theta_{ijk}) = k_{\theta}( \theta_{ijk} - \theta_0
1535 < )^2, \label{eq:bendPot}
1529 > \begin{code}[caption={[An example of a SCAtomTypes block.] A
1530 > simple example of a SCAtomTypes block.  Distances ($\alpha$)
1531 > are given in \AA\ and energies ($\epsilon$) are (by convention) given in
1532 > units of eV.  These units must be specified in the {\tt Options} block
1533 > using the keyword {\tt MetallicEnergyUnitScaling}.  Without this {\tt
1534 > Options} keyword, the default units for $\epsilon$ are kcal/mol.  The
1535 > other parameters, $m$, $n$, and $c$ are unitless.},
1536 > label={sch:SCAtomTypes}]
1537 > begin SCAtomTypes
1538 > // Name  epsilon(eV)      c      m       n      alpha(angstroms)
1539 > Ni      0.0073767       84.745  5.0     10.0    3.5157
1540 > Cu      0.0057921       84.843  5.0     10.0    3.6030
1541 > Rh      0.0024612       305.499 5.0     13.0    3.7984
1542 > Pd      0.0032864       148.205 6.0     12.0    3.8813
1543 > Ag      0.0039450       96.524  6.0     11.0    4.0691
1544 > Ir      0.0037674       224.815 6.0     13.0    3.8344  
1545 > Pt      0.0097894       71.336  7.0     11.0    3.9163
1546 > Au      0.0078052       53.581  8.0     11.0    4.0651
1547 > Au2     0.0078052       53.581  8.0     11.0    4.0651
1548 > end SCAtomTypes
1549 > \end{code}
1550 >
1551 > \section{\label{section::ffShortRange}Short Range Interactions}
1552 > The internal structure of a molecule is usually specified in terms of
1553 > a set of ``bonded'' terms in the potential energy function for
1554 > molecule $I$,
1555 > \begin{align*}
1556 > V^{I}_{\text{Internal}} =  &
1557 > \sum_{r_{ij} \in I} V_{\text{bond}}(r_{ij})
1558 > + \sum_{\theta_{ijk} \in I} V_{\text{bend}}(\theta_{ijk})
1559 > + \sum_{\phi_{ijkl} \in I} V_{\text{torsion}}(\phi_{ijkl})
1560 > + \sum_{\omega_{ijkl} \in I} V_{\text{inversion}}(\omega_{ijkl}) \\
1561 > & + \sum_{i \in I} \sum_{(j>i+4) \in I}
1562 > \biggl[ V_{\text{dispersion}}(r_{ij}) +  V_{\text{electrostatic}}
1563 > (\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},\boldsymbol{\Omega}_{j})
1564 > \biggr].
1565 > \label{eq:internalPotential}
1566 > \end{align*}
1567 > Here $V_{\text{bond}}, V_{\text{bend}},
1568 > V_{\text{torsion}},\mathrm{~and~} V_{\text{inversion}}$ represent the
1569 > bond, bend, torsion, and inversion potentials for all
1570 > topologically-connected sets of atoms within the molecule.  Bonds are
1571 > the primary way of specifying how the atoms are connected together to
1572 > form the molecule (i.e. they define the molecular topology).  The
1573 > other short-range interactions may be specified explicitly in the
1574 > molecule definition, or they may be deduced from bonding information.
1575 > For example, bends can be implicitly deduced from two bonds which
1576 > share an atom.  Torsions can be deduced from two bends that share a
1577 > bond.  Inversion potentials are utilized primarily to enforce
1578 > planarity around $sp^2$-hybridized sites, and these are specified with
1579 > central atoms and satellites (or an atom with bonds to exactly three
1580 > satellites). Non-bonded interactions are usually excluded for atom
1581 > pairs that are involved in the same bond, bend, or torsion, but all
1582 > other atom pairs are included in the standard non-bonded interactions.
1583 >
1584 > Bond lengths, angles, and torsions (dihedrals) are ``natural''
1585 > coordinates to treat molecular motion, as it is usually in these
1586 > coordinates that most chemists understand the behavior of molecules.
1587 > The bond lengths and angles are often considered ``hard'' degrees of
1588 > freedom.  That is, we can't deform them very much without a
1589 > significant energetic penalty.  On the other hand, dihedral angles or
1590 > torsions are ``soft'' and typically undergo significant deformation
1591 > under normal conditions.
1592 >
1593 > \subsection{\label{section:ffBond}The BondTypes block}
1594 >
1595 > Bonds are the primary way to specify how the atoms are connected
1596 > together to form the molecule.  In general, bonds exert strong
1597 > restoring forces to keep the molecule compact.  The bond energy
1598 > functions are relatively simple functions of the distance between two
1599 > atomic sites,
1600 > \begin{equation}
1601 > b = \left| \vec{r}_{ij} \right| = \sqrt{(x_j - x_i)^2 + (y_j - y_i)^2
1602 >  + (z_j - z_i)^2}.
1603 > \end{equation}
1604 > All BondTypes must specify two AtomType names ($i$ and $j$) that
1605 > describe when that bond should be applied, as well as an equilibrium
1606 > bond length, $b_{ij}^0$, in units of \AA. The most common forms for
1607 > bonding potentials are {\tt Harmonic} bonds,
1608 > \begin{equation}
1609 > V_{\text{bond}}(b) = \frac{k_{ij}}{2} \left(b -
1610 >  b_{ij}^0 \right)^2
1611   \end{equation}
1612 < where $\theta_{ijk}$ is the angle defined by atoms $i$, $j$, and $k$,
1613 < $\theta_0$ is the equilibrium bond angle, and $k_{\theta}$ is the
1614 < force constant which determines the strength of the harmonic bend.
1612 > and {\tt Morse} bonds,
1613 > \begin{equation}
1614 > V_{\text{bond}}(b) = D_{ij} \left[ 1 - e^{-\beta_{ij} (b - b_{ij}^0)} \right]^2
1615 > \end{equation}
1616  
1617 < \subsubsection{\label{section:ffTorsion}The TorsionTypes block}
1618 < The torsion potential is often represented as a cosine series of the
1619 < form:
1617 > \begin{figure}[h]
1618 > \centering
1619 > \includegraphics[width=2.5in]{bond.pdf}
1620 > \caption[Bond coordinates]{The coordinate describing a
1621 > a bond between atoms $i$ and $j$ is $|r_{ij}|$, the length of the
1622 > $\vec{r}_{ij}$ vector. }
1623 > \label{fig:bond}
1624 > \end{figure}
1625 >
1626 > OpenMD can also simulate some less common types of bond potentials,
1627 > including {\tt Fixed} bonds (which are constrained to be at a
1628 > specified bond length),
1629   \begin{equation}
1630 < V_{\text{torsion}}(\phi) = c_1[1 + \cos \phi]
1325 <        + c_2[1 + \cos(2\phi)]
1326 <        + c_3[1 + \cos(3\phi)],
1327 < \label{eq:origTorsionPot}
1630 > V_{\text{bond}}(b) = 0.
1631   \end{equation}
1632 < where:
1632 > {\tt Cubic} bonds include terms to model anharmonicity,
1633   \begin{equation}
1634 < \cos\phi = (\hat{\mathbf{r}}_{ij} \times \hat{\mathbf{r}}_{jk}) \cdot
1635 <        (\hat{\mathbf{r}}_{jk} \times \hat{\mathbf{r}}_{kl}).
1636 < \label{eq:torsPhi}
1637 < \end{equation}
1638 < Here, $\hat{\mathbf{r}}_{\alpha\beta}$ are the set of unit bond
1639 < vectors between atoms $i$, $j$, $k$, and $l$. For computational
1640 < efficiency, the torsion potential has been recast after the method of
1641 < {\sc charmm},\cite{Brooks83} in which the angle series is converted to
1642 < a power series of the form:
1634 > V_{\text{bond}}(b) =  K_3 (b -  b_{ij}^0)^3 + K_2 (b - b_{ij}^0)^2 + K_1 (b -  b_{ij}^0) + K_0,
1635 > \end{equation}
1636 > and {\tt Quartic} bonds, include another term in the Taylor
1637 > expansion around $b_{ij}^0$,
1638 > \begin{equation}
1639 > V_{\text{bond}}(b) = K_4 (b -  b_{ij}^0)^4 +  K_3 (b -  b_{ij}^0)^3 +
1640 > K_2 (b - b_{ij}^0)^2 + K_1 (b -  b_{ij}^0) + K_0,
1641 > \end{equation}
1642 > can also be simulated.  Note that the factor of $1/2$ that is included
1643 > in the {\tt Harmonic} bond type force constant is {\it not} present in
1644 > either the {\tt Cubic} or {\tt Quartic} bond types.
1645 >
1646 > {\tt Polynomial} bonds which can have any number of terms,
1647 > \begin{equation}
1648 > V_{\text{bond}}(b) = \sum_n K_n (b -  b_{ij}^0)^n.
1649 > \end{equation}
1650 > can also be specified by giving a sequence of integer ($n$) and force
1651 > constant ($K_n$) pairs.
1652 >
1653 > The order of terms in the BondTypes block is:
1654 > \begin{itemize}
1655 > \item {\tt AtomType} 1
1656 > \item {\tt AtomType} 2
1657 > \item {\tt BondType} (one of {\tt Harmonic}, {\tt Morse}, {\tt Fixed}, {\tt
1658 >        Cubic}, {\tt Quartic}, or {\tt Polynomial})
1659 > \item $b_{ij}^0$, the equilibrium bond length in \AA
1660 > \item any other parameters required by the {\tt BondType}
1661 > \end{itemize}
1662 >
1663 > \begin{code}[caption={[An example of a BondTypes block.] A
1664 > simple example of a BondTypes block.  Distances ($b_0$)
1665 > are given in \AA\ and force constants are given in
1666 > units so that when multiplied by the correct power of distance they
1667 > return energies in kcal/mol.  For example $k$ for a Harmonic bond is
1668 > in units of kcal/mol/\AA$^2$.},
1669 > label={sch:BondTypes}]
1670 > begin BondTypes
1671 > //Atom1 Atom2   Harmonic        b0        k (kcal/mol/A^2)
1672 > CH2     CH2     Harmonic        1.526     260
1673 > //Atom1 Atom2   Morse           b0        D       beta (A^-1)
1674 > CN      NC      Morse           1.157437  212.95  2.5802
1675 > //Atom1 Atom2   Fixed           b0
1676 > CT      HC      Fixed           1.09
1677 > //Atom1 Atom2   Cubic           b0        K3      K2      K1      K0
1678 > //Atom1 Atom2   Quartic         b0        K4      K3      K2      K1      K0
1679 > //Atom1 Atom2   Polynomial      b0        n       Kn      [m      Km]
1680 > end BondTypes
1681 > \end{code}
1682 >
1683 > There are advantages and disadvantages of all of the different types
1684 > of bonds, but specific simulation tasks may call for specific
1685 > behaviors.
1686 >
1687 > \subsection{\label{section:ffBend}The BendTypes block}
1688 > The equilibrium geometries and energy functions for bending motions in
1689 > a molecule are strongly dependent on the bonding environment of the
1690 > central atomic site.  For example, different types of hybridized
1691 > carbon centers require different bending angles and force constants to
1692 > describe the local geometry.
1693 >
1694 > The bending potential energy functions used in most force fields are
1695 > often simple functions of the angle between two bonds,
1696   \begin{equation}
1697 < V_{\text{torsion}}(\phi) =  
1698 <        k_3 \cos^3 \phi + k_2 \cos^2 \phi + k_1 \cos \phi + k_0,
1699 < \label{eq:torsionPot}
1700 < \end{equation}
1701 < where:
1702 < \begin{align*}
1347 < k_0 &= c_1 + c_3, \\
1348 < k_1 &= c_1 - 3c_3, \\
1349 < k_2 &= 2 c_2, \\
1350 < k_3 &= 4c_3.
1351 < \end{align*}
1352 < By recasting the potential as a power series, repeated trigonometric
1353 < evaluations are avoided during the calculation of the potential
1354 < energy.
1697 > \theta_{ijk} = \cos^{-1} \left(\frac{\vec{r}_{ji} \cdot
1698 >    \vec{r}_{jk}}{\left| \vec{r}_{ji} \right| \left| \vec{r}_{jk}
1699 >    \right|} \right)
1700 > \end{equation}
1701 > Here atom $j$ is the central atom that is bonded to two partners $i$
1702 > and $k$.
1703  
1704 < \subsubsection{\label{section:ffInversion}The InversionTypes block}
1705 < \subsection{\label{section::ffLongRange}Long Range Interactions}
1706 < \subsubsection{\label{section:ffInversion}The NonBondedInteraction block}
1704 > \begin{figure}[h]
1705 > \centering
1706 > \includegraphics[width=3.5in]{bend.pdf}
1707 > \caption[Bend angle coordinates]{The coordinate describing a bend
1708 >  between atoms $i$, $j$, and $k$ is the angle $\theta_{ijk} =
1709 >  \cos^{-1} \left(\hat{r}_{ji} \cdot \hat{r}_{jk}\right)$ where $\hat{r}_{ji}$ is
1710 >  the unit vector between atoms $j$ and $i$. }
1711 > \label{fig:bend}
1712 > \end{figure}
1713  
1714  
1715 + All BendTypes must specify three AtomType names ($i$, $j$ and $k$)
1716 + that describe when that bend potential should be applied, as well as
1717 + an equilibrium bending angle, $\theta_{ijk}^0$, in units of
1718 + degrees. The most common forms for bending potentials are {\tt
1719 +  Harmonic} bends,
1720 + \begin{equation}
1721 + V_{\text{bend}}(\theta_{ijk}) = \frac{k_{ijk}}{2}( \theta_{ijk} - \theta_{ijk}^0
1722 + )^2, \label{eq:bendPot}
1723 + \end{equation}
1724 + where $k_{ijk}$ is the force constant which determines the strength of
1725 + the harmonic bend. {\tt UreyBradley} bends utilize an additional 1-3
1726 + bond-type interaction in addition to the harmonic bending potential:
1727 + \begin{equation}
1728 +  V_{\text{bend}}(\vec{r}_i , \vec{r}_j, \vec{r}_k)
1729 +  =\frac{k_{ijk}}{2}( \theta_{ijk} - \theta_{ijk}^0)^2
1730 +  + \frac{k_{ub}}{2}( r_{ik} - s_0 )^2. \label{eq:ubBend}
1731 + \end{equation}
1732  
1733 < (see Fig.~\ref{fig:lipidModel}), The parameters for $k_{\theta}$ and
1734 < $\theta_0$ are borrowed from those in TraPPE.\cite{Siepmann1998}
1733 > A {\tt Cosine} bend is a variant on the harmonic bend which utilizes
1734 > the cosine of the angle instead of the angle itself,
1735 > \begin{equation}
1736 > V_{\text{bend}}(\theta_{ijk}) = \frac{k_{ijk}}{2}( \cos\theta_{ijk} -
1737 > \cos \theta_{ijk}^0 )^2. \label{eq:cosBend}
1738 > \end{equation}
1739  
1740 < Calculating the long-range (non-bonded) potential involves a sum over
1741 < all pairs of atoms (except for those atoms which are involved in a
1367 < bond, bend, or torsion with each other).  If done poorly, calculating
1368 < the the long-range interactions for $N$ atoms would involve $N(N-1)/2$
1369 < evaluations of atomic distances.  To reduce the number of distance
1370 < evaluations between pairs of atoms, {\sc OpenMD} allows the use of
1371 < switched cutoffs with Verlet neighbor lists.\cite{Allen87} Neutral
1372 < groups which contain charges will exhibit pathological forces unless
1373 < the cutoff is applied to the neutral groups evenly instead of to the
1374 < individual atoms.\cite{leach01:mm}  {\sc OpenMD} allows users to
1375 < specify cutoff groups which may contain an arbitrary number of atoms
1376 < in the molecule.  Atoms in a cutoff group are treated as a single unit
1377 < for the evaluation of the switching function:
1740 > OpenMD can also simulate some less common types of bend potentials,
1741 > including {\tt Cubic} bends, which include terms to model anharmonicity,
1742   \begin{equation}
1743 < V_{\mathrm{long-range}} = \sum_{a} \sum_{b>a} s(r_{ab}) \sum_{i \in a} \sum_{j \in b} V_{ij}(r_{ij}),
1743 > V_{\text{bend}}(\theta_{ijk}) =  K_3 (\theta_{ijk} -  \theta_{ijk}^0)^3 + K_2 (\theta_{ijk} -  \theta_{ijk}^0)^2 + K_1 (\theta_{ijk} -  \theta_{ijk}^0) + K_0,
1744   \end{equation}
1745 < where $r_{ab}$ is the distance between the centers of mass of the two
1746 < cutoff groups ($a$ and $b$).
1745 > and {\tt Quartic} bends, which include another term in the Taylor
1746 > expansion around $\theta_{ijk}^0$,
1747 > \begin{equation}
1748 >  V_{\text{bend}}(\theta_{ijk}) = K_4 (\theta_{ijk} -  \theta_{ijk}^0)^4 +  K_3 (\theta_{ijk} -  \theta_{ijk}^0)^3 +
1749 >  K_2 (\theta_{ijk} -  \theta_{ijk}^0)^2 + K_1 (\theta_{ijk} -
1750 >  \theta_{ijk}^0) + K_0,
1751 > \end{equation}
1752 > can also be simulated.  Note that the factor of $1/2$ that is included
1753 > in the {\tt Harmonic} bend type force constant is {\it not} present in
1754 > either the {\tt Cubic} or {\tt Quartic} bend types.
1755  
1756 < The sums over $a$ and $b$ are over the cutoff groups that are present
1385 < in the simulation.  Atoms which are not explicitly defined as members
1386 < of a {\tt cutoffGroup} are treated as a group consisting of only one
1387 < atom.  The switching function, $s(r)$ is the standard cubic switching
1388 < function,
1756 > {\tt Polynomial} bends which can have any number of terms,
1757   \begin{equation}
1758 < S(r) =
1391 <        \begin{cases}
1392 <        1 & \text{if $r \le r_{\text{sw}}$},\\
1393 <        \frac{(r_{\text{cut}} + 2r - 3r_{\text{sw}})(r_{\text{cut}} - r)^2}
1394 <        {(r_{\text{cut}} - r_{\text{sw}})^3}
1395 <        & \text{if $r_{\text{sw}} < r \le r_{\text{cut}}$}, \\
1396 <        0 & \text{if $r > r_{\text{cut}}$.}
1397 <        \end{cases}
1398 < \label{eq:dipoleSwitching}
1758 > V_{\text{bend}}(\theta_{ijk}) = \sum_n K_n (\theta_{ijk} -  \theta_{ijk}^0)^n.
1759   \end{equation}
1760 < Here, $r_{\text{sw}}$ is the {\tt switchingRadius}, or the distance
1761 < beyond which interactions are reduced, and $r_{\text{cut}}$ is the
1402 < {\tt cutoffRadius}, or the distance at which interactions are
1403 < truncated.
1760 > can also be specified by giving a sequence of integer ($n$) and force
1761 > constant ($K_n$) pairs.
1762  
1763 < Users of {\sc OpenMD} do not need to specify the {\tt cutoffRadius} or
1764 < {\tt switchingRadius}.  In simulations containing only Lennard-Jones
1765 < atoms, the cutoff radius has a default value of $2.5\sigma_{ii}$,
1766 < where $\sigma_{ii}$ is the largest Lennard-Jones length parameter
1767 < present in the simulation.  In simulations containing charged or
1768 < dipolar atoms, the default cutoff radius is $15 \mbox{\AA}$.  
1763 > The order of terms in the BendTypes block is:
1764 > \begin{itemize}
1765 > \item {\tt AtomType} 1
1766 > \item {\tt AtomType} 2 (this is the central atom)
1767 > \item {\tt AtomType} 3
1768 > \item {\tt BendType} (one of {\tt Harmonic}, {\tt UreyBradley}, {\tt
1769 >    Cosine}, {\tt Cubic}, {\tt Quartic}, or {\tt Polynomial})
1770 > \item $\theta_{ijk}^0$, the equilibrium bending angle in degrees.
1771 > \item any other parameters required by the {\tt BendType}
1772 > \end{itemize}
1773  
1774 < The {\tt switchingRadius} is set to a default value of 95\% of the
1775 < {\tt cutoffRadius}.  In the special case of a simulation containing
1776 < {\it only} Lennard-Jones atoms, the default switching radius takes the
1777 < same value as the cutoff radius, and {\sc OpenMD} will use a shifted
1778 < potential to remove discontinuities in the potential at the cutoff.
1779 < Both radii may be specified in the meta-data file.
1774 > \begin{code}[caption={[An example of a BendTypes block.] A
1775 > simple example of a BendTypes block.  By convention, equilibrium angles
1776 > ($\theta_0$) are given in degrees but force constants are given in
1777 > units so that when multiplied by the correct power of angle (in
1778 > radians) they return energies in kcal/mol.  For example $k$ for a
1779 > Harmonic bend is in units of kcal/mol/radians$^2$.},
1780 > label={sch:BendTypes}]
1781 > begin BendTypes
1782 > //Atom1 Atom2   Atom3   Harmonic      theta0(deg) Ktheta(kcal/mol/radians^2)
1783 > CT      CT      CT      Harmonic      109.5        80.000000
1784 > CH2     CH      CH2     Harmonic      112.0       117.68
1785 > CH3     CH2     SH      Harmonic       96.0        67.220
1786 > //UreyBradley
1787 > //Atom1 Atom2   Atom3   UreyBradley   theta0      Ktheta  s0  Kub
1788 > //Cosine
1789 > //Atom1 Atom2   Atom3   Cosine        theta0      Ktheta(kcal/mol)
1790 > //Cubic
1791 > //Atom1 Atom2   Atom3   Cubic         theta0      K3      K2  K1   K0
1792 > //Quartic
1793 > //Atom1 Atom2   Atom3   Quartic       theta0      K4      K3  K2   K1   K0
1794 > //Polynomial
1795 > //Atom1 Atom2   Atom3   Polynomial    theta0      n       Kn  [m   Km]
1796 > end BendTypes
1797 > \end{code}
1798  
1799 < Force fields can be added to {\sc OpenMD}, although it comes with a few
1800 < simple examples (Lennard-Jones, {\sc duff}, {\sc water}, and {\sc
1801 < eam}) which are explained in the following sections.
1799 > Note that the parameters for a particular bend type are the same for
1800 > any bending triplet of the same atomic types (in the same or reversed
1801 > order).  Changing the AtomType in the Atom2 position will change the
1802 > matched bend types in the force field.
1803  
1804 < \section{\label{sec:LJPot}The Lennard Jones Force Field}
1804 > \subsection{\label{section:ffTorsion}The TorsionTypes block}
1805 > The torsion potential for rotation of groups around a central bond can
1806 > often be represented with various cosine functions.  For two
1807 > tetrahedral ($sp^3$) carbons connected by a single bond, the torsion
1808 > potential might be
1809 > \begin{equation*}
1810 > V_{\text{torsion}} = \frac{v}{2} \left[ 1 + \cos( 3 \phi ) \right]
1811 > \end{equation*}
1812 > where $v$ is the barrier for going from {\em staggered} $\rightarrow$
1813 > {\em eclipsed} conformations, while for $sp^2$ carbons connected by a
1814 > double bond, the potential might be
1815 > \begin{equation*}
1816 > V_{\text{torsion}} = \frac{w}{2} \left[ 1 - \cos( 2 \phi ) \right]
1817 > \end{equation*}
1818 > where $w$ is the barrier for going from  {\em cis} $\rightarrow$ {\em
1819 >  trans} conformations.
1820  
1821 < Scheme
1822 < \ref{sch:LJFF} gives an example meta-data file that
1823 < sets up a system of 108 Ar particles to be simulated using the
1824 < Lennard-Jones force field.
1821 > A general torsion potentials can be represented as a cosine series of
1822 > the form:
1823 > \begin{equation}
1824 > V_{\text{torsion}}(\phi_{ijkl}) = c_1[1 + \cos \phi_{ijkl}]
1825 >        + c_2[1 - \cos(2\phi_{ijkl})]
1826 >        + c_3[1 + \cos(3\phi_{ijkl})],
1827 > \label{eq:origTorsionPot}
1828 > \end{equation}
1829 > where the angle $\phi_{ijkl}$ is defined
1830 > \begin{equation}
1831 > \cos\phi_{ijkl} = (\hat{\mathbf{r}}_{ij} \times \hat{\mathbf{r}}_{jk}) \cdot
1832 >        (\hat{\mathbf{r}}_{jk} \times \hat{\mathbf{r}}_{kl}).
1833 > \label{eq:torsPhi}
1834 > \end{equation}
1835 > Here, $\hat{\mathbf{r}}_{\alpha\beta}$ are the set of unit bond
1836 > vectors between atoms $i$, $j$, $k$, and $l$.  Note that some force
1837 > fields define the zero of the $\phi_{ijkl}$ angle when atoms $i$ and
1838 > $l$ are in the {\em trans} configuration, while most define the zero
1839 > angle for when $i$ and $l$ are in the fully eclipsed orientation.  The
1840 > behavior of the torsion parser can be altered with the {\tt
1841 >  TorsionAngleConvention} keyword in the Options block.  The default
1842 > behavior is {\tt "180\_is\_trans"} while the opposite behavior can be
1843 > invoked by setting this keyword to {\tt "0\_is\_trans"}.
1844  
1845 < \begin{lstlisting}[float,caption={[Invocation of the Lennard-Jones
1431 < force field] A sample startup file for a small Lennard-Jones
1432 < simulation.},label={sch:LJFF}]
1433 < <OpenMD>
1434 <  <MetaData>
1435 < #include "argon.md"
1436 <
1437 < component{
1438 <  type = "Ar";
1439 <  nMol = 108;
1440 < }
1441 <
1442 < forceField = "LJ";
1443 <  </MetaData>
1444 <  <Snapshot>     // not shown in this scheme
1445 <  </Snapshot>
1446 < </OpenMD>
1447 < \end{lstlisting}
1448 <
1449 <
1450 < \section{\label{section:DUFF}Dipolar Unified-Atom Force Field}
1451 <
1452 < The dipolar unified-atom force field ({\sc duff}) was developed to
1453 < simulate lipid bilayers. These types of simulations require a model
1454 < capable of forming bilayers, while still being sufficiently
1455 < computationally efficient to allow large systems ($\sim$100's of
1456 < phospholipids, $\sim$1000's of waters) to be simulated for long times
1457 < ($\sim$10's of nanoseconds). With this goal in mind, {\sc duff} has no
1458 < point charges. Charge-neutral distributions are replaced with dipoles,
1459 < while most atoms and groups of atoms are reduced to Lennard-Jones
1460 < interaction sites. This simplification reduces the length scale of
1461 < long range interactions from $\frac{1}{r}$ to $\frac{1}{r^3}$,
1462 < removing the need for the computationally expensive Ewald
1463 < sum. Instead, Verlet neighbor-lists and cutoff radii are used for the
1464 < dipolar interactions, and, if desired, a reaction field may be added
1465 < to mimic longer range interactions.
1466 <
1467 < As an example, lipid head-groups in {\sc duff} are represented as
1468 < point dipole interaction sites.  Placing a dipole at the head group's
1469 < center of mass mimics the charge separation found in common
1470 < phospholipid head groups such as phosphatidylcholine.\cite{Cevc87}
1471 < Additionally, a large Lennard-Jones site is located at the
1472 < pseudoatom's center of mass. The model is illustrated by the red atom
1473 < in Fig.~\ref{fig:lipidModel}. The water model we use to
1474 < complement the dipoles of the lipids is a
1475 < reparameterization\cite{fennell04} of the soft sticky dipole (SSD)
1476 < model of Ichiye
1477 < \emph{et al.}\cite{liu96:new_model}
1478 <
1479 < \begin{figure}
1845 > \begin{figure}[h]
1846   \centering
1847 < \includegraphics[width=\linewidth]{lipidModel.pdf}
1848 < \caption[A representation of a lipid model in {\sc duff}]{A
1849 < representation of the lipid model. $\phi$ is the torsion angle,
1850 < $\theta$ is the bend angle, and $\mu$ is the dipole moment of the head
1851 < group.}
1852 < \label{fig:lipidModel}
1847 > \includegraphics[width=4.5in]{torsion.pdf}
1848 > \caption[Torsion or dihedral angle coordinates]{The coordinate
1849 >  describing a torsion between atoms $i$, $j$, $k$, and $l$ is the
1850 >  dihedral angle $\phi_{ijkl}$ which measures the relative rotation of
1851 >  the two terminal atoms around the axis defined by the middle bond. }
1852 > \label{fig:torsion}
1853   \end{figure}
1854  
1855 < A set of scalable parameters has been used to model the alkyl groups
1856 < with Lennard-Jones sites. For this, parameters from the TraPPE force
1857 < field of Siepmann \emph{et al.}\cite{Siepmann1998} have been
1492 < utilized. TraPPE is a unified-atom representation of n-alkanes which
1493 < is parametrized against phase equilibria using Gibbs ensemble Monte
1494 < Carlo simulation techniques.\cite{Siepmann1998} One of the advantages
1495 < of TraPPE is that it generalizes the types of atoms in an alkyl chain
1496 < to keep the number of pseudoatoms to a minimum; thus, the parameters
1497 < for a unified atom such as $\text{CH}_2$ do not change depending on
1498 < what species are bonded to it.
1499 <
1500 < As is required by TraPPE, {\sc duff} also constrains all bonds to be
1501 < of fixed length. Typically, bond vibrations are the fastest motions in
1502 < a molecular dynamic simulation.  With these vibrations present, small
1503 < time steps between force evaluations must be used to ensure adequate
1504 < energy conservation in the bond degrees of freedom. By constraining
1505 < the bond lengths, larger time steps may be used when integrating the
1506 < equations of motion. A simulation using {\sc duff} is illustrated in
1507 < Scheme \ref{sch:DUFF}.
1508 <
1509 < \begin{lstlisting}[float,caption={[Invocation of {\sc duff}]A portion
1510 < of a startup file showing a simulation utilizing {\sc
1511 < duff}},label={sch:DUFF}]  
1512 < <OpenMD>
1513 <  <MetaData>
1514 < #include "water.md"
1515 < #include "lipid.md"
1516 <
1517 < component{
1518 <  type = "simpleLipid_16";
1519 <  nMol = 60;
1520 < }
1521 <
1522 < component{
1523 <  type = "SSD_water";
1524 <  nMol = 1936;
1525 < }
1526 <
1527 < forceField = "DUFF";
1528 <  </MetaData>
1529 <  <Snapshot>     // not shown in this scheme
1530 <  </Snapshot>
1531 < </OpenMD>
1532 < \end{lstlisting}
1533 <
1534 <
1535 <
1536 < The cross potential between molecules $I$ and $J$,
1537 < $V^{IJ}_{\text{Cross}}$, is as follows:
1855 > For computational efficiency, OpenMD recasts torsion potential in the
1856 > method of {\sc charmm},\cite{Brooks83} in which the angle series is
1857 > converted to a power series of the form:
1858   \begin{equation}
1859 < V^{IJ}_{\text{Cross}} =
1860 <        \sum_{i \in I} \sum_{j \in J}
1861 <        \biggl[ V_{\text{LJ}}(r_{ij}) +  V_{\text{dipole}}
1542 <        (\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},\boldsymbol{\Omega}_{j})
1543 <        + V_{\text{sticky}}
1544 <        (\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},\boldsymbol{\Omega}_{j})
1545 <        \biggr],
1546 < \label{eq:crossPotentail}
1859 >  V_{\text{torsion}}(\phi_{ijkl}) =  
1860 >  k_3 \cos^3 \phi_{ijkl} + k_2 \cos^2 \phi_{ijkl} + k_1 \cos \phi_{ijkl} + k_0,
1861 > \label{eq:torsionPot}
1862   \end{equation}
1863 < where $V_{\text{LJ}}$ is the Lennard Jones potential,
1864 < $V_{\text{dipole}}$ is the dipole dipole potential, and
1865 < $V_{\text{sticky}}$ is the sticky potential defined by the SSD model
1866 < (Sec.~\ref{section:SSD}). Note that not all atom types include all
1867 < interactions.
1863 > where:
1864 > \begin{align*}
1865 > k_0 &= c_1 + 2 c_2 + c_3, \\
1866 > k_1 &= c_1 - 3c_3, \\
1867 > k_2 &= - 2 c_2, \\
1868 > k_3 &= 4 c_3.
1869 > \end{align*}
1870 > By recasting the potential as a power series, repeated trigonometric
1871 > evaluations are avoided during the calculation of the potential
1872 > energy.
1873  
1874 + Using this framework, OpenMD implements a variety of different
1875 + potential energy functions for torsions:
1876 + \begin{itemize}
1877 + \item {\tt Cubic}:
1878 + \begin{equation*}
1879 +  V_{\text{torsion}}(\phi) =  
1880 +  k_3 \cos^3 \phi + k_2 \cos^2 \phi + k_1 \cos \phi + k_0,
1881 + \end{equation*}
1882 + \item {\tt Quartic}:
1883 + \begin{equation*}
1884 +  V_{\text{torsion}}(\phi) =  k_4 \cos^4 \phi +
1885 +  k_3 \cos^3 \phi + k_2 \cos^2 \phi + k_1 \cos \phi + k_0,
1886 + \end{equation*}
1887 + \item {\tt Polynomial}:
1888 + \begin{equation*}
1889 + V_{\text{torsion}}(\phi) =  \sum_n k_n \cos^n \phi ,
1890 + \end{equation*}
1891 + \item {\tt Charmm}:
1892 + \begin{equation*}
1893 + V_{\text{torsion}}(\phi) = \sum_n K_n \left( 1 + cos(n
1894 +  \phi - \delta_n) \right),
1895 + \end{equation*}
1896 + \item {\tt Opls}:
1897 + \begin{equation*}
1898 +  V_{\text{torsion}}(\phi) =  \frac{1}{2} \left(v_1 (1 + \cos \phi) \right)
1899 +    + v_2 (1 - \cos 2 \phi) +  v_3 (1 + \cos 3 \phi),
1900 + \end{equation*}
1901 + \item {\tt Trappe}:\cite{Siepmann1998}
1902 + \begin{equation*}
1903 +  V_{\text{torsion}}(\phi) =  c_0 + c_1 (1 + \cos \phi) + c_2 (1 - \cos 2 \phi)  +
1904 +  c_3 (1 + \cos 3 \phi),
1905 + \end{equation*}
1906 + \item {\tt Harmonic}:
1907 + \begin{equation*}
1908 + V_{\text{torsion}}(\phi) =  \frac{d_0}{2} \left(\phi - \phi^0\right).
1909 + \end{equation*}
1910 + \end{itemize}
1911  
1912 < \section{\label{section:WATER}The {\sc water} Force Field}
1912 > Most torsion types don't require specific angle information in the
1913 > parameters since they are typically expressed in cosine polynomials.
1914 > {\tt Charmm} and {\tt Harmonic} torsions are a bit different.  {\tt
1915 >  Charmm} torsion types require a set of phase angles, $\delta_n$ that
1916 > are expressed in degrees, and associated periodicity numbers, $n$.
1917 > {\tt Harmonic} torsions have an equilibrium torsion angle, $\phi_0$
1918 > that is measured in degrees, while $d_0$ has units of
1919 > kcal/mol/degrees$^2$.  All other torsion parameters are measured in
1920 > units of kcal/mol.
1921  
1922 < In addition to the {\sc duff} force field's solvent description, a
1923 < separate {\sc water} force field has been included for simulating most
1924 < of the common rigid-body water models. This force field includes the
1925 < simple and point-dipolar models (SSD, SSD1, SSD/E, SSD/RF, and DPD
1926 < water), as well as the common charge-based models (SPC, SPC/E, TIP3P,
1927 < TIP4P, and
1928 < TIP5P).\cite{liu96:new_model,Ichiye03,fennell04,Marrink01,Berendsen81,Berendsen87,Jorgensen83,Mahoney00}
1929 < In order to handle these models, charge-charge interactions were
1930 < included in the force-loop:
1931 < \begin{equation}
1932 < V_{\text{charge}}(r_{ij}) = \sum_{ij}\frac{q_iq_je^2}{r_{ij}},
1933 < \end{equation}
1934 < where $q$ represents the charge on particle $i$ or $j$, and $e$ is the
1935 < charge of an electron in Coulombs. The charge-charge interaction
1936 < support is rudimentary in the current version of {\sc OpenMD}.  As with
1937 < the other pair interactions, charges can be simulated with a pure
1938 < cutoff or a reaction field.  The various methods for performing the
1939 < Ewald summation have not yet been included.  The {\sc water} force
1940 < field can be easily expanded through modification of the {\sc water}
1941 < force field file ({\tt WATER.frc}). By adding atom types and inserting
1942 < the appropriate parameters, it is possible to extend the force field
1943 < to handle rigid molecules other than water.
1922 > \begin{code}[caption={[An example of a TorsionTypes block.] A
1923 > simple example of a TorsionTypes block.  Energy constants are given in
1924 > kcal / mol, and when required by the form, $\delta$ angles are given
1925 > in degrees.},
1926 > label={sch:TorsionTypes}]
1927 > begin TorsionTypes
1928 > //Cubic
1929 > //Atom1 Atom2   Atom3   Atom4   Cubic   k3       k2        k1      k0  
1930 > CH2     CH2     CH2     CH2     Cubic   5.9602   -0.2568   -3.802  2.1586
1931 > CH2     CH      CH      CH2     Cubic   3.3254   -0.4215   -1.686  1.1661
1932 > //Trappe
1933 > //Atom1 Atom2   Atom3   Atom4   Trappe  c0       c1        c2      c3
1934 > CH3     CH2     CH2     SH      Trappe  0.10507  -0.10342  0.03668 0.60874    
1935 > //Charmm
1936 > //Atom1 Atom2   Atom3   Atom4   Charmm  Kchi     n    delta  [Kchi n delta]
1937 > CT      CT      CT      C       Charmm  0.156    3    0.00
1938 > OH      CT      CT      OH      Charmm  0.144    3    0.00    1.175 2  0
1939 > HC      CT      CM      CM      Charmm  1.150    1    0.00    0.38  3 180
1940 > //Quartic
1941 > //Atom1 Atom2   Atom3   Atom4   Quartic          k4    k3    k2    k1    k0
1942 > //Polynomial
1943 > //Atom1 Atom2   Atom3   Atom4   Polynomial  n Kn     [m  Km]
1944 > S       CH2     CH2     C       Polynomial  0 2.218   1  2.905  2 -3.136  3 -0.7313  4 6.272  5 -7.528
1945 > end TorsionTypes
1946 > \end{code}
1947  
1948 + Note that the parameters for a particular torsion type are the same
1949 + for any torsional quartet of the same atomic types (in the same or
1950 + reversed order).
1951  
1952 < \section{\label{section:sc}The Sutton-Chen Force Field}
1952 > \subsection{\label{section:ffInversion}The InversionTypes block}
1953  
1954 + Inversion potentials are often added to force fields to enforce
1955 + planarity around $sp^2$-hybridized carbons or to correct vibrational
1956 + frequencies for umbrella-like vibrational modes for central atoms
1957 + bonded to exactly three satellite groups.
1958  
1959 < \section{\label{section:clay}The CLAY force field}
1959 > In OpenMD's version of an inversion, the central atom is entered {\it
1960 >  first} in each line in the {\tt InversionTypes} block. Note that
1961 > this is quite different than how other codes treat Improper torsional
1962 > potentials to mimic inversion behavior.  In some other widely-used
1963 > simulation packages, the central atom is treated as atom 3 in a
1964 > standard torsion form:
1965 > \begin{itemize}
1966 >  \item OpenMD:  I - (J - K - L)  (e.g. I is $sp^2$ hybridized carbon)
1967 >  \item AMBER:   I - J - K - L   (e.g. K is $sp^2$ hybridized carbon)
1968 > \end{itemize}
1969  
1970 < The {\sc clay} force field is based on an ionic (nonbonded)
1971 < description of the metal-oxygen interactions associated with hydrated
1972 < phases. All atoms are represented as point charges and are allowed
1973 < complete translational freedom. Metal-oxygen interactions are based on
1974 < a simple Lennard-Jones potential combined with electrostatics. The
1975 < empirical parameters were optimized by Cygan {\it et
1976 < al.}\cite{Cygan04} on the basis of known mineral structures, and
1977 < partial atomic charges were derived from periodic DFT quantum chemical
1978 < calculations of simple oxide, hydroxide, and oxyhydroxide model
1979 < compounds with well-defined structures.
1970 > The inversion angle itself is defined as:
1971 > \begin{equation}
1972 > \cos\omega_{i-jkl} = \left(\hat{\mathbf{r}}_{il} \times
1973 >  \hat{\mathbf{r}}_{ij}\right)\cdot\left( \hat{\mathbf{r}}_{il} \times
1974 >  \hat{\mathbf{r}}_{ik}\right)
1975 > \end{equation}
1976 > Here, $\hat{\mathbf{r}}_{\alpha\beta}$ are the set of unit bond
1977 > vectors between the central atoms $i$, and the satellite atoms $j$,
1978 > $k$, and $l$.  Note that other definitions of inversion angles are
1979 > possible, so users are encouraged to be particularly careful when
1980 > converting other force field files for use with OpenMD.
1981 >
1982 > There are many common ways to create planarity or umbrella behavior in
1983 > a potential energy function, and OpenMD implements a number of the
1984 > more common functions:
1985 > \begin{itemize}
1986 > \item {\tt ImproperCosine}:
1987 > \begin{equation*}
1988 > V_{\text{torsion}}(\omega) = \sum_n \frac{K_n}{2} \left( 1 + cos(n
1989 >  \omega - \delta_n) \right),
1990 > \end{equation*}
1991 > \item {\tt AmberImproper}:
1992 > \begin{equation*}
1993 >  V_{\text{torsion}}(\omega) =  \frac{v}{2} (1 - \cos\left(2 \left(\omega - \omega_0\right)\right),
1994 > \end{equation*}
1995 > \item {\tt Harmonic}:
1996 > \begin{equation*}
1997 > V_{\text{torsion}}(\omega) =  \frac{d}{2} \left(\omega - \omega_0\right).
1998 > \end{equation*}
1999 > \end{itemize}
2000 > \begin{code}[caption={[An example of an InversionTypes block.] A
2001 > simple example of a InversionTypes block.  Angles ($\delta_n$ and
2002 > $\omega_0$) angles are given in degrees, while energy parameters ($v,
2003 > K_n$) are given in kcal / mol.   The Harmonic Inversion type has a
2004 > force constant that must be given in kcal/mol/degrees$^2$.},
2005 > label={sch:InversionTypes}]
2006 > begin InversionTypes
2007 > //Harmonic
2008 > //Atom1 Atom2   Atom3   Atom4   Harmonic  d(kcal/mol/deg^2)  omega0
2009 > RCHar3  X       X       X       Harmonic  1.21876e-2         180.0
2010 > //AmberImproper
2011 > //Atom1 Atom2   Atom3   Atom4   AmberImproper   v(kcal/mol)
2012 > C       CT      N       O       AmberImproper   10.500000
2013 > CA      CA      CA      CT      AmberImproper   1.100000
2014 > //ImproperCosine
2015 > //Atom1 Atom2   Atom3   Atom4   ImproperCosine  Kn  n  delta_n  [Kn n delta_n]
2016 > end InversionTypes
2017 > \end{code}
2018  
2019 + \section{\label{section::ffLongRange}Long Range Interactions}
2020  
2021 + Calculating the long-range (non-bonded) potential involves a sum over
2022 + all pairs of atoms (except for those atoms which are involved in a
2023 + bond, bend, or torsion with each other).  Many of these interactions
2024 + can be inferred from the AtomTypes,
2025 +
2026 + \subsection{\label{section:ffNBinteraction}The NonBondedInteractions
2027 +  block}
2028 +
2029 + The user might want like to specify explicit or special interactions
2030 + that override the default non-bodned interactions that are inferred
2031 + from the AtomTypes.  To do this, OpenMD implements a
2032 + NonBondedInteractions block to allow the user to specify the following
2033 + (pair-wise) non-bonded interactions:
2034 +
2035 + \begin{itemize}
2036 + \item {\tt LennardJones}:
2037 + \begin{equation*}
2038 + V_{\text{NB}}(r) = 4 \epsilon_{ij} \left(
2039 +  \left(\frac{\sigma_{ij}}{r} \right)^{12} -
2040 +  \left(\frac{\sigma_{ij}}{r} \right)^{6} \right),
2041 + \end{equation*}
2042 + \item {\tt ShiftedMorse}:
2043 + \begin{equation*}
2044 + V_{\text{NB}}(r) = D_{ij} \left( e^{-2 \beta_{ij} (r -
2045 +     r^0)} - 2 e^{- \beta_{ij} (r -
2046 +     r^0)} \right),
2047 + \end{equation*}
2048 + \item {\tt RepulsiveMorse}:
2049 + \begin{equation*}
2050 + V_{\text{NB}}(r) = D_{ij} \left( e^{-2 \beta_{ij} (r -
2051 +     r^0)} \right),
2052 + \end{equation*}
2053 + \item {\tt RepulsivePower}:
2054 + \begin{equation*}
2055 +  V_{\text{NB}}(r) = \epsilon_{ij}
2056 +  \left(\frac{\sigma_{ij}}{r} \right)^{n_{ij}}.
2057 + \end{equation*}
2058 + \end{itemize}
2059 +
2060 + \begin{code}[caption={[An example of a NonBondedInteractions block.] A
2061 + simple example of a NonBondedInteractions block. Distances ($\sigma,
2062 + r_0$) are given in \AA, while energies ($\epsilon, D0$) are in
2063 + kcal/mol.  The Morse potentials have an additional parameter $\beta_0$
2064 + which is in units of \AA$^{-1}$.},
2065 + label={sch:InversionTypes}]
2066 + begin NonBondedInteractions
2067 +
2068 + //Lennard-Jones
2069 + //Atom1 Atom2   LennardJones    sigma  epsilon
2070 + Au      CH3     LennardJones    3.54   0.2146
2071 + Au      CH2     LennardJones    3.54   0.1749
2072 + Au      CH      LennardJones    3.54   0.1749
2073 + Au      S       LennardJones    2.40   8.465
2074 +
2075 + //Shifted Morse
2076 + //Atom1 Atom2   ShiftedMorse    r0     D0       beta0
2077 + Au      O_SPCE  ShiftedMorse    3.70   0.0424   0.769
2078 +
2079 + //Repulsive Morse
2080 + //Atom1 Atom2   RepulsiveMorse  r0     D0       beta0
2081 + Au      H_SPCE  RepulsiveMorse  -1.00  0.00850  0.769
2082 +
2083 + //Repulsive Power
2084 + //Atom1 Atom2   RepulsivePower   sigma    epsilon    n
2085 + Au      ON      RepulsivePower   3.47005  0.186208   11
2086 + Au      NO      RepulsivePower   3.53955  0.168629   11
2087 + end NonBondedInteractions
2088 + \end{code}
2089 +
2090   \section{\label{section:electrostatics}Electrostatics}
2091  
2092 < To aid in performing simulations in more traditional force fields, we
2093 < have added routines to carry out electrostatic interactions using a
2094 < number of different electrostatic summation methods.  These methods
2095 < are extended from the damped and cutoff-neutralized Coulombic sum
2096 < originally proposed by Wolf, {\it et al.}\cite{Wolf99} One of these,
2097 < the damped shifted force method, shows a remarkable ability to
2098 < reproduce the energetic and dynamic characteristics exhibited by
2099 < simulations employing lattice summation techniques.  The basic idea is
2100 < to construct well-behaved real-space summation methods using two tricks:
2092 > Because nearly all force fields involve electrostatic interactions in
2093 > one form or another, OpenMD implements a number of different
2094 > electrostatic summation methods.  These methods are extended from the
2095 > damped and cutoff-neutralized Coulombic sum originally proposed by
2096 > Wolf, {\it et al.}\cite{Wolf99} One of these, the damped shifted force
2097 > method, shows a remarkable ability to reproduce the energetic and
2098 > dynamic characteristics exhibited by simulations employing lattice
2099 > summation techniques.  The basic idea is to construct well-behaved
2100 > real-space summation methods using two tricks:
2101   \begin{enumerate}
2102   \item shifting through the use of image charges, and
2103   \item damping the electrostatic interaction.
# Line 1724 | Line 2216 | the shifted potential (eq. (\ref{eq:SPPot})) becomes
2216   \end{equation}
2217   the shifted potential (eq. (\ref{eq:SPPot})) becomes
2218   \begin{equation}
2219 < V_{\textrm{DSP}}(r) = q_iq_j\left(\frac{\textrm{erfc}\left(\alpha r\right)}{r}-\
1728 < frac{\textrm{erfc}\left(\alpha R_\textrm{c}\right)}{R_\textrm{c}}\right) \quad r
2219 > V_{\textrm{DSP}}(r) = q_iq_j\left(\frac{\textrm{erfc}\left(\alpha r\right)}{r}-\frac{\textrm{erfc}\left(\alpha R_\textrm{c}\right)}{R_\textrm{c}}\right) \quad r
2220   \leqslant R_\textrm{c},
2221   \label{eq:DSPPot}
2222   \end{equation}
# Line 1770 | Line 2261 | this reason, the default electrostatic summation metho
2261   {\sc OpenMD} is the DSF (Eq. \ref{eq:DSFPot}) with a damping parameter
2262   ($\alpha$) that is set algorithmically from the cutoff radius.
2263  
2264 +
2265 + \section{\label{section:cutoffGroups}Switching Functions}
2266 +
2267 + Calculating the the long-range interactions for $N$ atoms involves
2268 + $N(N-1)/2$ evaluations of atomic distances if it is done in a brute
2269 + force manner.  To reduce the number of distance evaluations between
2270 + pairs of atoms, {\sc OpenMD} allows the use of hard or switched
2271 + cutoffs with Verlet neighbor lists.\cite{Allen87} Neutral groups which
2272 + contain charges can exhibit pathological forces unless the cutoff is
2273 + applied to the neutral groups evenly instead of to the individual
2274 + atoms.\cite{leach01:mm} {\sc OpenMD} allows users to specify cutoff
2275 + groups which may contain an arbitrary number of atoms in the molecule.
2276 + Atoms in a cutoff group are treated as a single unit for the
2277 + evaluation of the switching function:
2278 + \begin{equation}
2279 + V_{\mathrm{long-range}} = \sum_{a} \sum_{b>a} s(r_{ab}) \sum_{i \in a} \sum_{j \in b} V_{ij}(r_{ij}),
2280 + \end{equation}
2281 + where $r_{ab}$ is the distance between the centers of mass of the two
2282 + cutoff groups ($a$ and $b$).
2283 +
2284 + The sums over $a$ and $b$ are over the cutoff groups that are present
2285 + in the simulation.  Atoms which are not explicitly defined as members
2286 + of a {\tt cutoffGroup} are treated as a group consisting of only one
2287 + atom.  The switching function, $s(r)$ is the standard cubic switching
2288 + function,
2289 + \begin{equation}
2290 + S(r) =
2291 +        \begin{cases}
2292 +        1 & \text{if $r \le r_{\text{sw}}$},\\
2293 +        \frac{(r_{\text{cut}} + 2r - 3r_{\text{sw}})(r_{\text{cut}} - r)^2}
2294 +        {(r_{\text{cut}} - r_{\text{sw}})^3}
2295 +        & \text{if $r_{\text{sw}} < r \le r_{\text{cut}}$}, \\
2296 +        0 & \text{if $r > r_{\text{cut}}$.}
2297 +        \end{cases}
2298 + \label{eq:dipoleSwitching}
2299 + \end{equation}
2300 + Here, $r_{\text{sw}}$ is the {\tt switchingRadius}, or the distance
2301 + beyond which interactions are reduced, and $r_{\text{cut}}$ is the
2302 + {\tt cutoffRadius}, or the distance at which interactions are
2303 + truncated.  
2304 +
2305 + Users of {\sc OpenMD} do not need to specify the {\tt cutoffRadius} or
2306 + {\tt switchingRadius}.  
2307 + If the {\tt cutoffRadius} was not explicitly set, OpenMD will attempt
2308 + to guess an appropriate choice.  If the system contains electrostatic
2309 + atoms, the default cutoff radius is 12 \AA.  In systems without
2310 + electrostatic (charge or multipolar) atoms, the atom types present in the simulation will be
2311 + polled for suggested cutoff values (e.g. $2.5 max(\left\{ \sigma
2312 +  \right\})$ for Lennard-Jones atoms.   The largest suggested value
2313 + that was found will be used.
2314 +
2315 + By default, OpenMD uses shifted force potentials to force the
2316 + potential energy and forces to smoothly approach zero at the cutoff
2317 + radius.  If the user would like to use another cutoff method
2318 + they may do so by setting the {\tt cutoffMethod} parameter to:
2319 + \begin{itemize}
2320 + \item {\tt HARD}
2321 + \item {\tt SWITCHED}
2322 + \item {\tt SHIFTED\_FORCE} (default):
2323 + \item {\tt TAYLOR\_SHIFTED}
2324 + \item {\tt SHIFTED\_POTENTIAL}
2325 + \end{itemize}
2326 +
2327 + The {\tt switchingRadius} is set to a default value of 95\% of the
2328 + {\tt cutoffRadius}.  In the special case of a simulation containing
2329 + {\it only} Lennard-Jones atoms, the default switching radius takes the
2330 + same value as the cutoff radius, and {\sc OpenMD} will use a shifted
2331 + potential to remove discontinuities in the potential at the cutoff.
2332 + Both radii may be specified in the meta-data file.
2333 +
2334 +
2335   \section{\label{section:pbc}Periodic Boundary Conditions}
2336  
2337   \newcommand{\roundme}{\operatorname{round}}

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines