ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/openmdDocs/openmdDoc.tex
(Generate patch)

Comparing trunk/openmdDocs/openmdDoc.tex (file contents):
Revision 4101 by gezelter, Wed Apr 16 12:53:07 2014 UTC vs.
Revision 4104 by gezelter, Mon Apr 28 21:06:04 2014 UTC

# Line 9 | Line 9
9   \usepackage{longtable}
10   \pagestyle{plain}
11   \pagenumbering{arabic}
12 + \usepackage{floatrow}
13   \oddsidemargin 0.0cm
14   \evensidemargin 0.0cm
15   \topmargin -21pt
# Line 20 | Line 21
21   \usepackage[square, comma, sort&compress]{natbib}
22   \bibpunct{[}{]}{,}{n}{}{;}
23  
24 + \DeclareFloatFont{tiny}{\scriptsize}% "scriptsize" is defined by floatrow, "tiny" not
25 + \floatsetup[table]{font=tiny}
26  
27 +
28   %\renewcommand\citemid{\ } % no comma in optional reference note
29 < \lstset{language=C,frame=TB,basicstyle=\footnotesize,basicstyle=\ttfamily, %
29 > \lstset{language=C,frame=TB,basicstyle=\footnotesize\ttfamily, %
30          xleftmargin=0.25in, xrightmargin=0.25in,captionpos=b, %
31          abovecaptionskip=0.5cm, belowcaptionskip=0.5cm, escapeinside={~}{~}}
32   \renewcommand{\lstlistingname}{Scheme}
# Line 47 | Line 51
51   \newcolumntype{M}{p{1.55in}}
52  
53  
54 < \title{{\sc OpenMD-2.1}: Molecular Dynamics in the Open}
54 > \title{{\sc OpenMD-2.2}: Molecular Dynamics in the Open}
55  
56   \author{Joseph Michalka, James Marr, Kelsey Stocker, Madan Lamichhane,
57    Patrick Louden, \\
# Line 775 | Line 779 | statistics file is denoted with the \texttt{.stat} fil
779   allowing the user to gauge the stability of the integrator. The
780   statistics file is denoted with the \texttt{.stat} file extension.
781  
782 < \chapter{\label{section:forceFields}Force Fields}
782 > \chapter{\label{chapter:forceFields}Force Fields}
783  
784   Like many molecular simulation packages, {\sc OpenMD} splits the
785   potential energy into the short-ranged (bonded) portion and a
# Line 789 | Line 793 | section.
793   are defined by the force field which is selected in the MetaData
794   section.
795  
796 < \section{\label{section:shortRange}The basic interactions}
796 > \section{\label{section:divisionOfLabor}Separation into Internal and
797 >  Cross interactions}
798  
799 < The energy function for a system composed of $N$ molecules is
800 < traditionally written
799 > The classical potential energy function for a system composed of $N$
800 > molecules is traditionally written
801   \begin{equation}
802   V = \sum^{N}_{I=1} V^{I}_{\text{Internal}}
803          + \sum^{N-1}_{I=1} \sum_{J>I} V^{IJ}_{\text{Cross}},
804   \label{eq:totalPotential}
805   \end{equation}
806 < where $V^{IJ}_{\text{Cross}}$ contains all intermolecular interactions
807 < between molecules $I$ and $J$, and $V^{I}_{\text{Internal}}$ is the
808 < internal potential of molecule $I$:
809 < \begin{align*}
810 < V^{I}_{\text{Internal}} =  &
811 < \sum_{r_{ij} \in I} V_{\text{bond}}(r_{ij})
807 < + \sum_{\theta_{ijk} \in I} V_{\text{bend}}(\theta_{ijk})
808 < + \sum_{\phi_{ijkl} \in I} V_{\text{torsion}}(\phi_{ijkl})
809 < + \sum_{\omega_{ijkl} \in I} V_{\text{inversion}}(\omega_{ijkl}) \\
810 < & + \sum_{i \in I} \sum_{(j>i+4) \in I}
811 < \biggl[ V_{\text{dispersion}}(r_{ij}) +  V_{\text{electrostatic}}
812 < (\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},\boldsymbol{\Omega}_{j})
813 < \biggr].
814 < \label{eq:internalPotential}
815 < \end{align*}
816 < Here $V_{\text{bond}}, V_{\text{bend}},
817 < V_{\text{torsion}},\mathrm{~and~} V_{\text{inversion}}$ represent the
818 < bond, bend, torsion, and inversion potentials for all
819 < topologically-connected sets of atoms within the molecule.  Bonds are
820 < the primary way of specifying how the atoms are connected together to
821 < form the molecule (i.e. they define the molecular topology).  The
822 < other short-range interactions may be specified explicitly in the
823 < molecule definition, or they may be deduced from bonding information.
824 < For example, bends can be implicitly deduced from two bonds which
825 < share an atom.  Torsions can be deduced from two bends that share a
826 < bond.  Inversion potentials are utilized primarily to enforce
827 < planarity around $sp^2$-hybridized sites, and these are specified with
828 < central atoms and satellites (or an atom with bonds to exactly three
829 < satellites).  The pairwise portions of the non-bonded interactions are
830 < usually excluded for atom pairs that are involved in the same bond,
831 < bend, or torsion. All other atom pairs within a molecule are subject
832 < to non-bonded pair potentials.
806 > where $V^{I}_{\text{Internal}}$ contains all of the terms internal to
807 > molecule $I$ (e.g. bonding, bending, torsional, and inversion terms)
808 > and $V^{IJ}_{\text{Cross}}$ contains all intermolecular interactions
809 > between molecules $I$ and $J$.  For large molecules, the internal
810 > potential may also include some non-bonded terms like electrostatic or
811 > van der Waals interactions.
812  
813   The types of atoms being simulated, as well as the specific functional
814   forms and parameters of the intra-molecular functions and the
# Line 839 | Line 818 | specification of blocks that may be present within the
818  
819   \section{\label{section:frcFile}Force Field Files}
820  
821 < Force field files have a number of ``Blocks'' to demarkate different
821 > Force field files have a number of ``Blocks'' to delineate different
822   types of information.  The blocks contain AtomType data, which provide
823   properties belonging to a single AtomType, as well as interaction
824   information which provides information about bonded or non-bonded
825   interactions that cannot be deduced from AtomType information alone.
826   A simple example of a forceField file is shown in scheme
827 < \ref{sch:frcExample}.
827 > \ref{sch:frcExample}.
828  
829   \begin{lstlisting}[float,caption={[An example of a complete OpenMD
830   force field file for straight-chain united-atom alkanes.] An example
831   showing a complete OpenMD force field for straight-chain united-atom
832   alkanes.}, label={sch:frcExample}]
833   begin Options
834 <  Name = "alkane" end
835 < Options
834 >  Name = "alkane"
835 > end Options
836  
837   begin BaseAtomTypes  
838   //name          mass  
# Line 896 | Line 875 | end TorsionTypes
875   end TorsionTypes
876   \end{lstlisting}
877  
878 < \subsection{\label{section:ffOptions}The Options block}
878 > \section{\label{section:ffOptions}The Options block}
879  
880   The Options block defines properties governing how the force field
881   interactions are carried out.  This block is delineated with the text
# Line 914 | Line 893 | begin Options
893   Name                      = "alkane"       // any string
894   vdWtype                   = "Lennard-Jones"
895   DistanceMixingRule        = "arithmetic"   // can also be "geometric" or "cubic"
896 < DistanceType              = "sigma"        // can also be Rmin
896 > DistanceType              = "sigma"        // can also be "Rmin"
897   EnergyMixingRule          = "geometric"    // can also be "arithmetic" or "hhg"
898   EnergyUnitScaling         = 1.0
899   MetallicEnergyUnitScaling = 1.0
# Line 933 | Line 912 | end Options
912   end Options
913   \end{lstlisting}
914  
915 < \subsection{\label{section:ffBase}The BaseAtomTypes block}
915 > \section{\label{section:ffBase}The BaseAtomTypes block}
916  
917   An AtomType the primary data structure that OpenMD uses to store
918   static data about an atom.  Things that belong to AtomType are
# Line 959 | Line 938 | simulations in Jmol or VMD.
938   ability to print out the names of the base atom types for displaying
939   simulations in Jmol or VMD.
940  
941 < \begin{lstlisting}[caption={[A simple example of a BaseAtomType
942 < block.] A simple example of a BaseAtomType block.},
941 > \begin{lstlisting}[caption={[A simple example of a BaseAtomTypes
942 > block.] A simple example of a BaseAtomTypes block.},
943   label={sch:baseAtomTypesBlock}]
944   begin BaseAtomTypes
945   //Name  mass (amu)
# Line 981 | Line 960 | end BaseAtomTypes
960   end BaseAtomTypes
961   \end{lstlisting}
962  
963 < \subsection{\label{section:ffAtom}The AtomTypes block}
963 > \section{\label{section:ffAtom}The AtomTypes block}
964  
965   AtomTypes inherit most properties from BaseAtomTypes, but can override
966   their lower-level properties as well.  Scheme \ref{sch:atomTypesBlock}
# Line 989 | Line 968 | from the oxygen base type.
968   from the oxygen base type.
969  
970   \begin{lstlisting}[caption={[An example of a AtomTypes block.] A
971 < simple example of an AtomType block which
971 > simple example of an AtomTypes block which
972   shows how multiple types can inherit from the same base type.},
973   label={sch:atomTypesBlock}]
974   begin AtomTypes    
# Line 1015 | Line 994 | end AtomTypes
994   end AtomTypes
995   \end{lstlisting}
996  
997 < \subsection{\label{section:ffDirectionalAtom}The DirectionalAtomTypes
997 > \section{\label{section:ffDirectionalAtom}The DirectionalAtomTypes
998    block}
999   DirectionalAtoms have orientational degrees of freedom as well as
1000 < translation, so they have moment of inertia tensors.  
1000 > translation, so moving these atoms requires information about the
1001 > moments of inertias in the same way that translational motion requires
1002 > mass.  For DirectionalAtoms, OpenMD treats the mass distribution with
1003 > higher priority than electrostatic distributions; the moment of
1004 > inertia tensor, $\overleftrightarrow{\mathsf I}$, should be
1005 > diagonalized to obtain body-fixed axes, and the three diagonal moments
1006 > should correspond to rotational motion \textit{around} each of these
1007 > body-fixed axes.  Charge distributions may then result in dipole
1008 > vectors that are oriented along a linear combination of the body-axes,
1009 > and in quadrupole tensors that are not necessarily diagonal in the
1010 > body frame.
1011  
1012   \begin{lstlisting}[caption={[An example of a DirectionalAtomTypes block.] A
1013   simple example of a DirectionalAtomTypes block.},
# Line 1026 | Line 1015 | SSD             1.7696  0.6145  1.1550  
1015   begin DirectionalAtomTypes
1016   //Name          I_xx    I_yy    I_zz    (All moments in (amu*Ang^2)
1017   SSD             1.7696  0.6145  1.1550  
1029 SSD_E           1.7696  0.6145  1.1550  
1018   GBC6H6          88.781  88.781  177.561
1019   GBCH3OH         4.056   20.258  20.999
1020   GBH2O           1.777   0.581   1.196
1021 + CO2             43.06   43.06   0.0    // single-site model for CO2
1022   end DirectionalAtomTypes                    
1023  
1024   \end{lstlisting}
1025  
1026 + For a DirectionalAtom that represents a linear object, it is
1027 + appropriate for one of the moments of inertia to be zero.  In this
1028 + case, OpenMD identifies that DirectionalAtom as having only 5 degrees
1029 + of freedom (three translations and two rotations), and will alter
1030 + calculation of temperatures to reflect this.
1031  
1032 < \subsection{\label{section::ffAtomProperties}AtomType properties}
1033 < \subsubsection{\label{section:ffLJ}The LennardJonesAtomTypes block}
1034 < The most basic interatomic interaction implemented in {\sc OpenMD} is
1035 < the Lennard-Jones potential, which mimics the van der Waals
1036 < interaction at long distances and uses an empirical repulsion at short
1037 < distances. The Lennard-Jones potential is given by:
1032 > \section{\label{section::ffAtomProperties}AtomType properties}
1033 > \subsection{\label{section:ffLJ}The LennardJonesAtomTypes block}
1034 > One of the most basic interatomic interactions implemented in {\sc
1035 >  OpenMD} is the Lennard-Jones potential, which mimics the van der
1036 > Waals interaction at long distances and uses an empirical repulsion at
1037 > short distances. The Lennard-Jones potential is given by:
1038   \begin{equation}
1039   V_{\text{LJ}}(r_{ij}) =
1040          4\epsilon_{ij} \biggl[
# Line 1055 | Line 1049 | cross term parameters for $\sigma$ and $\epsilon$. The
1049  
1050   Interactions between dissimilar particles requires the generation of
1051   cross term parameters for $\sigma$ and $\epsilon$. These parameters
1052 < are determined using the Lorentz-Berthelot mixing
1052 > are usually determined using the Lorentz-Berthelot mixing
1053   rules:\cite{Allen87}
1054   \begin{equation}
1055   \sigma_{ij} = \frac{1}{2}[\sigma_{ii} + \sigma_{jj}],
# Line 1067 | Line 1061 | and
1061   \label{eq:epsilonMix}
1062   \end{equation}
1063  
1064 < \subsubsection{\label{section:ffCharge}The ChargeAtomTypes block}
1065 < \subsubsection{\label{section:ffMultipole}The MultipoleAtomTypes  block}
1066 < The dipole-dipole potential has the following form:
1064 > The values of $\sigma_{ii}$ and $\epsilon_{ii}$ are properties of atom
1065 > type $i$, and must be specified in a section of the force field file
1066 > called the {\tt LennardJonesAtomTypes} block (see listing
1067 > \ref{sch:LJatomTypesBlock}).  Separate Lennard-Jones interactions
1068 > which are not determined by the mixing rules can also be specified in
1069 > the {\tt NonbondedInteractionTypes} block (see section
1070 > \ref{section:ffNBinteraction}).
1071 >
1072 > \begin{lstlisting}[caption={[An example of a LennardJonesAtomTypes block.] A
1073 > simple example of a LennardJonesAtomTypee block.   Units for
1074 > $\epsilon$ are kcal / mol and for $\sigma$ are \AA\ .},
1075 > label={sch:LJatomTypesBlock}]
1076 > begin LennardJonesAtomTypes
1077 > //Name          epsilon             sigma      
1078 > O_TIP4P         0.1550          3.15365
1079 > O_TIP4P-Ew      0.16275         3.16435
1080 > O_TIP5P         0.16            3.12  
1081 > O_TIP5P-E       0.178           3.097  
1082 > O_SPCE          0.15532         3.16549
1083 > O_SPC           0.15532         3.16549
1084 > CH4             0.279           3.73
1085 > CH3             0.185           3.75
1086 > CH2             0.0866          3.95
1087 > CH              0.0189          4.68
1088 > end LennardJonesAtomTypes
1089 > \end{lstlisting}
1090 >
1091 > \subsection{\label{section:ffCharge}The ChargeAtomTypes block}
1092 >
1093 > In molecular simulations, proper accumulation of the electrostatic
1094 > interactions is essential and is one of the most
1095 > computationally-demanding tasks.  Most common molecular mechanics
1096 > force fields represent atomic sites with full or partial charges
1097 > protected by Lennard-Jones (short range) interactions.  Partial charge
1098 > values, $q_i$ are empirical representations of the distribution of
1099 > electronic charge in a molecule.  This means that nearly every pair
1100 > interaction involves a calculation of charge-charge forces.  Coupled
1101 > with relatively long-ranged $r^{-1}$ decay, the monopole interactions
1102 > quickly become the most expensive part of molecular simulations.  The
1103 > interactions between point charges can be handled via a number of
1104 > different algorithms, but Coulomb's law is the fundamental physical
1105 > principle governing these interactions,
1106 > \begin{equation}
1107 >  V_{\text{charge}}(r_{ij}) = \sum_{ij}\frac{q_iq_je^2}{4 \pi \epsilon_0
1108 >    r_{ij}},
1109 > \end{equation}
1110 > where $q$ represents the charge on particle $i$ or $j$, and $e$ is the
1111 > charge of an electron in Coulombs.  $\epsilon_0$ is the permittivity
1112 > of free space.
1113 >
1114 > \begin{lstlisting}[caption={[An example of a ChargeAtomTypes block.] A
1115 > simple example of a ChargeAtomTypes block.   Units for
1116 > charge are in multiples of electron charge.},
1117 > label={sch:ChargeAtomTypesBlock}]
1118 > begin ChargeAtomTypes
1119 > // Name         charge
1120 > O_TIP3P        -0.834
1121 > O_SPCE         -0.8476
1122 > H_TIP3P         0.417
1123 > H_TIP4P         0.520
1124 > H_SPCE          0.4238
1125 > EP_TIP4P       -1.040
1126 > Na+             1.0
1127 > Cl-            -1.0
1128 > end ChargeAtomTypes
1129 > \end{lstlisting}
1130 >
1131 > \subsection{\label{section:ffMultipole}The MultipoleAtomTypes
1132 >  block}
1133 > For complex charge distributions that are centered on single sites, it
1134 > is convenient to write the total electrostatic potential in terms of
1135 > multipole moments,
1136   \begin{equation}
1137 + U_{\bf{ab}}(r)=\hat{M}_{\bf a} \hat{M}_{\bf b} \frac{1}{r}  \label{kernel}.
1138 + \end{equation}
1139 + where the multipole operator on site $\bf a$,
1140 + \begin{equation}
1141 + \hat{M}_{\bf a} = C_{\bf a} - D_{{\bf a}\alpha} \frac{\partial}{\partial r_{\alpha}}
1142 + +  Q_{{\bf a}\alpha\beta}
1143 + \frac{\partial^2}{\partial r_{\alpha} \partial r_{\beta}} + \dots
1144 + \end{equation}
1145 + Here, the point charge, dipole, and quadrupole for site $\bf a$ are
1146 + given by $C_{\bf a}$, $D_{{\bf a}\alpha}$, and $Q_{{\bf
1147 +    a}\alpha\beta}$, respectively.  These are the {\it primitive}
1148 + multipoles.  If the site is representing a distribution of charges,
1149 + these can be expressed as,
1150 + \begin{align}
1151 + C_{\bf a} =&\sum_{k \, \text{in \bf a}} q_k , \label{eq:charge} \\
1152 + D_{{\bf a}\alpha} =&\sum_{k \, \text{in \bf a}} q_k r_{k\alpha}, \label{eq:dipole}\\
1153 + Q_{{\bf a}\alpha\beta} =& \frac{1}{2} \sum_{k \, \text{in \bf a}} q_k
1154 + r_{k\alpha}  r_{k\beta} . \label{eq:quadrupole}
1155 + \end{align}
1156 + Note that the definition of the primitive quadrupole here differs from
1157 + the standard traceless form, and contains an additional Taylor-series
1158 + based factor of $1/2$.  
1159 +
1160 + The details of the multipolar interactions will be given later, but
1161 + many readers are familiar with the dipole-dipole potential:
1162 + \begin{equation}
1163   V_{\text{dipole}}(\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},
1164 <        \boldsymbol{\Omega}_{j}) = \frac{|\mu_i||\mu_j|}{4\pi\epsilon_{0}r_{ij}^{3}} \biggl[
1164 >        \boldsymbol{\Omega}_{j}) = \frac{|{\bf D}_i||{\bf D}_j|}{4\pi\epsilon_{0}r_{ij}^{3}} \biggl[
1165          \boldsymbol{\hat{u}}_{i} \cdot \boldsymbol{\hat{u}}_{j}
1166          -
1167          3(\boldsymbol{\hat{u}}_i \cdot \hat{\mathbf{r}}_{ij}) %
# Line 1082 | Line 1171 | are the orientational degrees of freedom for atoms $i$
1171   Here $\mathbf{r}_{ij}$ is the vector starting at atom $i$ pointing
1172   towards $j$, and $\boldsymbol{\Omega}_i$ and $\boldsymbol{\Omega}_j$
1173   are the orientational degrees of freedom for atoms $i$ and $j$
1174 < respectively. The magnitude of the dipole moment of atom $i$ is
1175 < $|\mu_i|$, $\boldsymbol{\hat{u}}_i$ is the standard unit orientation
1174 > respectively. The magnitude of the dipole moment of atom $i$ is $|{\bf
1175 >  D}_i|$, $\boldsymbol{\hat{u}}_i$ is the standard unit orientation
1176   vector of $\boldsymbol{\Omega}_i$, and $\boldsymbol{\hat{r}}_{ij}$ is
1177   the unit vector pointing along $\mathbf{r}_{ij}$
1178   ($\boldsymbol{\hat{r}}_{ij}=\mathbf{r}_{ij}/|\mathbf{r}_{ij}|$).
1179  
1091 \subsubsection{\label{section:ffGB}The FluctuatingChargeAtomTypes  block}
1092 \subsubsection{\label{section:ffPol}The PolarizableAtomTypes block}
1093 \subsubsection{\label{section:ffGB}The GayBerneAtomTypes block}
1094 \subsubsection{\label{section:ffSticky}The StickyAtomTypes block}
1180  
1181 < One of the solvents used by {\sc OpenMD} is the extended Soft Sticky
1182 < Dipole (SSD/E) water model.\cite{fennell04} The original SSD was
1183 < developed by Ichiye \emph{et al.}\cite{liu96:new_model} as a modified
1184 < form of the hard-sphere water model proposed by Bratko, Blum, and
1181 > \begin{lstlisting}[caption={[An example of a MultipoleAtomTypes block.] A
1182 > simple example of a MultipoleAtomTypes block.   Dipoles are given in
1183 > units of Debyes, and Quadrupole moments are given in units of Debye
1184 > \AA~(or $10^{-26} \mathrm{~esu~cm}^2$)},
1185 > label={sch:MultipoleAtomTypesBlock}]
1186 > begin MultipoleAtomTypes
1187 > // Euler angles are given in zxz convention in units of degrees.
1188 > //
1189 > // point dipoles:
1190 > // name d phi theta psi dipole_moment
1191 > DIP     d 0.0 0.0   0.0     1.91   // dipole points along z-body axis
1192 > //
1193 > // point quadrupoles:
1194 > // name q phi theta psi Qxx Qyy Qzz
1195 > CO2     q 0.0 0.0   0.0 0.0 0.0 -0.430592  //quadrupole tensor has zz element
1196 > //
1197 > // Atoms with both dipole and quadrupole moments:
1198 > // name dq phi theta psi dipole_moment  Qxx    Qyy     Qzz
1199 > SSD     dq 0.0 0.0   0.0     2.35      -1.682  1.762   -0.08
1200 > end MultipoleAtomTypes
1201 > \end{lstlisting}
1202 >
1203 > Specifying a MultipoleAtomType requires declaring how the
1204 > electrostatic frame for the site is rotated relative to the body-fixed
1205 > axes for that atom. The Euler angles $(\phi, \theta, \psi)$ for this
1206 > rotation must be given, and then the dipole, quadrupole, or all of
1207 > these moments are specified in the electrostatic frame.  In OpenMD,
1208 > the Euler angles are specified in the $zxz$ convention and are entered
1209 > in units of degrees.  Dipole moments are entered in units of Debye,
1210 > and Quadrupole moments in units of Debye \AA.
1211 >
1212 > \subsection{\label{section:ffGB}The FluctuatingChargeAtomTypes  block}
1213 > %\subsubsection{\label{section:ffPol}The PolarizableAtomTypes block}
1214 >
1215 > \subsection{\label{section:ffGB}The GayBerneAtomTypes block}
1216 >
1217 > The Gay-Berne potential has been widely used in the liquid crystal
1218 > community to describe anisotropic phase
1219 > behavior.~\cite{Gay:1981yu,Berne:1972pb,Kushick:1976xy,Luckhurst:1990fy,Cleaver:1996rt}
1220 > The form of the Gay-Berne potential implemented in OpenMD was
1221 > generalized by Cleaver {\it et al.} and is appropriate for dissimilar
1222 > uniaxial ellipsoids.\cite{Cleaver:1996rt} The potential is constructed
1223 > in the familiar form of the Lennard-Jones function using
1224 > orientation-dependent $\sigma$ and $\epsilon$ parameters,
1225 > \begin{equation*}
1226 > V_{ij}({{\bf \hat u}_i}, {{\bf \hat u}_j}, {{\bf \hat
1227 > r}_{ij}}) = 4\epsilon ({{\bf \hat u}_i}, {{\bf \hat u}_j},
1228 > {{\bf \hat r}_{ij}})\left[\left(\frac{\sigma_0}{r_{ij}-\sigma({{\bf \hat u
1229 > }_i},
1230 > {{\bf \hat u}_j}, {{\bf \hat r}_{ij}})+\sigma_0}\right)^{12}
1231 > -\left(\frac{\sigma_0}{r_{ij}-\sigma({{\bf \hat u}_i}, {{\bf \hat u}_j},
1232 > {{\bf \hat r}_{ij}})+\sigma_0}\right)^6\right]
1233 > \label{eq:gb}
1234 > \end{equation*}
1235 >
1236 > The range $(\sigma({\bf \hat{u}}_{i},{\bf \hat{u}}_{j},{\bf
1237 > \hat{r}}_{ij}))$, and strength $(\epsilon({\bf \hat{u}}_{i},{\bf
1238 > \hat{u}}_{j},{\bf \hat{r}}_{ij}))$ parameters
1239 > are dependent on the relative orientations of the two ellipsoids (${\bf
1240 > \hat{u}}_{i},{\bf \hat{u}}_{j}$) as well as the direction of the
1241 > inter-ellipsoid separation (${\bf \hat{r}}_{ij}$).  The shape and
1242 > attractiveness of each ellipsoid is governed by a relatively small set
1243 > of parameters:
1244 > \begin{itemize}
1245 > \item  $d$:  range parameter for the side-by-side (S) and cross (X) configurations
1246 > \item  $l$:  range parameter for the end-to-end (E) configuration
1247 > \item  $\epsilon_X$:  well-depth parameter for the cross (X) configuration
1248 > \item  $\epsilon_S$:  well-depth parameter for the side-by-side (S) configuration
1249 > \item  $\epsilon_E$:  well depth parameter for the end-to-end (E) configuration
1250 > \item  $dw$: The ``softness'' of the potential
1251 > \end{itemize}
1252 > Additionally, there are two universal paramters to govern the overall
1253 > importance of the purely orientational ($\nu$) and the mixed
1254 > orientational / translational ($\mu$) parts of strength of the
1255 > interactions.  These parameters have default or ``canonical'' values,
1256 > but may be changed as a force field option:
1257 > \begin{itemize}
1258 >  \item $\nu$: purely orientational part : defaults to 1
1259 >  \item $\mu$: mixed orientational / translational part : defaults to
1260 >    2
1261 > \end{itemize}
1262 > Further details of the potential are given
1263 > elsewhere,\cite{Luckhurst:1990fy,Golubkov06,SunX._jp0762020} and an
1264 > excellent overview of the computational methods that can be used to
1265 > efficiently compute forces and torques for this potential can be found
1266 > in Ref. \citealp{Golubkov06}
1267 >
1268 > \begin{lstlisting}[caption={[An example of a GayBerneAtomTypes block.] A
1269 > simple example of a GayBerneAtomTypes block.  Distances ($d$ and $l$)
1270 > are given in \AA\ and energies ($\epsilon_X, \epsilon_S, \epsilon_E$)
1271 > are in units of kcal/mol. $dw$ is unitless.},
1272 > label={sch:GayBerneAtomTypes}]
1273 > begin GayBerneAtomTypes
1274 > //Name          d       l       eps_X           eps_S           eps_E     dw
1275 > GBlinear        2.8104  9.993   0.774729        0.774729        0.116839  1.0
1276 > GBC6H6          4.65    2.03    0.540           0.540           1.9818    0.6
1277 > GBCH3OH         2.55    3.18    0.542           0.542           0.55826   1.0
1278 > end GayBerneAtomTypes                  
1279 > \end{lstlisting}
1280 >
1281 > \subsection{\label{section:ffSticky}The StickyAtomTypes block}
1282 >
1283 > One of the solvents that can be simulated by {\sc OpenMD} is the
1284 > extended Soft Sticky Dipole (SSD/E) water model.\cite{fennell04} The
1285 > original SSD was developed by Ichiye \emph{et
1286 >  al.}\cite{liu96:new_model} as a modified form of the hard-sphere
1287 > water model proposed by Bratko, Blum, and
1288   Luzar.\cite{Bratko85,Bratko95} It consists of a single point dipole
1289   with a Lennard-Jones core and a sticky potential that directs the
1290   particles to assume the proper hydrogen bond orientation in the first
# Line 1179 | Line 1367 | SSD model that led to lower than expected densities at
1367  
1368   Recent constant pressure simulations revealed issues in the original
1369   SSD model that led to lower than expected densities at all target
1370 < pressures.\cite{Ichiye03,fennell04} The default model in {\sc OpenMD}
1371 < is therefore SSD/E, a density corrected derivative of SSD that
1372 < exhibits improved liquid structure and transport behavior. If the use
1373 < of a reaction field long-range interaction correction is desired, it
1374 < is recommended that the parameters be modified to those of the SSD/RF
1375 < model (an SSD variant parameterized for reaction field). These solvent
1188 < parameters are listed and can be easily modified in the {\sc duff}
1189 < force field file ({\tt DUFF.frc}).  A table of the parameter values
1190 < and the drawbacks and benefits of the different density corrected SSD
1191 < models can be found in reference~\cite{fennell04}.
1370 > pressures,\cite{Ichiye03,fennell04} so variants on the sticky
1371 > potential can be specified by using one of a number of substitute atom
1372 > types (see listing \ref{sch:StickyAtomTypes}).  A table of the
1373 > parameter values and the drawbacks and benefits of the different
1374 > density corrected SSD models can be found in
1375 > reference~\citealp{fennell04}.
1376  
1377 < \subsection{\label{section::ffMetals}Metallic Atom Types}
1378 < \subsubsection{\label{section:ffEAM}The EAMAtomTypes block}
1379 < {\sc OpenMD} implements a potential that describes bonding in
1380 < transition metal
1381 < systems.~\cite{Finnis84,Ercolessi88,Chen90,Qi99,Ercolessi02} This
1382 < potential has an attractive interaction which models ``Embedding'' a
1383 < positively charged pseudo-atom core in the electron density due to the
1384 < free valance ``sea'' of electrons created by the surrounding atoms in
1385 < the system.  A pairwise part of the potential (which is primarily
1386 < repulsive) describes the interaction of the positively charged metal
1387 < core ions with one another.  The Embedded Atom Method ({\sc
1388 < eam})~\cite{Daw84,FBD86,johnson89,Lu97} has been widely adopted in the
1389 < materials science community and has been included in {\sc OpenMD}. A
1206 < good review of {\sc eam} and other formulations of metallic potentials
1207 < was given by Voter.\cite{Voter:95}
1377 > \begin{lstlisting}[caption={[An example of a StickyAtomTypes block.] A
1378 > simple example of a StickyAtomTypes block.  Distances ($r_l$, $r_u$,
1379 > $r_{l}'$ and $r_{u}'$) are given in \AA\ and energies ($v_0, v_{0}'$)
1380 > are in units of kcal/mol. $w_0$ is unitless.},
1381 > label={sch:StickyAtomTypes}]
1382 > begin StickyAtomTypes
1383 > //name  w0      v0 (kcal/mol)   v0p     rl (Ang)  ru    rlp     rup
1384 > SSD_E   0.07715 3.90            3.90    2.40      3.80  2.75    3.35
1385 > SSD_RF  0.07715 3.90            3.90    2.40      3.80  2.75    3.35
1386 > SSD     0.07715 3.7284          3.7284  2.75      3.35  2.75    4.0
1387 > SSD1    0.07715 3.6613          3.6613  2.75      3.35  2.75    4.0
1388 > end StickyAtomTypes
1389 > \end{lstlisting}
1390  
1391 < The {\sc eam} potential has the form:
1391 > \section{\label{section::ffMetals}Metallic Atom Types}
1392 >
1393 > {\sc OpenMD} implements a number of related potentials that describe
1394 > bonding in transition metals. These potentials have an attractive
1395 > interaction which models ``Embedding'' a positively charged
1396 > pseudo-atom core in the electron density due to the free valance
1397 > ``sea'' of electrons created by the surrounding atoms in the system.
1398 > A pairwise part of the potential (which is primarily repulsive)
1399 > describes the interaction of the positively charged metal core ions
1400 > with one another.  These potentials have the form:
1401   \begin{equation}
1402   V  =  \sum_{i} F_{i}\left[\rho_{i}\right] + \sum_{i} \sum_{j \neq i}
1403   \phi_{ij}({\bf r}_{ij})
# Line 1223 | Line 1414 | to compute the inter-atomic forces.
1414   transition metal potentials require two loops through the atom pairs
1415   to compute the inter-atomic forces.
1416  
1417 < The pairwise portion of the potential, $\phi_{ij}$, is a primarily
1418 < repulsive interaction between atoms $i$ and $j$. In the original
1228 < formulation of {\sc eam}\cite{Daw84}, $\phi_{ij}$ was an entirely
1229 < repulsive term; however later refinements to {\sc eam} allowed for
1230 < more general forms for $\phi$.\cite{Daw89} The effective cutoff
1231 < distance, $r_{{\text cut}}$ is the distance at which the values of
1232 < $f(r)$ and $\phi(r)$ drop to zero for all atoms present in the
1233 < simulation.  In practice, this distance is fairly small, limiting the
1234 < summations in the {\sc eam} equation to the few dozen atoms
1235 < surrounding atom $i$ for both the density $\rho$ and pairwise $\phi$
1236 < interactions.
1417 > The pairwise portion of the potential, $\phi_{ij}$, is usually a
1418 > repulsive interaction between atoms $i$ and $j$.
1419  
1420 < In computing forces for alloys, mixing rules as outlined by
1421 < Johnson~\cite{johnson89} are used to compute the heterogenous pair
1422 < potential,
1420 > \subsection{\label{section:ffEAM}The EAMAtomTypes block}
1421 > The Embedded Atom Method ({\sc eam}) is one of the most widely-used
1422 > potentials for transition
1423 > metals.~\cite{Finnis84,Ercolessi88,Chen90,Qi99,Ercolessi02,Daw84,FBD86,johnson89,Lu97}
1424 > It has been widely adopted in the materials science community and a
1425 > good review of {\sc eam} and other formulations of metallic potentials
1426 > was given by Voter.\cite{Voter:95}
1427 >
1428 > In the original formulation of {\sc eam}\cite{Daw84}, the pair
1429 > potential, $\phi_{ij}$ was an entirely repulsive term; however later
1430 > refinements to {\sc eam} allowed for more general forms for
1431 > $\phi$.\cite{Daw89} The effective cutoff distance, $r_{{\text cut}}$
1432 > is the distance at which the values of $f(r)$ and $\phi(r)$ drop to
1433 > zero for all atoms present in the simulation.  In practice, this
1434 > distance is fairly small, limiting the summations in the {\sc eam}
1435 > equation to the few dozen atoms surrounding atom $i$ for both the
1436 > density $\rho$ and pairwise $\phi$ interactions.
1437 >
1438 > In computing forces for alloys, OpenMD uses mixing rules outlined by
1439 > Johnson~\cite{johnson89} to compute the heterogenous pair potential,
1440   \begin{equation}
1441   \label{eq:johnson}
1442   \phi_{ab}(r)=\frac{1}{2}\left(
# Line 1269 | Line 1468 | files.  
1468   $\mbox{kcal mol}^{-1}$ as in the rest of the {\sc OpenMD} force field
1469   files.  
1470  
1471 < \subsubsection{\label{section:ffSC}The SuttonChenAtomTypes block}
1471 > \begin{lstlisting}[caption={[An example of a EAMAtomTypes block.] A
1472 > simple example of a EAMAtomTypes block. Here the only data provided is
1473 > the name of a {\tt funcfl} file which contains the raw data for spline
1474 > interpolations for the density, functional, and pair potential.},
1475 > label={sch:EAMAtomTypes}]
1476 > begin EAMAtomTypes
1477 > Au      Au.u3.funcfl
1478 > Ag      Ag.u3.funcfl
1479 > Cu      Cu.u3.funcfl
1480 > Ni      Ni.u3.funcfl
1481 > Pd      Pd.u3.funcfl
1482 > Pt      Pt.u3.funcfl
1483 > end EAMAtomTypes
1484 > \end{lstlisting}
1485  
1486 + \subsection{\label{section:ffSC}The SuttonChenAtomTypes block}
1487 +
1488   The Sutton-Chen ({\sc sc})~\cite{Chen90} potential has been used to
1489 < study a wide range of phenomena in metals.  Although it is similar in
1490 < form to the {\sc eam} potential, the Sutton-Chen model takes on a
1491 < simpler form,
1489 > study a wide range of phenomena in metals.  Although it has the same
1490 > basic form as the {\sc eam} potential, the Sutton-Chen model requires
1491 > a simpler set of parameters,
1492   \begin{equation}
1493   \label{eq:SCP1}
1494   U_{tot}=\sum _{i}\left[ \frac{1}{2}\sum _{j\neq
1495 < i}D_{ij}V^{pair}_{ij}(r_{ij})-c_{i}D_{ii}\sqrt{\rho_{i}}\right] ,
1495 > i}\epsilon_{ij}V^{pair}_{ij}(r_{ij})-c_{i}\epsilon_{ii}\sqrt{\rho_{i}}\right] ,
1496   \end{equation}
1497   where $V^{pair}_{ij}$ and $\rho_{i}$ are given by
1498   \begin{equation}
1499   \label{eq:SCP2}
1500   V^{pair}_{ij}(r)=\left(
1501 < \frac{\alpha_{ij}}{r_{ij}}\right)^{n_{ij}}, \rho_{i}=\sum_{j\neq i}\left(
1501 > \frac{\alpha_{ij}}{r_{ij}}\right)^{n_{ij}} \hspace{1in} \rho_{i}=\sum_{j\neq i}\left(
1502   \frac{\alpha_{ij}}{r_{ij}}\right) ^{m_{ij}}
1503   \end{equation}
1504  
# Line 1292 | Line 1506 | the interactions between the valence electrons and the
1506   interactions of the pseudo-atom cores.  The $\sqrt{\rho_i}$ term in
1507   Eq. (\ref{eq:SCP1}) is an attractive many-body potential that models
1508   the interactions between the valence electrons and the cores of the
1509 < pseudo-atoms.  $D_{ij}$, $D_{ii}$, $c_i$ and $\alpha_{ij}$ are
1510 < parameters used to tune the potential for different transition
1511 < metals.
1509 > pseudo-atoms.  $\epsilon_{ij}$, $\epsilon_{ii}$, $c_i$ and
1510 > $\alpha_{ij}$ are parameters used to tune the potential for different
1511 > transition metals.
1512  
1513   The {\sc sc} potential form has also been parameterized by Qi {\it et
1514   al.}\cite{Qi99} These parameters were obtained via empirical and {\it
1515   ab initio} calculations to match structural features of the FCC
1516 < crystal.  To specify the original Sutton-Chen variant of the {\sc sc}
1517 < force field, the user would add the {\tt forceFieldVariant = "SC";}
1304 < line to the meta-data file, while specification of the Qi {\it et al.}
1305 < quantum-adapted variant of the {\sc sc} potential, the user would add
1306 < the {\tt forceFieldVariant = "QSC";} line to the meta-data file.
1516 > crystal.  Interested readers are encouraged to consult reference
1517 > \citealp{Qi99} for further details.
1518  
1519 < \subsection{\label{section::ffShortRange}Short Range Interactions}
1520 < \subsubsection{\label{section:ffBond}The BondTypes block}
1521 < \subsubsection{\label{section:ffBend}The BendTypes block}
1522 < A harmonic bend potential is represented by the following function:
1523 < \begin{equation}
1524 < V_{\text{bend}}(\theta_{ijk}) = k_{\theta}( \theta_{ijk} - \theta_0
1525 < )^2, \label{eq:bendPot}
1526 < \end{equation}
1527 < where $\theta_{ijk}$ is the angle defined by atoms $i$, $j$, and $k$,
1528 < $\theta_0$ is the equilibrium bond angle, and $k_{\theta}$ is the
1529 < force constant which determines the strength of the harmonic bend.
1519 > \begin{lstlisting}[caption={[An example of a SCAtomTypes block.] A
1520 > simple example of a SCAtomTypes block.  Distances ($\alpha$)
1521 > are given in \AA\ and energies ($\epsilon$) are (by convention) given in
1522 > units of eV.  These units must be specified in the {\tt Options} block
1523 > using the keyword {\tt MetallicEnergyUnitScaling}.  Without this {\tt
1524 > Options} keyword, the default units for $\epsilon$ are kcal/mol.  The
1525 > other parameters, $m$, $n$, and $c$ are unitless.},
1526 > label={sch:SCAtomTypes}]
1527 > begin SCAtomTypes
1528 > // Name  epsilon(eV)      c      m       n      alpha(angstroms)
1529 > Ni      0.0073767       84.745  5.0     10.0    3.5157
1530 > Cu      0.0057921       84.843  5.0     10.0    3.6030
1531 > Rh      0.0024612       305.499 5.0     13.0    3.7984
1532 > Pd      0.0032864       148.205 6.0     12.0    3.8813
1533 > Ag      0.0039450       96.524  6.0     11.0    4.0691
1534 > Ir      0.0037674       224.815 6.0     13.0    3.8344  
1535 > Pt      0.0097894       71.336  7.0     11.0    3.9163
1536 > Au      0.0078052       53.581  8.0     11.0    4.0651
1537 > Au2     0.0078052       53.581  8.0     11.0    4.0651
1538 > end SCAtomTypes
1539 > \end{lstlisting}
1540  
1541 < \subsubsection{\label{section:ffTorsion}The TorsionTypes block}
1542 < The torsion potential is often represented as a cosine series of the
1543 < form:
1541 > \section{\label{section::ffShortRange}Short Range Interactions}
1542 > The internal structure of a molecule is usually specified in terms of
1543 > a set of ``bonded'' terms in the potential energy function for
1544 > molecule $I$,
1545 > \begin{align*}
1546 > V^{I}_{\text{Internal}} =  &
1547 > \sum_{r_{ij} \in I} V_{\text{bond}}(r_{ij})
1548 > + \sum_{\theta_{ijk} \in I} V_{\text{bend}}(\theta_{ijk})
1549 > + \sum_{\phi_{ijkl} \in I} V_{\text{torsion}}(\phi_{ijkl})
1550 > + \sum_{\omega_{ijkl} \in I} V_{\text{inversion}}(\omega_{ijkl}) \\
1551 > & + \sum_{i \in I} \sum_{(j>i+4) \in I}
1552 > \biggl[ V_{\text{dispersion}}(r_{ij}) +  V_{\text{electrostatic}}
1553 > (\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},\boldsymbol{\Omega}_{j})
1554 > \biggr].
1555 > \label{eq:internalPotential}
1556 > \end{align*}
1557 > Here $V_{\text{bond}}, V_{\text{bend}},
1558 > V_{\text{torsion}},\mathrm{~and~} V_{\text{inversion}}$ represent the
1559 > bond, bend, torsion, and inversion potentials for all
1560 > topologically-connected sets of atoms within the molecule.  Bonds are
1561 > the primary way of specifying how the atoms are connected together to
1562 > form the molecule (i.e. they define the molecular topology).  The
1563 > other short-range interactions may be specified explicitly in the
1564 > molecule definition, or they may be deduced from bonding information.
1565 > For example, bends can be implicitly deduced from two bonds which
1566 > share an atom.  Torsions can be deduced from two bends that share a
1567 > bond.  Inversion potentials are utilized primarily to enforce
1568 > planarity around $sp^2$-hybridized sites, and these are specified with
1569 > central atoms and satellites (or an atom with bonds to exactly three
1570 > satellites). Non-bonded interactions are usually excluded for atom
1571 > pairs that are involved in the same bond, bend, or torsion, but all
1572 > other atom pairs are included in the standard non-bonded interactions.
1573 >
1574 > Bond lengths, angles, and torsions (dihedrals) are ``natural''
1575 > coordinates to treat molecular motion, as it is usually in these
1576 > coordinates that most chemists understand the behavior of molecules.
1577 > The bond lengths and angles are often considered ``hard'' degrees of
1578 > freedom.  That is, we can't deform them very much without a
1579 > significant energetic penalty.  On the other hand, dihedral angles or
1580 > torsions are ``soft'' and typically undergo significant deformation
1581 > under normal conditions.
1582 >
1583 > \subsection{\label{section:ffBond}The BondTypes block}
1584 >
1585 > Bonds are the primary way to specify how the atoms are connected
1586 > together to form the molecule.  In general, bonds exert strong
1587 > restoring forces to keep the molecule compact.  The bond energy
1588 > functions are relatively simple functions of the distance between two
1589 > atomic sites,
1590   \begin{equation}
1591 < V_{\text{torsion}}(\phi) = c_1[1 + \cos \phi]
1592 <        + c_2[1 + \cos(2\phi)]
1593 <        + c_3[1 + \cos(3\phi)],
1594 < \label{eq:origTorsionPot}
1595 < \end{equation}
1596 < where:
1591 > b = \left| \vec{r}_{ij} \right| = \sqrt{(x_j - x_i)^2 + (y_j - y_i)^2
1592 >  + (z_j - z_i)^2}.
1593 > \end{equation}
1594 > All BondTypes must specify two AtomType names ($i$ and $j$) that
1595 > describe when that bond should be applied, as well as an equilibrium
1596 > bond length, $b_{ij}^0$, in units of \AA. The most common forms for
1597 > bonding potentials are {\tt Harmonic} bonds,
1598   \begin{equation}
1599 < \cos\phi = (\hat{\mathbf{r}}_{ij} \times \hat{\mathbf{r}}_{jk}) \cdot
1600 <        (\hat{\mathbf{r}}_{jk} \times \hat{\mathbf{r}}_{kl}).
1333 < \label{eq:torsPhi}
1599 > V_{\text{bond}}(b) = \frac{k_{ij}}{2} \left(b -
1600 >  b_{ij}^0 \right)^2
1601   \end{equation}
1602 < Here, $\hat{\mathbf{r}}_{\alpha\beta}$ are the set of unit bond
1336 < vectors between atoms $i$, $j$, $k$, and $l$. For computational
1337 < efficiency, the torsion potential has been recast after the method of
1338 < {\sc charmm},\cite{Brooks83} in which the angle series is converted to
1339 < a power series of the form:
1602 > and {\tt Morse} bonds,
1603   \begin{equation}
1604 < V_{\text{torsion}}(\phi) =  
1342 <        k_3 \cos^3 \phi + k_2 \cos^2 \phi + k_1 \cos \phi + k_0,
1343 < \label{eq:torsionPot}
1604 > V_{\text{bond}}(b) = D_{ij} \left[ 1 - e^{-\beta_{ij} (b - b_{ij}^0)} \right]^2
1605   \end{equation}
1345 where:
1346 \begin{align*}
1347 k_0 &= c_1 + c_3, \\
1348 k_1 &= c_1 - 3c_3, \\
1349 k_2 &= 2 c_2, \\
1350 k_3 &= 4c_3.
1351 \end{align*}
1352 By recasting the potential as a power series, repeated trigonometric
1353 evaluations are avoided during the calculation of the potential
1354 energy.
1606  
1607 < \subsubsection{\label{section:ffInversion}The InversionTypes block}
1608 < \subsection{\label{section::ffLongRange}Long Range Interactions}
1609 < \subsubsection{\label{section:ffInversion}The NonBondedInteraction block}
1607 > \begin{figure}[h]
1608 > \centering
1609 > \includegraphics[width=2.5in]{bond.pdf}
1610 > \caption[Bond coordinates]{The coordinate describing a
1611 > a bond between atoms $i$ and $j$ is $|r_{ij}|$, the length of the
1612 > $\vec{r}_{ij}$ vector. }
1613 > \label{fig:bond}
1614 > \end{figure}
1615  
1616 <
1617 <
1618 < (see Fig.~\ref{fig:lipidModel}), The parameters for $k_{\theta}$ and
1363 < $\theta_0$ are borrowed from those in TraPPE.\cite{Siepmann1998}
1364 <
1365 < Calculating the long-range (non-bonded) potential involves a sum over
1366 < all pairs of atoms (except for those atoms which are involved in a
1367 < bond, bend, or torsion with each other).  If done poorly, calculating
1368 < the the long-range interactions for $N$ atoms would involve $N(N-1)/2$
1369 < evaluations of atomic distances.  To reduce the number of distance
1370 < evaluations between pairs of atoms, {\sc OpenMD} allows the use of
1371 < switched cutoffs with Verlet neighbor lists.\cite{Allen87} Neutral
1372 < groups which contain charges will exhibit pathological forces unless
1373 < the cutoff is applied to the neutral groups evenly instead of to the
1374 < individual atoms.\cite{leach01:mm}  {\sc OpenMD} allows users to
1375 < specify cutoff groups which may contain an arbitrary number of atoms
1376 < in the molecule.  Atoms in a cutoff group are treated as a single unit
1377 < for the evaluation of the switching function:
1616 > OpenMD can also simulate some less common types of bond potentials,
1617 > including {\tt Fixed} bonds (which are constrained to be at a
1618 > specified bond length),
1619   \begin{equation}
1620 < V_{\mathrm{long-range}} = \sum_{a} \sum_{b>a} s(r_{ab}) \sum_{i \in a} \sum_{j \in b} V_{ij}(r_{ij}),
1620 > V_{\text{bond}}(b) = 0.
1621   \end{equation}
1622 < where $r_{ab}$ is the distance between the centers of mass of the two
1623 < cutoff groups ($a$ and $b$).
1622 > {\tt Cubic} bonds include terms to model anharmonicity,
1623 > \begin{equation}
1624 > V_{\text{bond}}(b) =  K_3 (b -  b_{ij}^0)^3 + K_2 (b - b_{ij}^0)^2 + K_1 (b -  b_{ij}^0) + K_0,
1625 > \end{equation}
1626 > and {\tt Quartic} bonds, include another term in the Taylor
1627 > expansion around $b_{ij}^0$,
1628 > \begin{equation}
1629 > V_{\text{bond}}(b) = K_4 (b -  b_{ij}^0)^4 +  K_3 (b -  b_{ij}^0)^3 +
1630 > K_2 (b - b_{ij}^0)^2 + K_1 (b -  b_{ij}^0) + K_0,
1631 > \end{equation}
1632 > can also be simulated.  Note that the factor of $1/2$ that is included
1633 > in the {\tt Harmonic} bond type force constant is {\it not} present in
1634 > either the {\tt Cubic} or {\tt Quartic} bond types.
1635  
1636 < The sums over $a$ and $b$ are over the cutoff groups that are present
1385 < in the simulation.  Atoms which are not explicitly defined as members
1386 < of a {\tt cutoffGroup} are treated as a group consisting of only one
1387 < atom.  The switching function, $s(r)$ is the standard cubic switching
1388 < function,
1636 > {\tt Polynomial} bonds which can have any number of terms,
1637   \begin{equation}
1638 < S(r) =
1391 <        \begin{cases}
1392 <        1 & \text{if $r \le r_{\text{sw}}$},\\
1393 <        \frac{(r_{\text{cut}} + 2r - 3r_{\text{sw}})(r_{\text{cut}} - r)^2}
1394 <        {(r_{\text{cut}} - r_{\text{sw}})^3}
1395 <        & \text{if $r_{\text{sw}} < r \le r_{\text{cut}}$}, \\
1396 <        0 & \text{if $r > r_{\text{cut}}$.}
1397 <        \end{cases}
1398 < \label{eq:dipoleSwitching}
1638 > V_{\text{bond}}(b) = \sum_n K_n (b -  b_{ij}^0)^n.
1639   \end{equation}
1640 < Here, $r_{\text{sw}}$ is the {\tt switchingRadius}, or the distance
1641 < beyond which interactions are reduced, and $r_{\text{cut}}$ is the
1402 < {\tt cutoffRadius}, or the distance at which interactions are
1403 < truncated.
1640 > can also be specified by giving a sequence of integer ($n$) and force
1641 > constant ($K_n$) pairs.
1642  
1643 < Users of {\sc OpenMD} do not need to specify the {\tt cutoffRadius} or
1644 < {\tt switchingRadius}.  In simulations containing only Lennard-Jones
1645 < atoms, the cutoff radius has a default value of $2.5\sigma_{ii}$,
1646 < where $\sigma_{ii}$ is the largest Lennard-Jones length parameter
1647 < present in the simulation.  In simulations containing charged or
1648 < dipolar atoms, the default cutoff radius is $15 \mbox{\AA}$.  
1643 > The order of terms in the BondTypes block is:
1644 > \begin{itemize}
1645 > \item {\tt AtomType} 1
1646 > \item {\tt AtomType} 2
1647 > \item {\tt BondType} (one of {\tt Harmonic}, {\tt Morse}, {\tt Fixed}, {\tt
1648 >        Cubic}, {\tt Quartic}, or {\tt Polynomial})
1649 > \item $b_{ij}^0$, the equilibrium bond length in \AA
1650 > \item any other parameters required by the {\tt BondType}
1651 > \end{itemize}
1652  
1653 < The {\tt switchingRadius} is set to a default value of 95\% of the
1654 < {\tt cutoffRadius}.  In the special case of a simulation containing
1655 < {\it only} Lennard-Jones atoms, the default switching radius takes the
1656 < same value as the cutoff radius, and {\sc OpenMD} will use a shifted
1657 < potential to remove discontinuities in the potential at the cutoff.
1658 < Both radii may be specified in the meta-data file.
1659 <
1660 < Force fields can be added to {\sc OpenMD}, although it comes with a few
1661 < simple examples (Lennard-Jones, {\sc duff}, {\sc water}, and {\sc
1662 < eam}) which are explained in the following sections.
1663 <
1664 < \section{\label{sec:LJPot}The Lennard Jones Force Field}
1665 <
1666 < Scheme
1667 < \ref{sch:LJFF} gives an example meta-data file that
1668 < sets up a system of 108 Ar particles to be simulated using the
1669 < Lennard-Jones force field.
1670 <
1430 < \begin{lstlisting}[float,caption={[Invocation of the Lennard-Jones
1431 < force field] A sample startup file for a small Lennard-Jones
1432 < simulation.},label={sch:LJFF}]
1433 < <OpenMD>
1434 <  <MetaData>
1435 < #include "argon.md"
1436 <
1437 < component{
1438 <  type = "Ar";
1439 <  nMol = 108;
1440 < }
1441 <
1442 < forceField = "LJ";
1443 <  </MetaData>
1444 <  <Snapshot>     // not shown in this scheme
1445 <  </Snapshot>
1446 < </OpenMD>
1653 > \begin{lstlisting}[caption={[An example of a BondTypes block.] A
1654 > simple example of a BondTypes block.  Distances ($b_0$)
1655 > are given in \AA\ and force constants are given in
1656 > units so that when multiplied by the correct power of distance they
1657 > return energies in kcal/mol.  For example $k$ for a Harmonic bond is
1658 > in units of kcal/mol/\AA$^2$.},
1659 > label={sch:BondTypes}]
1660 > begin BondTypes
1661 > //Atom1 Atom2   Harmonic        b0        k (kcal/mol/A^2)
1662 > CH2     CH2     Harmonic        1.526     260
1663 > //Atom1 Atom2   Morse           b0        D       beta (A^-1)
1664 > CN      NC      Morse           1.157437  212.95  2.5802
1665 > //Atom1 Atom2   Fixed           b0
1666 > CT      HC      Fixed           1.09
1667 > //Atom1 Atom2   Cubic           b0        K3      K2      K1      K0
1668 > //Atom1 Atom2   Quartic         b0        K4      K3      K2      K1      K0
1669 > //Atom1 Atom2   Polynomial      b0        n       Kn      [m      Km]
1670 > end BondTypes
1671   \end{lstlisting}
1672  
1673 + There are advantages and disadvantages of all of the different types
1674 + of bonds, but specific simulation tasks may call for specific
1675 + behaviors.
1676  
1677 < \section{\label{section:DUFF}Dipolar Unified-Atom Force Field}
1677 > \subsection{\label{section:ffBend}The BendTypes block}
1678 > The equilibrium geometries and energy functions for bending motions in
1679 > a molecule are strongly dependent on the bonding environment of the
1680 > central atomic site.  For example, different types of hybridized
1681 > carbon centers require different bending angles and force constants to
1682 > describe the local geometry.
1683  
1684 < The dipolar unified-atom force field ({\sc duff}) was developed to
1685 < simulate lipid bilayers. These types of simulations require a model
1686 < capable of forming bilayers, while still being sufficiently
1687 < computationally efficient to allow large systems ($\sim$100's of
1688 < phospholipids, $\sim$1000's of waters) to be simulated for long times
1689 < ($\sim$10's of nanoseconds). With this goal in mind, {\sc duff} has no
1690 < point charges. Charge-neutral distributions are replaced with dipoles,
1691 < while most atoms and groups of atoms are reduced to Lennard-Jones
1692 < interaction sites. This simplification reduces the length scale of
1461 < long range interactions from $\frac{1}{r}$ to $\frac{1}{r^3}$,
1462 < removing the need for the computationally expensive Ewald
1463 < sum. Instead, Verlet neighbor-lists and cutoff radii are used for the
1464 < dipolar interactions, and, if desired, a reaction field may be added
1465 < to mimic longer range interactions.
1684 > The bending potential energy functions used in most force fields are
1685 > often simple functions of the angle between two bonds,
1686 > \begin{equation}
1687 > \theta_{ijk} = \cos^{-1} \left(\frac{\vec{r}_{ji} \cdot
1688 >    \vec{r}_{jk}}{\left| \vec{r}_{ji} \right| \left| \vec{r}_{jk}
1689 >    \right|} \right)
1690 > \end{equation}
1691 > Here atom $j$ is the central atom that is bonded to two partners $i$
1692 > and $k$.
1693  
1694 < As an example, lipid head-groups in {\sc duff} are represented as
1468 < point dipole interaction sites.  Placing a dipole at the head group's
1469 < center of mass mimics the charge separation found in common
1470 < phospholipid head groups such as phosphatidylcholine.\cite{Cevc87}
1471 < Additionally, a large Lennard-Jones site is located at the
1472 < pseudoatom's center of mass. The model is illustrated by the red atom
1473 < in Fig.~\ref{fig:lipidModel}. The water model we use to
1474 < complement the dipoles of the lipids is a
1475 < reparameterization\cite{fennell04} of the soft sticky dipole (SSD)
1476 < model of Ichiye
1477 < \emph{et al.}\cite{liu96:new_model}
1478 <
1479 < \begin{figure}
1694 > \begin{figure}[h]
1695   \centering
1696 < \includegraphics[width=\linewidth]{lipidModel.pdf}
1697 < \caption[A representation of a lipid model in {\sc duff}]{A
1698 < representation of the lipid model. $\phi$ is the torsion angle,
1699 < $\theta$ is the bend angle, and $\mu$ is the dipole moment of the head
1700 < group.}
1701 < \label{fig:lipidModel}
1696 > \includegraphics[width=3.5in]{bend.pdf}
1697 > \caption[Bend angle coordinates]{The coordinate describing a bend
1698 >  between atoms $i$, $j$, and $k$ is the angle $\theta_{ijk} =
1699 >  \cos^{-1} \left(\hat{r}_{ji} \cdot \hat{r}_{jk}\right)$ where $\hat{r}_{ji}$ is
1700 >  the unit vector between atoms $j$ and $i$. }
1701 > \label{fig:bend}
1702   \end{figure}
1703  
1489 A set of scalable parameters has been used to model the alkyl groups
1490 with Lennard-Jones sites. For this, parameters from the TraPPE force
1491 field of Siepmann \emph{et al.}\cite{Siepmann1998} have been
1492 utilized. TraPPE is a unified-atom representation of n-alkanes which
1493 is parametrized against phase equilibria using Gibbs ensemble Monte
1494 Carlo simulation techniques.\cite{Siepmann1998} One of the advantages
1495 of TraPPE is that it generalizes the types of atoms in an alkyl chain
1496 to keep the number of pseudoatoms to a minimum; thus, the parameters
1497 for a unified atom such as $\text{CH}_2$ do not change depending on
1498 what species are bonded to it.
1704  
1705 < As is required by TraPPE, {\sc duff} also constrains all bonds to be
1706 < of fixed length. Typically, bond vibrations are the fastest motions in
1707 < a molecular dynamic simulation.  With these vibrations present, small
1708 < time steps between force evaluations must be used to ensure adequate
1709 < energy conservation in the bond degrees of freedom. By constraining
1710 < the bond lengths, larger time steps may be used when integrating the
1711 < equations of motion. A simulation using {\sc duff} is illustrated in
1712 < Scheme \ref{sch:DUFF}.
1705 > All BendTypes must specify three AtomType names ($i$, $j$ and $k$)
1706 > that describe when that bend potential should be applied, as well as
1707 > an equilibrium bending angle, $\theta_{ijk}^0$, in units of
1708 > degrees. The most common forms for bending potentials are {\tt
1709 >  Harmonic} bends,
1710 > \begin{equation}
1711 > V_{\text{bend}}(\theta_{ijk}) = \frac{k_{ijk}}{2}( \theta_{ijk} - \theta_{ijk}^0
1712 > )^2, \label{eq:bendPot}
1713 > \end{equation}
1714 > where $k_{ijk}$ is the force constant which determines the strength of
1715 > the harmonic bend. {\tt UreyBradley} bends utilize an additional 1-3
1716 > bond-type interaction in addition to the harmonic bending potential:
1717 > \begin{equation}
1718 >  V_{\text{bend}}(\vec{r}_i , \vec{r}_j, \vec{r}_k)
1719 >  =\frac{k_{ijk}}{2}( \theta_{ijk} - \theta_{ijk}^0)^2
1720 >  + \frac{k_{ub}}{2}( r_{ik} - s_0 )^2. \label{eq:ubBend}
1721 > \end{equation}
1722  
1723 < \begin{lstlisting}[float,caption={[Invocation of {\sc duff}]A portion
1724 < of a startup file showing a simulation utilizing {\sc
1725 < duff}},label={sch:DUFF}]  
1726 < <OpenMD>
1727 <  <MetaData>
1728 < #include "water.md"
1515 < #include "lipid.md"
1723 > A {\tt Cosine} bend is a variant on the harmonic bend which utilizes
1724 > the cosine of the angle instead of the angle itself,
1725 > \begin{equation}
1726 > V_{\text{bend}}(\theta_{ijk}) = \frac{k_{ijk}}{2}( \cos\theta_{ijk} -
1727 > \cos \theta_{ijk}^0 )^2. \label{eq:cosBend}
1728 > \end{equation}
1729  
1730 < component{
1731 <  type = "simpleLipid_16";
1732 <  nMol = 60;
1733 < }
1730 > OpenMD can also simulate some less common types of bend potentials,
1731 > including {\tt Cubic} bends, which include terms to model anharmonicity,
1732 > \begin{equation}
1733 > V_{\text{bend}}(\theta_{ijk}) =  K_3 (\theta_{ijk} -  \theta_{ijk}^0)^3 + K_2 (\theta_{ijk} -  \theta_{ijk}^0)^2 + K_1 (\theta_{ijk} -  \theta_{ijk}^0) + K_0,
1734 > \end{equation}
1735 > and {\tt Quartic} bends, which include another term in the Taylor
1736 > expansion around $\theta_{ijk}^0$,
1737 > \begin{equation}
1738 >  V_{\text{bend}}(\theta_{ijk}) = K_4 (\theta_{ijk} -  \theta_{ijk}^0)^4 +  K_3 (\theta_{ijk} -  \theta_{ijk}^0)^3 +
1739 >  K_2 (\theta_{ijk} -  \theta_{ijk}^0)^2 + K_1 (\theta_{ijk} -
1740 >  \theta_{ijk}^0) + K_0,
1741 > \end{equation}
1742 > can also be simulated.  Note that the factor of $1/2$ that is included
1743 > in the {\tt Harmonic} bend type force constant is {\it not} present in
1744 > either the {\tt Cubic} or {\tt Quartic} bend types.
1745  
1746 < component{
1747 <  type = "SSD_water";
1748 <  nMol = 1936;
1749 < }
1746 > {\tt Polynomial} bends which can have any number of terms,
1747 > \begin{equation}
1748 > V_{\text{bend}}(\theta_{ijk}) = \sum_n K_n (\theta_{ijk} -  \theta_{ijk}^0)^n.
1749 > \end{equation}
1750 > can also be specified by giving a sequence of integer ($n$) and force
1751 > constant ($K_n$) pairs.
1752  
1753 < forceField = "DUFF";
1754 <  </MetaData>
1755 <  <Snapshot>     // not shown in this scheme
1756 <  </Snapshot>
1757 < </OpenMD>
1753 > The order of terms in the BendTypes block is:
1754 > \begin{itemize}
1755 > \item {\tt AtomType} 1
1756 > \item {\tt AtomType} 2 (this is the central atom)
1757 > \item {\tt AtomType} 3
1758 > \item {\tt BendType} (one of {\tt Harmonic}, {\tt UreyBradley}, {\tt
1759 >    Cosine}, {\tt Cubic}, {\tt Quartic}, or {\tt Polynomial})
1760 > \item $\theta_{ijk}^0$, the equilibrium bending angle in degrees.
1761 > \item any other parameters required by the {\tt BendType}
1762 > \end{itemize}
1763 >
1764 > \begin{lstlisting}[caption={[An example of a BendTypes block.] A
1765 > simple example of a BendTypes block.  By convention, equilibrium angles
1766 > ($\theta_0$) are given in degrees but force constants are given in
1767 > units so that when multiplied by the correct power of angle (in
1768 > radians) they return energies in kcal/mol.  For example $k$ for a
1769 > Harmonic bend is in units of kcal/mol/radians$^2$.},
1770 > label={sch:BendTypes}]
1771 > begin BendTypes
1772 > //Atom1 Atom2   Atom3   Harmonic      theta0(deg) Ktheta(kcal/mol/radians^2)
1773 > CT      CT      CT      Harmonic      109.5        80.000000
1774 > CH2     CH      CH2     Harmonic      112.0       117.68
1775 > CH3     CH2     SH      Harmonic       96.0        67.220
1776 > //UreyBradley
1777 > //Atom1 Atom2   Atom3   UreyBradley   theta0      Ktheta  s0  Kub
1778 > //Cosine
1779 > //Atom1 Atom2   Atom3   Cosine        theta0      Ktheta(kcal/mol)
1780 > //Cubic
1781 > //Atom1 Atom2   Atom3   Cubic         theta0      K3      K2  K1   K0
1782 > //Quartic
1783 > //Atom1 Atom2   Atom3   Quartic       theta0      K4      K3  K2   K1   K0
1784 > //Polynomial
1785 > //Atom1 Atom2   Atom3   Polynomial    theta0      n       Kn  [m   Km]
1786 > end BendTypes
1787   \end{lstlisting}
1788  
1789 + Note that the parameters for a particular bend type are the same for
1790 + any bending triplet of the same atomic types (in the same or reversed
1791 + order).  Changing the AtomType in the Atom2 position will change the
1792 + matched bend types in the force field.
1793  
1794 + \subsection{\label{section:ffTorsion}The TorsionTypes block}
1795 + The torsion potential for rotation of groups around a central bond can
1796 + often be represented with various cosine functions.  For two
1797 + tetrahedral ($sp^3$) carbons connected by a single bond, the torsion
1798 + potential might be
1799 + \begin{equation*}
1800 + V_{\text{torsion}} = \frac{v}{2} \left[ 1 + \cos( 3 \phi ) \right]
1801 + \end{equation*}
1802 + where $v$ is the barrier for going from {\em staggered} $\rightarrow$
1803 + {\em eclipsed} conformations, while for $sp^2$ carbons connected by a
1804 + double bond, the potential might be
1805 + \begin{equation*}
1806 + V_{\text{torsion}} = \frac{w}{2} \left[ 1 - \cos( 2 \phi ) \right]
1807 + \end{equation*}
1808 + where $w$ is the barrier for going from  {\em cis} $\rightarrow$ {\em
1809 +  trans} conformations.
1810  
1811 < The cross potential between molecules $I$ and $J$,
1812 < $V^{IJ}_{\text{Cross}}$, is as follows:
1811 > A general torsion potentials can be represented as a cosine series of
1812 > the form:
1813   \begin{equation}
1814 < V^{IJ}_{\text{Cross}} =
1815 <        \sum_{i \in I} \sum_{j \in J}
1816 <        \biggl[ V_{\text{LJ}}(r_{ij}) +  V_{\text{dipole}}
1817 <        (\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},\boldsymbol{\Omega}_{j})
1543 <        + V_{\text{sticky}}
1544 <        (\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},\boldsymbol{\Omega}_{j})
1545 <        \biggr],
1546 < \label{eq:crossPotentail}
1814 > V_{\text{torsion}}(\phi_{ijkl}) = c_1[1 + \cos \phi_{ijkl}]
1815 >        + c_2[1 - \cos(2\phi_{ijkl})]
1816 >        + c_3[1 + \cos(3\phi_{ijkl})],
1817 > \label{eq:origTorsionPot}
1818   \end{equation}
1819 < where $V_{\text{LJ}}$ is the Lennard Jones potential,
1549 < $V_{\text{dipole}}$ is the dipole dipole potential, and
1550 < $V_{\text{sticky}}$ is the sticky potential defined by the SSD model
1551 < (Sec.~\ref{section:SSD}). Note that not all atom types include all
1552 < interactions.
1553 <
1554 <
1555 < \section{\label{section:WATER}The {\sc water} Force Field}
1556 <
1557 < In addition to the {\sc duff} force field's solvent description, a
1558 < separate {\sc water} force field has been included for simulating most
1559 < of the common rigid-body water models. This force field includes the
1560 < simple and point-dipolar models (SSD, SSD1, SSD/E, SSD/RF, and DPD
1561 < water), as well as the common charge-based models (SPC, SPC/E, TIP3P,
1562 < TIP4P, and
1563 < TIP5P).\cite{liu96:new_model,Ichiye03,fennell04,Marrink01,Berendsen81,Berendsen87,Jorgensen83,Mahoney00}
1564 < In order to handle these models, charge-charge interactions were
1565 < included in the force-loop:
1819 > where the angle $\phi_{ijkl}$ is defined
1820   \begin{equation}
1821 < V_{\text{charge}}(r_{ij}) = \sum_{ij}\frac{q_iq_je^2}{r_{ij}},
1821 > \cos\phi_{ijkl} = (\hat{\mathbf{r}}_{ij} \times \hat{\mathbf{r}}_{jk}) \cdot
1822 >        (\hat{\mathbf{r}}_{jk} \times \hat{\mathbf{r}}_{kl}).
1823 > \label{eq:torsPhi}
1824   \end{equation}
1825 < where $q$ represents the charge on particle $i$ or $j$, and $e$ is the
1826 < charge of an electron in Coulombs. The charge-charge interaction
1827 < support is rudimentary in the current version of {\sc OpenMD}.  As with
1828 < the other pair interactions, charges can be simulated with a pure
1829 < cutoff or a reaction field.  The various methods for performing the
1830 < Ewald summation have not yet been included.  The {\sc water} force
1831 < field can be easily expanded through modification of the {\sc water}
1832 < force field file ({\tt WATER.frc}). By adding atom types and inserting
1833 < the appropriate parameters, it is possible to extend the force field
1578 < to handle rigid molecules other than water.
1825 > Here, $\hat{\mathbf{r}}_{\alpha\beta}$ are the set of unit bond
1826 > vectors between atoms $i$, $j$, $k$, and $l$.  Note that some force
1827 > fields define the zero of the $\phi_{ijkl}$ angle when atoms $i$ and
1828 > $l$ are in the {\em trans} configuration, while most define the zero
1829 > angle for when $i$ and $l$ are in the fully eclipsed orientation.  The
1830 > behavior of the torsion parser can be altered with the {\tt
1831 >  TorsionAngleConvention} keyword in the Options block.  The default
1832 > behavior is {\tt "180\_is\_trans"} while the opposite behavior can be
1833 > invoked by setting this keyword to {\tt "0\_is\_trans"}.
1834  
1835 + \begin{figure}[h]
1836 + \centering
1837 + \includegraphics[width=4.5in]{torsion.pdf}
1838 + \caption[Torsion or dihedral angle coordinates]{The coordinate
1839 +  describing a torsion between atoms $i$, $j$, $k$, and $l$ is the
1840 +  dihedral angle $\phi_{ijkl}$ which measures the relative rotation of
1841 +  the two terminal atoms around the axis defined by the middle bond. }
1842 + \label{fig:torsion}
1843 + \end{figure}
1844  
1845 < \section{\label{section:sc}The Sutton-Chen Force Field}
1845 > For computational efficiency, OpenMD recasts torsion potential in the
1846 > method of {\sc charmm},\cite{Brooks83} in which the angle series is
1847 > converted to a power series of the form:
1848 > \begin{equation}
1849 >  V_{\text{torsion}}(\phi_{ijkl}) =  
1850 >  k_3 \cos^3 \phi_{ijkl} + k_2 \cos^2 \phi_{ijkl} + k_1 \cos \phi_{ijkl} + k_0,
1851 > \label{eq:torsionPot}
1852 > \end{equation}
1853 > where:
1854 > \begin{align*}
1855 > k_0 &= c_1 + 2 c_2 + c_3, \\
1856 > k_1 &= c_1 - 3c_3, \\
1857 > k_2 &= - 2 c_2, \\
1858 > k_3 &= 4 c_3.
1859 > \end{align*}
1860 > By recasting the potential as a power series, repeated trigonometric
1861 > evaluations are avoided during the calculation of the potential
1862 > energy.
1863  
1864 + Using this framework, OpenMD implements a variety of different
1865 + potential energy functions for torsions:
1866 + \begin{itemize}
1867 + \item {\tt Cubic}:
1868 + \begin{equation*}
1869 +  V_{\text{torsion}}(\phi) =  
1870 +  k_3 \cos^3 \phi + k_2 \cos^2 \phi + k_1 \cos \phi + k_0,
1871 + \end{equation*}
1872 + \item {\tt Quartic}:
1873 + \begin{equation*}
1874 +  V_{\text{torsion}}(\phi) =  k_4 \cos^4 \phi +
1875 +  k_3 \cos^3 \phi + k_2 \cos^2 \phi + k_1 \cos \phi + k_0,
1876 + \end{equation*}
1877 + \item {\tt Polynomial}:
1878 + \begin{equation*}
1879 + V_{\text{torsion}}(\phi) =  \sum_n k_n \cos^n \phi ,
1880 + \end{equation*}
1881 + \item {\tt Charmm}:
1882 + \begin{equation*}
1883 + V_{\text{torsion}}(\phi) = \sum_n K_n \left( 1 + cos(n
1884 +  \phi - \delta_n) \right),
1885 + \end{equation*}
1886 + \item {\tt Opls}:
1887 + \begin{equation*}
1888 +  V_{\text{torsion}}(\phi) =  \frac{1}{2} \left(v_1 (1 + \cos \phi) \right)
1889 +    + v_2 (1 - \cos 2 \phi) +  v_3 (1 + \cos 3 \phi),
1890 + \end{equation*}
1891 + \item {\tt Trappe}:\cite{Siepmann1998}
1892 + \begin{equation*}
1893 +  V_{\text{torsion}}(\phi) =  c_0 + c_1 (1 + \cos \phi) + c_2 (1 - \cos 2 \phi)  +
1894 +  c_3 (1 + \cos 3 \phi),
1895 + \end{equation*}
1896 + \item {\tt Harmonic}:
1897 + \begin{equation*}
1898 + V_{\text{torsion}}(\phi) =  \frac{d_0}{2} \left(\phi - \phi^0\right).
1899 + \end{equation*}
1900 + \end{itemize}
1901  
1902 < \section{\label{section:clay}The CLAY force field}
1902 > Most torsion types don't require specific angle information in the
1903 > parameters since they are typically expressed in cosine polynomials.
1904 > {\tt Charmm} and {\tt Harmonic} torsions are a bit different.  {\tt
1905 >  Charmm} torsion types require a set of phase angles, $\delta_n$ that
1906 > are expressed in degrees, and associated periodicity numbers, $n$.
1907 > {\tt Harmonic} torsions have an equilibrium torsion angle, $\phi_0$
1908 > that is measured in degrees, while $d_0$ has units of
1909 > kcal/mol/degrees$^2$.  All other torsion parameters are measured in
1910 > units of kcal/mol.
1911  
1912 < The {\sc clay} force field is based on an ionic (nonbonded)
1913 < description of the metal-oxygen interactions associated with hydrated
1914 < phases. All atoms are represented as point charges and are allowed
1915 < complete translational freedom. Metal-oxygen interactions are based on
1916 < a simple Lennard-Jones potential combined with electrostatics. The
1917 < empirical parameters were optimized by Cygan {\it et
1918 < al.}\cite{Cygan04} on the basis of known mineral structures, and
1919 < partial atomic charges were derived from periodic DFT quantum chemical
1920 < calculations of simple oxide, hydroxide, and oxyhydroxide model
1921 < compounds with well-defined structures.
1912 > \begin{lstlisting}[caption={[An example of a TorsionTypes block.] A
1913 > simple example of a TorsionTypes block.  Energy constants are given in
1914 > kcal / mol, and when required by the form, $\delta$ angles are given
1915 > in degrees.},
1916 > label={sch:TorsionTypes}]
1917 > begin TorsionTypes
1918 > //Cubic
1919 > //Atom1 Atom2   Atom3   Atom4   Cubic   k3       k2        k1      k0  
1920 > CH2     CH2     CH2     CH2     Cubic   5.9602   -0.2568   -3.802  2.1586
1921 > CH2     CH      CH      CH2     Cubic   3.3254   -0.4215   -1.686  1.1661
1922 > //Trappe
1923 > //Atom1 Atom2   Atom3   Atom4   Trappe  c0       c1        c2      c3
1924 > CH3     CH2     CH2     SH      Trappe  0.10507  -0.10342  0.03668 0.60874    
1925 > //Charmm
1926 > //Atom1 Atom2   Atom3   Atom4   Charmm  Kchi     n    delta  [Kchi n delta]
1927 > CT      CT      CT      C       Charmm  0.156    3    0.00
1928 > OH      CT      CT      OH      Charmm  0.144    3    0.00    1.175 2  0
1929 > HC      CT      CM      CM      Charmm  1.150    1    0.00    0.38  3 180
1930 > //Quartic
1931 > //Atom1 Atom2   Atom3   Atom4   Quartic          k4    k3    k2    k1    k0
1932 > //Polynomial
1933 > //Atom1 Atom2   Atom3   Atom4   Polynomial  n Kn     [m  Km]
1934 > S       CH2     CH2     C       Polynomial  0 2.218   1  2.905  2 -3.136  3 -0.7313  4 6.272  5 -7.528
1935 > end TorsionTypes
1936 > \end{lstlisting}
1937 >
1938 > Note that the parameters for a particular torsion type are the same
1939 > for any torsional quartet of the same atomic types (in the same or
1940 > reversed order).
1941 >
1942 > \subsection{\label{section:ffInversion}The InversionTypes block}
1943 >
1944 > Inversion potentials are often added to force fields to enforce
1945 > planarity around $sp^2$-hybridized carbons or to correct vibrational
1946 > frequencies for umbrella-like vibrational modes for central atoms
1947 > bonded to exactly three satellite groups.
1948 >
1949 > In OpenMD's version of an inversion, the central atom is entered {\it
1950 >  first} in each line in the {\tt InversionTypes} block. Note that
1951 > this is quite different than how other codes treat Improper torsional
1952 > potentials to mimic inversion behavior.  In some other widely-used
1953 > simulation packages, the central atom is treated as atom 3 in a
1954 > standard torsion form:
1955 > \begin{itemize}
1956 >  \item OpenMD:  I - (J - K - L)  (e.g. I is $sp^2$ hybridized carbon)
1957 >  \item AMBER:   I - J - K - L   (e.g. K is $sp^2$ hybridized carbon)
1958 > \end{itemize}
1959 >
1960 > The inversion angle itself is defined as:
1961 > \begin{equation}
1962 > \cos\omega_{i-jkl} = \left(\hat{\mathbf{r}}_{il} \times
1963 >  \hat{\mathbf{r}}_{ij}\right)\cdot\left( \hat{\mathbf{r}}_{il} \times
1964 >  \hat{\mathbf{r}}_{ik}\right)
1965 > \end{equation}
1966 > Here, $\hat{\mathbf{r}}_{\alpha\beta}$ are the set of unit bond
1967 > vectors between the central atoms $i$, and the satellite atoms $j$,
1968 > $k$, and $l$.  Note that other definitions of inversion angles are
1969 > possible, so users are encouraged to be particularly careful when
1970 > converting other force field files for use with OpenMD.
1971 >
1972 > There are many common ways to create planarity or umbrella behavior in
1973 > a potential energy function, and OpenMD implements a number of the
1974 > more common functions:
1975 > \begin{itemize}
1976 > \item {\tt ImproperCosine}:
1977 > \begin{equation*}
1978 > V_{\text{torsion}}(\omega) = \sum_n \frac{K_n}{2} \left( 1 + cos(n
1979 >  \omega - \delta_n) \right),
1980 > \end{equation*}
1981 > \item {\tt AmberImproper}:
1982 > \begin{equation*}
1983 >  V_{\text{torsion}}(\omega) =  \frac{v}{2} (1 - \cos\left(2 \left(\omega - \omega_0\right)\right),
1984 > \end{equation*}
1985 > \item {\tt Harmonic}:
1986 > \begin{equation*}
1987 > V_{\text{torsion}}(\omega) =  \frac{d}{2} \left(\omega - \omega_0\right).
1988 > \end{equation*}
1989 > \end{itemize}
1990 > \begin{lstlisting}[caption={[An example of an InversionTypes block.] A
1991 > simple example of a InversionTypes block.  Angles ($\delta_n$ and
1992 > $\omega_0$) angles are given in degrees, while energy parameters ($v,
1993 > K_n$) are given in kcal / mol.   The Harmonic Inversion type has a
1994 > force constant that must be given in kcal/mol/degrees$^2$.},
1995 > label={sch:InversionTypes}]
1996 > begin InversionTypes
1997 > //Harmonic
1998 > //Atom1 Atom2   Atom3   Atom4   Harmonic  d(kcal/mol/deg^2)  omega0
1999 > RCHar3  X       X       X       Harmonic  1.21876e-2         180.0
2000 > //AmberImproper
2001 > //Atom1 Atom2   Atom3   Atom4   AmberImproper   v(kcal/mol)
2002 > C       CT      N       O       AmberImproper   10.500000
2003 > CA      CA      CA      CT      AmberImproper   1.100000
2004 > //ImproperCosine
2005 > //Atom1 Atom2   Atom3   Atom4   ImproperCosine  Kn  n  delta_n  [Kn n delta_n]
2006 > end InversionTypes
2007 > \end{lstlisting}
2008 >
2009 > \section{\label{section::ffLongRange}Long Range Interactions}
2010 >
2011 > Calculating the long-range (non-bonded) potential involves a sum over
2012 > all pairs of atoms (except for those atoms which are involved in a
2013 > bond, bend, or torsion with each other).  Many of these interactions
2014 > can be inferred from the AtomTypes,
2015  
2016 + \subsection{\label{section:ffNBinteraction}The NonBondedInteractions
2017 +  block}
2018  
2019 + The user might want like to specify explicit or special interactions
2020 + that override the default non-bodned interactions that are inferred
2021 + from the AtomTypes.  To do this, OpenMD implements a
2022 + NonBondedInteractions block to allow the user to specify the following
2023 + (pair-wise) non-bonded interactions:
2024 +
2025 + \begin{itemize}
2026 + \item {\tt LennardJones}:
2027 + \begin{equation*}
2028 + V_{\text{NB}}(r) = 4 \epsilon_{ij} \left(
2029 +  \left(\frac{\sigma_{ij}}{r} \right)^{12} -
2030 +  \left(\frac{\sigma_{ij}}{r} \right)^{6} \right),
2031 + \end{equation*}
2032 + \item {\tt ShiftedMorse}:
2033 + \begin{equation*}
2034 + V_{\text{NB}}(r) = D_{ij} \left( e^{-2 \beta_{ij} (r -
2035 +     r^0)} - 2 e^{- \beta_{ij} (r -
2036 +     r^0)} \right),
2037 + \end{equation*}
2038 + \item {\tt RepulsiveMorse}:
2039 + \begin{equation*}
2040 + V_{\text{NB}}(r) = D_{ij} \left( e^{-2 \beta_{ij} (r -
2041 +     r^0)} \right),
2042 + \end{equation*}
2043 + \item {\tt RepulsivePower}:
2044 + \begin{equation*}
2045 +  V_{\text{NB}}(r) = \epsilon_{ij}
2046 +  \left(\frac{\sigma_{ij}}{r} \right)^{n_{ij}}.
2047 + \end{equation*}
2048 + \end{itemize}
2049 +
2050 + \begin{lstlisting}[caption={[An example of a NonBondedInteractions block.] A
2051 + simple example of a NonBondedInteractions block. Distances ($\sigma,
2052 + r_0$) are given in \AA, while energies ($\epsilon, D0$) are in
2053 + kcal/mol.  The Morse potentials have an additional parameter $\beta_0$
2054 + which is in units of \AA$^{-1}$.},
2055 + label={sch:InversionTypes}]
2056 + begin NonBondedInteractions
2057 +
2058 + //Lennard-Jones
2059 + //Atom1 Atom2   LennardJones    sigma  epsilon
2060 + Au      CH3     LennardJones    3.54   0.2146
2061 + Au      CH2     LennardJones    3.54   0.1749
2062 + Au      CH      LennardJones    3.54   0.1749
2063 + Au      S       LennardJones    2.40   8.465
2064 +
2065 + //Shifted Morse
2066 + //Atom1 Atom2   ShiftedMorse    r0     D0       beta0
2067 + Au      O_SPCE  ShiftedMorse    3.70   0.0424   0.769
2068 +
2069 + //Repulsive Morse
2070 + //Atom1 Atom2   RepulsiveMorse  r0     D0       beta0
2071 + Au      H_SPCE  RepulsiveMorse  -1.00  0.00850  0.769
2072 +
2073 + //Repulsive Power
2074 + //Atom1 Atom2   RepulsivePower   sigma    epsilon    n
2075 + Au      ON      RepulsivePower   3.47005  0.186208   11
2076 + Au      NO      RepulsivePower   3.53955  0.168629   11
2077 + end NonBondedInteractions
2078 + \end{lstlisting}
2079 +
2080   \section{\label{section:electrostatics}Electrostatics}
2081  
2082 < To aid in performing simulations in more traditional force fields, we
2083 < have added routines to carry out electrostatic interactions using a
2084 < number of different electrostatic summation methods.  These methods
2085 < are extended from the damped and cutoff-neutralized Coulombic sum
2086 < originally proposed by Wolf, {\it et al.}\cite{Wolf99} One of these,
2087 < the damped shifted force method, shows a remarkable ability to
2088 < reproduce the energetic and dynamic characteristics exhibited by
2089 < simulations employing lattice summation techniques.  The basic idea is
2090 < to construct well-behaved real-space summation methods using two tricks:
2082 > Because nearly all force fields involve electrostatic interactions in
2083 > one form or another, OpenMD implements a number of different
2084 > electrostatic summation methods.  These methods are extended from the
2085 > damped and cutoff-neutralized Coulombic sum originally proposed by
2086 > Wolf, {\it et al.}\cite{Wolf99} One of these, the damped shifted force
2087 > method, shows a remarkable ability to reproduce the energetic and
2088 > dynamic characteristics exhibited by simulations employing lattice
2089 > summation techniques.  The basic idea is to construct well-behaved
2090 > real-space summation methods using two tricks:
2091   \begin{enumerate}
2092   \item shifting through the use of image charges, and
2093   \item damping the electrostatic interaction.
# Line 1724 | Line 2206 | the shifted potential (eq. (\ref{eq:SPPot})) becomes
2206   \end{equation}
2207   the shifted potential (eq. (\ref{eq:SPPot})) becomes
2208   \begin{equation}
2209 < V_{\textrm{DSP}}(r) = q_iq_j\left(\frac{\textrm{erfc}\left(\alpha r\right)}{r}-\
1728 < frac{\textrm{erfc}\left(\alpha R_\textrm{c}\right)}{R_\textrm{c}}\right) \quad r
2209 > V_{\textrm{DSP}}(r) = q_iq_j\left(\frac{\textrm{erfc}\left(\alpha r\right)}{r}-\frac{\textrm{erfc}\left(\alpha R_\textrm{c}\right)}{R_\textrm{c}}\right) \quad r
2210   \leqslant R_\textrm{c},
2211   \label{eq:DSPPot}
2212   \end{equation}
# Line 1769 | Line 2250 | this reason, the default electrostatic summation metho
2250   this reason, the default electrostatic summation method utilized by
2251   {\sc OpenMD} is the DSF (Eq. \ref{eq:DSFPot}) with a damping parameter
2252   ($\alpha$) that is set algorithmically from the cutoff radius.
2253 +
2254 +
2255 + \section{\label{section:cutoffGroups}Switching Functions}
2256 +
2257 + Calculating the the long-range interactions for $N$ atoms involves
2258 + $N(N-1)/2$ evaluations of atomic distances if it is done in a brute
2259 + force manner.  To reduce the number of distance evaluations between
2260 + pairs of atoms, {\sc OpenMD} allows the use of hard or switched
2261 + cutoffs with Verlet neighbor lists.\cite{Allen87} Neutral groups which
2262 + contain charges can exhibit pathological forces unless the cutoff is
2263 + applied to the neutral groups evenly instead of to the individual
2264 + atoms.\cite{leach01:mm} {\sc OpenMD} allows users to specify cutoff
2265 + groups which may contain an arbitrary number of atoms in the molecule.
2266 + Atoms in a cutoff group are treated as a single unit for the
2267 + evaluation of the switching function:
2268 + \begin{equation}
2269 + V_{\mathrm{long-range}} = \sum_{a} \sum_{b>a} s(r_{ab}) \sum_{i \in a} \sum_{j \in b} V_{ij}(r_{ij}),
2270 + \end{equation}
2271 + where $r_{ab}$ is the distance between the centers of mass of the two
2272 + cutoff groups ($a$ and $b$).
2273 +
2274 + The sums over $a$ and $b$ are over the cutoff groups that are present
2275 + in the simulation.  Atoms which are not explicitly defined as members
2276 + of a {\tt cutoffGroup} are treated as a group consisting of only one
2277 + atom.  The switching function, $s(r)$ is the standard cubic switching
2278 + function,
2279 + \begin{equation}
2280 + S(r) =
2281 +        \begin{cases}
2282 +        1 & \text{if $r \le r_{\text{sw}}$},\\
2283 +        \frac{(r_{\text{cut}} + 2r - 3r_{\text{sw}})(r_{\text{cut}} - r)^2}
2284 +        {(r_{\text{cut}} - r_{\text{sw}})^3}
2285 +        & \text{if $r_{\text{sw}} < r \le r_{\text{cut}}$}, \\
2286 +        0 & \text{if $r > r_{\text{cut}}$.}
2287 +        \end{cases}
2288 + \label{eq:dipoleSwitching}
2289 + \end{equation}
2290 + Here, $r_{\text{sw}}$ is the {\tt switchingRadius}, or the distance
2291 + beyond which interactions are reduced, and $r_{\text{cut}}$ is the
2292 + {\tt cutoffRadius}, or the distance at which interactions are
2293 + truncated.  
2294 +
2295 + Users of {\sc OpenMD} do not need to specify the {\tt cutoffRadius} or
2296 + {\tt switchingRadius}.  
2297 + If the {\tt cutoffRadius} was not explicitly set, OpenMD will attempt
2298 + to guess an appropriate choice.  If the system contains electrostatic
2299 + atoms, the default cutoff radius is 12 \AA.  In systems without
2300 + electrostatic (charge or multipolar) atoms, the atom types present in the simulation will be
2301 + polled for suggested cutoff values (e.g. $2.5 max(\left\{ \sigma
2302 +  \right\})$ for Lennard-Jones atoms.   The largest suggested value
2303 + that was found will be used.
2304 +
2305 + By default, OpenMD uses shifted force potentials to force the
2306 + potential energy and forces to smoothly approach zero at the cutoff
2307 + radius.  If the user would like to use another cutoff method
2308 + they may do so by setting the {\tt cutoffMethod} parameter to:
2309 + \begin{itemize}
2310 + \item {\tt HARD}
2311 + \item {\tt SWITCHED}
2312 + \item {\tt SHIFTED\_FORCE} (default):
2313 + \item {\tt TAYLOR\_SHIFTED}
2314 + \item {\tt SHIFTED\_POTENTIAL}
2315 + \end{itemize}
2316 +
2317 + The {\tt switchingRadius} is set to a default value of 95\% of the
2318 + {\tt cutoffRadius}.  In the special case of a simulation containing
2319 + {\it only} Lennard-Jones atoms, the default switching radius takes the
2320 + same value as the cutoff radius, and {\sc OpenMD} will use a shifted
2321 + potential to remove discontinuities in the potential at the cutoff.
2322 + Both radii may be specified in the meta-data file.
2323  
2324 +
2325   \section{\label{section:pbc}Periodic Boundary Conditions}
2326  
2327   \newcommand{\roundme}{\operatorname{round}}

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines