ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/openmdDocs/openmdDoc.tex
(Generate patch)

Comparing trunk/openmdDocs/openmdDoc.tex (file contents):
Revision 4101 by gezelter, Wed Apr 16 12:53:07 2014 UTC vs.
Revision 4102 by gezelter, Fri Apr 18 18:39:38 2014 UTC

# Line 9 | Line 9
9   \usepackage{longtable}
10   \pagestyle{plain}
11   \pagenumbering{arabic}
12 + \usepackage{floatrow}
13   \oddsidemargin 0.0cm
14   \evensidemargin 0.0cm
15   \topmargin -21pt
# Line 20 | Line 21
21   \usepackage[square, comma, sort&compress]{natbib}
22   \bibpunct{[}{]}{,}{n}{}{;}
23  
24 + \DeclareFloatFont{tiny}{\scriptsize}% "scriptsize" is defined by floatrow, "tiny" not
25 + \floatsetup[table]{font=tiny}
26  
27 +
28   %\renewcommand\citemid{\ } % no comma in optional reference note
29 < \lstset{language=C,frame=TB,basicstyle=\footnotesize,basicstyle=\ttfamily, %
29 > \lstset{language=C,frame=TB,basicstyle=\footnotesize\ttfamily, %
30          xleftmargin=0.25in, xrightmargin=0.25in,captionpos=b, %
31          abovecaptionskip=0.5cm, belowcaptionskip=0.5cm, escapeinside={~}{~}}
32   \renewcommand{\lstlistingname}{Scheme}
# Line 47 | Line 51
51   \newcolumntype{M}{p{1.55in}}
52  
53  
54 < \title{{\sc OpenMD-2.1}: Molecular Dynamics in the Open}
54 > \title{{\sc OpenMD-2.2}: Molecular Dynamics in the Open}
55  
56   \author{Joseph Michalka, James Marr, Kelsey Stocker, Madan Lamichhane,
57    Patrick Louden, \\
# Line 839 | Line 843 | specification of blocks that may be present within the
843  
844   \section{\label{section:frcFile}Force Field Files}
845  
846 < Force field files have a number of ``Blocks'' to demarkate different
846 > Force field files have a number of ``Blocks'' to delineate different
847   types of information.  The blocks contain AtomType data, which provide
848   properties belonging to a single AtomType, as well as interaction
849   information which provides information about bonded or non-bonded
850   interactions that cannot be deduced from AtomType information alone.
851   A simple example of a forceField file is shown in scheme
852 < \ref{sch:frcExample}.
852 > \ref{sch:frcExample}.
853  
854   \begin{lstlisting}[float,caption={[An example of a complete OpenMD
855   force field file for straight-chain united-atom alkanes.] An example
856   showing a complete OpenMD force field for straight-chain united-atom
857   alkanes.}, label={sch:frcExample}]
858   begin Options
859 <  Name = "alkane" end
860 < Options
859 >  Name = "alkane"
860 > end Options
861  
862   begin BaseAtomTypes  
863   //name          mass  
# Line 959 | Line 963 | simulations in Jmol or VMD.
963   ability to print out the names of the base atom types for displaying
964   simulations in Jmol or VMD.
965  
966 < \begin{lstlisting}[caption={[A simple example of a BaseAtomType
967 < block.] A simple example of a BaseAtomType block.},
966 > \begin{lstlisting}[caption={[A simple example of a BaseAtomTypes
967 > block.] A simple example of a BaseAtomTypes block.},
968   label={sch:baseAtomTypesBlock}]
969   begin BaseAtomTypes
970   //Name  mass (amu)
# Line 989 | Line 993 | from the oxygen base type.
993   from the oxygen base type.
994  
995   \begin{lstlisting}[caption={[An example of a AtomTypes block.] A
996 < simple example of an AtomType block which
996 > simple example of an AtomTypes block which
997   shows how multiple types can inherit from the same base type.},
998   label={sch:atomTypesBlock}]
999   begin AtomTypes    
# Line 1018 | Line 1022 | DirectionalAtoms have orientational degrees of freedom
1022   \subsection{\label{section:ffDirectionalAtom}The DirectionalAtomTypes
1023    block}
1024   DirectionalAtoms have orientational degrees of freedom as well as
1025 < translation, so they have moment of inertia tensors.  
1025 > translation, so moving these atoms requires information about the
1026 > moments of inertias in the same way that translational motion requires
1027 > mass.  For DirectionalAtoms, OpenMD treats the mass distribution with
1028 > higher priority than electrostatic distributions; the moment of
1029 > inertia tensor, $\overleftrightarrow{\mathsf I}$, should be
1030 > diagonalized to obtain body-fixed axes, and the three diagonal moments
1031 > should correspond to rotational motion \textit{around} each of these
1032 > body-fixed axes.  Charge distributions may then result in dipole
1033 > vectors that are oriented along a linear combination of the body-axes,
1034 > and in quadrupole tensors that are not necessarily diagonal in the
1035 > body frame.
1036  
1037   \begin{lstlisting}[caption={[An example of a DirectionalAtomTypes block.] A
1038   simple example of a DirectionalAtomTypes block.},
# Line 1026 | Line 1040 | SSD             1.7696  0.6145  1.1550  
1040   begin DirectionalAtomTypes
1041   //Name          I_xx    I_yy    I_zz    (All moments in (amu*Ang^2)
1042   SSD             1.7696  0.6145  1.1550  
1029 SSD_E           1.7696  0.6145  1.1550  
1043   GBC6H6          88.781  88.781  177.561
1044   GBCH3OH         4.056   20.258  20.999
1045   GBH2O           1.777   0.581   1.196
1046 + CO2             43.06   43.06   0.0    // single-site model for CO2
1047   end DirectionalAtomTypes                    
1048  
1049   \end{lstlisting}
1050  
1051 + For a DirectionalAtom that represents a linear object, it is
1052 + appropriate for one of the moments of inertia to be zero.  In this
1053 + case, OpenMD identifies that DirectionalAtom as having only 5 degrees
1054 + of freedom (three translations and two rotations), and will alter
1055 + calculation of temperatures to reflect this.
1056  
1057   \subsection{\label{section::ffAtomProperties}AtomType properties}
1058   \subsubsection{\label{section:ffLJ}The LennardJonesAtomTypes block}
1059 < The most basic interatomic interaction implemented in {\sc OpenMD} is
1060 < the Lennard-Jones potential, which mimics the van der Waals
1061 < interaction at long distances and uses an empirical repulsion at short
1062 < distances. The Lennard-Jones potential is given by:
1059 > One of the most basic interatomic interactions implemented in {\sc
1060 >  OpenMD} is the Lennard-Jones potential, which mimics the van der
1061 > Waals interaction at long distances and uses an empirical repulsion at
1062 > short distances. The Lennard-Jones potential is given by:
1063   \begin{equation}
1064   V_{\text{LJ}}(r_{ij}) =
1065          4\epsilon_{ij} \biggl[
# Line 1055 | Line 1074 | cross term parameters for $\sigma$ and $\epsilon$. The
1074  
1075   Interactions between dissimilar particles requires the generation of
1076   cross term parameters for $\sigma$ and $\epsilon$. These parameters
1077 < are determined using the Lorentz-Berthelot mixing
1077 > are usually determined using the Lorentz-Berthelot mixing
1078   rules:\cite{Allen87}
1079   \begin{equation}
1080   \sigma_{ij} = \frac{1}{2}[\sigma_{ii} + \sigma_{jj}],
# Line 1067 | Line 1086 | and
1086   \label{eq:epsilonMix}
1087   \end{equation}
1088  
1089 < \subsubsection{\label{section:ffCharge}The ChargeAtomTypes block}
1090 < \subsubsection{\label{section:ffMultipole}The MultipoleAtomTypes  block}
1091 < The dipole-dipole potential has the following form:
1089 > The values of $\sigma_{ii}$ and $\epsilon_{ii}$ are properties of atom
1090 > type $i$, and must be specified in a section of the force field file
1091 > called the {\tt LennardJonesAtomTypes} block (see listing
1092 > \ref{sch:LJatomTypesBlock}).  Separate Lennard-Jones interactions
1093 > which are not determined by the mixing rules can also be specified in
1094 > the {\tt NonbondedInteractionTypes} block (see section
1095 > \ref{section:ffNBinteraction}).
1096 >
1097 > \begin{lstlisting}[caption={[An example of a LennardJonesAtomTypes block.] A
1098 > simple example of a LennardJonesAtomTypee block.   Units for
1099 > $\epsilon$ are kcal / mol and for $\sigma$ are \AA\ .},
1100 > label={sch:LJatomTypesBlock}]
1101 > begin LennardJonesAtomTypes
1102 > //Name          epsilon             sigma      
1103 > O_TIP4P         0.1550          3.15365
1104 > O_TIP4P-Ew      0.16275         3.16435
1105 > O_TIP5P         0.16            3.12  
1106 > O_TIP5P-E       0.178           3.097  
1107 > O_SPCE          0.15532         3.16549
1108 > O_SPC           0.15532         3.16549
1109 > CH4             0.279           3.73
1110 > CH3             0.185           3.75
1111 > CH2             0.0866          3.95
1112 > CH              0.0189          4.68
1113 > end LennardJonesAtomTypes
1114 > \end{lstlisting}
1115 >
1116 > \subsubsection{\label{section:ffCharge}The ChargeAtomTypes block}
1117 >
1118 > In molecular simulations, proper accumulation of the electrostatic
1119 > interactions is essential and is one of the most
1120 > computationally-demanding tasks.  Most common molecular mechanics
1121 > force fields represent atomic sites with full or partial charges
1122 > protected by Lennard-Jones (short range) interactions.  Partial charge
1123 > values, $q_i$ are empirical representations of the distribution of
1124 > electronic charge in a molecule.  This means that nearly every pair
1125 > interaction involves a calculation of charge-charge forces.  Coupled
1126 > with relatively long-ranged $r^{-1}$ decay, the monopole interactions
1127 > quickly become the most expensive part of molecular simulations.  The
1128 > interactions between point charges can be handled via a number of
1129 > different algorithms, but Coulomb's law is the fundamental physical
1130 > principle governing these interactions,
1131   \begin{equation}
1132 +  V_{\text{charge}}(r_{ij}) = \sum_{ij}\frac{q_iq_je^2}{4 \pi \epsilon_0
1133 +    r_{ij}},
1134 + \end{equation}
1135 + where $q$ represents the charge on particle $i$ or $j$, and $e$ is the
1136 + charge of an electron in Coulombs.  $\epsilon_0$ is the permittivity
1137 + of free space.
1138 +
1139 + \begin{lstlisting}[caption={[An example of a ChargeAtomTypes block.] A
1140 + simple example of a ChargeAtomTypes block.   Units for
1141 + charge are in multiples of electron charge.},
1142 + label={sch:ChargeAtomTypesBlock}]
1143 + begin ChargeAtomTypes
1144 + // Name         charge
1145 + O_TIP3P        -0.834
1146 + O_SPCE         -0.8476
1147 + H_TIP3P         0.417
1148 + H_TIP4P         0.520
1149 + H_SPCE          0.4238
1150 + EP_TIP4P       -1.040
1151 + Na+             1.0
1152 + Cl-            -1.0
1153 + end ChargeAtomTypes
1154 + \end{lstlisting}
1155 +
1156 + \subsubsection{\label{section:ffMultipole}The MultipoleAtomTypes
1157 +  block}
1158 + For complex charge distributions that are centered on single sites, it
1159 + is convenient to write the total electrostatic potential in terms of
1160 + multipole moments,
1161 + \begin{equation}
1162 + U_{\bf{ab}}(r)=\hat{M}_{\bf a} \hat{M}_{\bf b} \frac{1}{r}  \label{kernel}.
1163 + \end{equation}
1164 + where the multipole operator on site $\bf a$,
1165 + \begin{equation}
1166 + \hat{M}_{\bf a} = C_{\bf a} - D_{{\bf a}\alpha} \frac{\partial}{\partial r_{\alpha}}
1167 + +  Q_{{\bf a}\alpha\beta}
1168 + \frac{\partial^2}{\partial r_{\alpha} \partial r_{\beta}} + \dots
1169 + \end{equation}
1170 + Here, the point charge, dipole, and quadrupole for site $\bf a$ are
1171 + given by $C_{\bf a}$, $D_{{\bf a}\alpha}$, and $Q_{{\bf
1172 +    a}\alpha\beta}$, respectively.  These are the primitive
1173 + multipoles.  If the site is representing a distribution of charges,
1174 + these can be expressed as,
1175 + \begin{align}
1176 + C_{\bf a} =&\sum_{k \, \text{in \bf a}} q_k , \label{eq:charge} \\
1177 + D_{{\bf a}\alpha} =&\sum_{k \, \text{in \bf a}} q_k r_{k\alpha}, \label{eq:dipole}\\
1178 + Q_{{\bf a}\alpha\beta} =& \frac{1}{2} \sum_{k \, \text{in \bf a}} q_k
1179 + r_{k\alpha}  r_{k\beta} . \label{eq:quadrupole}
1180 + \end{align}
1181 + Note that the definition of the primitive quadrupole here differs from
1182 + the standard traceless form, and contains an additional Taylor-series
1183 + based factor of $1/2$.  
1184 +
1185 + The details of the multipolar interactions will be given later, but
1186 + many readers are familiar with the dipole-dipole potential:
1187 + \begin{equation}
1188   V_{\text{dipole}}(\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},
1189 <        \boldsymbol{\Omega}_{j}) = \frac{|\mu_i||\mu_j|}{4\pi\epsilon_{0}r_{ij}^{3}} \biggl[
1189 >        \boldsymbol{\Omega}_{j}) = \frac{|{\bf D}_i||{\bf D}_j|}{4\pi\epsilon_{0}r_{ij}^{3}} \biggl[
1190          \boldsymbol{\hat{u}}_{i} \cdot \boldsymbol{\hat{u}}_{j}
1191          -
1192          3(\boldsymbol{\hat{u}}_i \cdot \hat{\mathbf{r}}_{ij}) %
# Line 1082 | Line 1196 | are the orientational degrees of freedom for atoms $i$
1196   Here $\mathbf{r}_{ij}$ is the vector starting at atom $i$ pointing
1197   towards $j$, and $\boldsymbol{\Omega}_i$ and $\boldsymbol{\Omega}_j$
1198   are the orientational degrees of freedom for atoms $i$ and $j$
1199 < respectively. The magnitude of the dipole moment of atom $i$ is
1200 < $|\mu_i|$, $\boldsymbol{\hat{u}}_i$ is the standard unit orientation
1199 > respectively. The magnitude of the dipole moment of atom $i$ is $|{\bf
1200 >  D}_i|$, $\boldsymbol{\hat{u}}_i$ is the standard unit orientation
1201   vector of $\boldsymbol{\Omega}_i$, and $\boldsymbol{\hat{r}}_{ij}$ is
1202   the unit vector pointing along $\mathbf{r}_{ij}$
1203   ($\boldsymbol{\hat{r}}_{ij}=\mathbf{r}_{ij}/|\mathbf{r}_{ij}|$).
1204  
1205 +
1206 + \begin{lstlisting}[caption={[An example of a MultipoleAtomTypes block.] A
1207 + simple example of a MultipoleAtomTypes block.   Dipoles are given in
1208 + units of Debyes, and Quadrupole moments are given in units of Debye
1209 + \AA~(or $10^{-26} \mathrm{~esu~cm}^2$)},
1210 + label={sch:MultipoleAtomTypesBlock}]
1211 + begin MultipoleAtomTypes
1212 + // Euler angles are given in zxz convention in units of degrees.
1213 + //
1214 + // point dipoles:
1215 + // name d phi theta psi dipole_moment
1216 + DIP     d 0.0 0.0   0.0     1.91   // dipole points along z-body axis
1217 + //
1218 + // point quadrupoles:
1219 + // name q phi theta psi Qxx Qyy Qzz
1220 + CO2     q 0.0 0.0   0.0 0.0 0.0 -0.430592  //quadrupole tensor has zz element
1221 + //
1222 + // Atoms with both dipole and quadrupole moments:
1223 + // name dq phi theta psi dipole_moment  Qxx    Qyy     Qzz
1224 + SSD     dq 0.0 0.0   0.0     2.35      -1.682  1.762   -0.08
1225 + end MultipoleAtomTypes
1226 + \end{lstlisting}
1227 +
1228 + Specifying a MultipoleAtomType requires declaring how the
1229 + electrostatic frame for the site is rotated relative to the body-fixed
1230 + axes for that atom. The Euler angles $(\phi, \theta, \psi)$ for this
1231 + rotation must be given, and then the dipole, quadrupole, or all of
1232 + these moments are specified in the electrostatic frame.  In OpenMD,
1233 + the Euler angles are specified in the $zxz$ convention and are entered
1234 + in units of degrees.  Dipole moments are entered in units of Debye,
1235 + and Quadrupole moments in units of Debye \AA.
1236 +
1237   \subsubsection{\label{section:ffGB}The FluctuatingChargeAtomTypes  block}
1238   \subsubsection{\label{section:ffPol}The PolarizableAtomTypes block}
1239   \subsubsection{\label{section:ffGB}The GayBerneAtomTypes block}
1240 +
1241 + The Gay-Berne potential has been widely used in the liquid crystal
1242 + community to describe this anisotropic phase
1243 + behavior.~\cite{Gay:1981yu,Berne:1972pb,Kushick:1976xy,Luckhurst:1990fy,Cleaver:1996rt}
1244 + The form of the Gay-Berne potential implemented in OpenMD was
1245 + generalized by Cleaver {\it et al.} and is appropriate for dissimilar
1246 + uniaxial ellipsoids.\cite{Cleaver:1996rt}  The potential is constructed in the
1247 + familiar form of the Lennard-Jones function using
1248 + orientation-dependent $\sigma$ and $\epsilon$ parameters,
1249 + \begin{equation*}
1250 + V_{ij}({{\bf \hat u}_i}, {{\bf \hat u}_j}, {{\bf \hat
1251 + r}_{ij}}) = 4\epsilon ({{\bf \hat u}_i}, {{\bf \hat u}_j},
1252 + {{\bf \hat r}_{ij}})\left[\left(\frac{\sigma_0}{r_{ij}-\sigma({{\bf \hat u
1253 + }_i},
1254 + {{\bf \hat u}_j}, {{\bf \hat r}_{ij}})+\sigma_0}\right)^{12}
1255 + -\left(\frac{\sigma_0}{r_{ij}-\sigma({{\bf \hat u}_i}, {{\bf \hat u}_j},
1256 + {{\bf \hat r}_{ij}})+\sigma_0}\right)^6\right]
1257 + \label{eq:gb}
1258 + \end{equation*}
1259 +
1260 + The range $(\sigma({\bf \hat{u}}_{i},{\bf \hat{u}}_{j},{\bf
1261 + \hat{r}}_{ij}))$, and strength $(\epsilon({\bf \hat{u}}_{i},{\bf
1262 + \hat{u}}_{j},{\bf \hat{r}}_{ij}))$ parameters
1263 + are dependent on the relative orientations of the two ellipsoids (${\bf
1264 + \hat{u}}_{i},{\bf \hat{u}}_{j}$) as well as the direction of the
1265 + inter-ellipsoid separation (${\bf \hat{r}}_{ij}$).  The shape and
1266 + attractiveness of each ellipsoid is governed by a relatively small set
1267 + of parameters:
1268 + \begin{itemize}
1269 + \item  $d$:  range parameter for the side-by-side (S) and cross (X) configurations
1270 + \item  $l$:  range parameter for the end-to-end (E) configuration
1271 + \item  $\epsilon_X$:  well-depth parameter for the cross (X) configuration
1272 + \item  $\epsilon_S$:  well-depth parameter for the side-by-side (S) configuration
1273 + \item  $\epsilon_E$:  well depth parameter for the end-to-end (E) configuration
1274 + \item  $dw$: The ``softness'' of the potential
1275 + \end{itemize}
1276 + Additionally, there are two universal paramters to govern the overall
1277 + importance of the purely orientational ($\nu$) and the mixed
1278 + orientational / translational ($\mu$) parts of strength of the
1279 + interactions.  These parameters have default or ``canonical'' values,
1280 + but may be changed as a force field option:
1281 + \begin{itemize}
1282 +  \item $\nu$: purely orientational part : defaults to 1
1283 +  \item $\mu$: mixed orientational / translational part : defaults to
1284 +    2
1285 + \end{itemize}
1286 + Further details of the potential are given
1287 + elsewhere,\cite{Luckhurst:1990fy,Golubkov06,SunX._jp0762020} and an
1288 + excellent overview of the computational methods that can be used to
1289 + efficiently compute forces and torques for this potential can be found
1290 + in Ref. \citealp{Golubkov06}
1291 +
1292 + \begin{lstlisting}[caption={[An example of a GayBerneAtomTypes block.] A
1293 + simple example of a GayBerneAtomTypes block.  Distances ($d$ and $l$)
1294 + are given in \AA\ and energies ($\epsilon_X, \epsilon_S, \epsilon_E$)
1295 + are in units of kcal/mol. $dw$ is unitless.},
1296 + label={sch:GayBerneAtomTypes}]
1297 + begin GayBerneAtomTypes
1298 + //Name          d       l       eps_X           eps_S           eps_E     dw
1299 + GBlinear        2.8104  9.993   0.774729        0.774729        0.116839  1.0
1300 + GBC6H6          4.65    2.03    0.540           0.540           1.9818    0.6
1301 + GBCH3OH         2.55    3.18    0.542           0.542           0.55826   1.0
1302 + end GayBerneAtomTypes                  
1303 + \end{lstlisting}
1304 +
1305   \subsubsection{\label{section:ffSticky}The StickyAtomTypes block}
1306  
1307 < One of the solvents used by {\sc OpenMD} is the extended Soft Sticky
1308 < Dipole (SSD/E) water model.\cite{fennell04} The original SSD was
1309 < developed by Ichiye \emph{et al.}\cite{liu96:new_model} as a modified
1310 < form of the hard-sphere water model proposed by Bratko, Blum, and
1307 > One of the solvents that can be simulated by {\sc OpenMD} is the
1308 > extended Soft Sticky Dipole (SSD/E) water model.\cite{fennell04} The
1309 > original SSD was developed by Ichiye \emph{et
1310 >  al.}\cite{liu96:new_model} as a modified form of the hard-sphere
1311 > water model proposed by Bratko, Blum, and
1312   Luzar.\cite{Bratko85,Bratko95} It consists of a single point dipole
1313   with a Lennard-Jones core and a sticky potential that directs the
1314   particles to assume the proper hydrogen bond orientation in the first
# Line 1179 | Line 1391 | SSD model that led to lower than expected densities at
1391  
1392   Recent constant pressure simulations revealed issues in the original
1393   SSD model that led to lower than expected densities at all target
1394 < pressures.\cite{Ichiye03,fennell04} The default model in {\sc OpenMD}
1395 < is therefore SSD/E, a density corrected derivative of SSD that
1396 < exhibits improved liquid structure and transport behavior. If the use
1397 < of a reaction field long-range interaction correction is desired, it
1398 < is recommended that the parameters be modified to those of the SSD/RF
1399 < model (an SSD variant parameterized for reaction field). These solvent
1188 < parameters are listed and can be easily modified in the {\sc duff}
1189 < force field file ({\tt DUFF.frc}).  A table of the parameter values
1190 < and the drawbacks and benefits of the different density corrected SSD
1191 < models can be found in reference~\cite{fennell04}.
1394 > pressures,\cite{Ichiye03,fennell04} so variants on the sticky
1395 > potential can be specified by using one of a number of substitute atom
1396 > types (see listing \ref{sch:StickyAtomTypes}).  A table of the
1397 > parameter values and the drawbacks and benefits of the different
1398 > density corrected SSD models can be found in
1399 > reference~\citealp{fennell04}.
1400  
1401 < \subsection{\label{section::ffMetals}Metallic Atom Types}
1402 < \subsubsection{\label{section:ffEAM}The EAMAtomTypes block}
1403 < {\sc OpenMD} implements a potential that describes bonding in
1404 < transition metal
1405 < systems.~\cite{Finnis84,Ercolessi88,Chen90,Qi99,Ercolessi02} This
1406 < potential has an attractive interaction which models ``Embedding'' a
1407 < positively charged pseudo-atom core in the electron density due to the
1408 < free valance ``sea'' of electrons created by the surrounding atoms in
1409 < the system.  A pairwise part of the potential (which is primarily
1410 < repulsive) describes the interaction of the positively charged metal
1411 < core ions with one another.  The Embedded Atom Method ({\sc
1412 < eam})~\cite{Daw84,FBD86,johnson89,Lu97} has been widely adopted in the
1413 < materials science community and has been included in {\sc OpenMD}. A
1206 < good review of {\sc eam} and other formulations of metallic potentials
1207 < was given by Voter.\cite{Voter:95}
1401 > \begin{lstlisting}[caption={[An example of a StickyAtomTypes block.] A
1402 > simple example of a StickyAtomTypes block.  Distances ($r_l$, $r_u$,
1403 > $r_{l}'$ and $r_{u}'$) are given in \AA\ and energies ($v_0, v_{0}'$)
1404 > are in units of kcal/mol. $w_0$ is unitless.},
1405 > label={sch:StickyAtomTypes}]
1406 > begin StickyAtomTypes
1407 > //name  w0      v0 (kcal/mol)   v0p     rl (Ang)  ru    rlp     rup
1408 > SSD_E   0.07715 3.90            3.90    2.40      3.80  2.75    3.35
1409 > SSD_RF  0.07715 3.90            3.90    2.40      3.80  2.75    3.35
1410 > SSD     0.07715 3.7284          3.7284  2.75      3.35  2.75    4.0
1411 > SSD1    0.07715 3.6613          3.6613  2.75      3.35  2.75    4.0
1412 > end StickyAtomTypes
1413 > \end{lstlisting}
1414  
1415 < The {\sc eam} potential has the form:
1415 > \subsection{\label{section::ffMetals}Metallic Atom Types}
1416 >
1417 > {\sc OpenMD} implements a number of related potentials that describe
1418 > bonding in transition metals. These potentials have an attractive
1419 > interaction which models ``Embedding'' a positively charged
1420 > pseudo-atom core in the electron density due to the free valance
1421 > ``sea'' of electrons created by the surrounding atoms in the system.
1422 > A pairwise part of the potential (which is primarily repulsive)
1423 > describes the interaction of the positively charged metal core ions
1424 > with one another.  These potentials have the form:
1425   \begin{equation}
1426   V  =  \sum_{i} F_{i}\left[\rho_{i}\right] + \sum_{i} \sum_{j \neq i}
1427   \phi_{ij}({\bf r}_{ij})
# Line 1223 | Line 1438 | to compute the inter-atomic forces.
1438   transition metal potentials require two loops through the atom pairs
1439   to compute the inter-atomic forces.
1440  
1441 < The pairwise portion of the potential, $\phi_{ij}$, is a primarily
1442 < repulsive interaction between atoms $i$ and $j$. In the original
1228 < formulation of {\sc eam}\cite{Daw84}, $\phi_{ij}$ was an entirely
1229 < repulsive term; however later refinements to {\sc eam} allowed for
1230 < more general forms for $\phi$.\cite{Daw89} The effective cutoff
1231 < distance, $r_{{\text cut}}$ is the distance at which the values of
1232 < $f(r)$ and $\phi(r)$ drop to zero for all atoms present in the
1233 < simulation.  In practice, this distance is fairly small, limiting the
1234 < summations in the {\sc eam} equation to the few dozen atoms
1235 < surrounding atom $i$ for both the density $\rho$ and pairwise $\phi$
1236 < interactions.
1441 > The pairwise portion of the potential, $\phi_{ij}$, is usually a
1442 > repulsive interaction between atoms $i$ and $j$.
1443  
1444 < In computing forces for alloys, mixing rules as outlined by
1445 < Johnson~\cite{johnson89} are used to compute the heterogenous pair
1446 < potential,
1444 > \subsubsection{\label{section:ffEAM}The EAMAtomTypes block}
1445 > The Embedded Atom Method ({\sc eam}) is one of the most widely-used
1446 > potentials for transition
1447 > metals.~\cite{Finnis84,Ercolessi88,Chen90,Qi99,Ercolessi02,Daw84,FBD86,johnson89,Lu97}
1448 > It has been widely adopted in the materials science community and a
1449 > good review of {\sc eam} and other formulations of metallic potentials
1450 > was given by Voter.\cite{Voter:95}
1451 >
1452 > In the original formulation of {\sc eam}\cite{Daw84}, the pair
1453 > potential, $\phi_{ij}$ was an entirely repulsive term; however later
1454 > refinements to {\sc eam} allowed for more general forms for
1455 > $\phi$.\cite{Daw89} The effective cutoff distance, $r_{{\text cut}}$
1456 > is the distance at which the values of $f(r)$ and $\phi(r)$ drop to
1457 > zero for all atoms present in the simulation.  In practice, this
1458 > distance is fairly small, limiting the summations in the {\sc eam}
1459 > equation to the few dozen atoms surrounding atom $i$ for both the
1460 > density $\rho$ and pairwise $\phi$ interactions.
1461 >
1462 > In computing forces for alloys, OpenMD uses mixing rules outlined by
1463 > Johnson~\cite{johnson89} to compute the heterogenous pair potential,
1464   \begin{equation}
1465   \label{eq:johnson}
1466   \phi_{ab}(r)=\frac{1}{2}\left(
# Line 1268 | Line 1491 | files.  
1491   should be noted that the energy units in these files are in eV, not
1492   $\mbox{kcal mol}^{-1}$ as in the rest of the {\sc OpenMD} force field
1493   files.  
1494 +
1495 + \begin{lstlisting}[caption={[An example of a EAMAtomTypes block.] A
1496 + simple example of a EAMAtomTypes block. Here the only data provided is
1497 + the name of a {\tt funcfl} file which contains the raw data for spline
1498 + interpolations for the density, functional, and pair potential.},
1499 + label={sch:EAMAtomTypes}]
1500 + begin EAMAtomTypes
1501 + Au      Au.u3.funcfl
1502 + Ag      Ag.u3.funcfl
1503 + Cu      Cu.u3.funcfl
1504 + Ni      Ni.u3.funcfl
1505 + Pd      Pd.u3.funcfl
1506 + Pt      Pt.u3.funcfl
1507 + end EAMAtomTypes
1508 + \end{lstlisting}
1509  
1510 +
1511   \subsubsection{\label{section:ffSC}The SuttonChenAtomTypes block}
1512  
1513   The Sutton-Chen ({\sc sc})~\cite{Chen90} potential has been used to
1514 < study a wide range of phenomena in metals.  Although it is similar in
1515 < form to the {\sc eam} potential, the Sutton-Chen model takes on a
1516 < simpler form,
1514 > study a wide range of phenomena in metals.  Although it has the same
1515 > basic form as the {\sc eam} potential, the Sutton-Chen model takes on
1516 > a simpler form,
1517   \begin{equation}
1518   \label{eq:SCP1}
1519   U_{tot}=\sum _{i}\left[ \frac{1}{2}\sum _{j\neq
1520 < i}D_{ij}V^{pair}_{ij}(r_{ij})-c_{i}D_{ii}\sqrt{\rho_{i}}\right] ,
1520 > i}\epsilon_{ij}V^{pair}_{ij}(r_{ij})-c_{i}\epsilon_{ii}\sqrt{\rho_{i}}\right] ,
1521   \end{equation}
1522   where $V^{pair}_{ij}$ and $\rho_{i}$ are given by
1523   \begin{equation}
1524   \label{eq:SCP2}
1525   V^{pair}_{ij}(r)=\left(
1526 < \frac{\alpha_{ij}}{r_{ij}}\right)^{n_{ij}}, \rho_{i}=\sum_{j\neq i}\left(
1526 > \frac{\alpha_{ij}}{r_{ij}}\right)^{n_{ij}} \hspace{1in} \rho_{i}=\sum_{j\neq i}\left(
1527   \frac{\alpha_{ij}}{r_{ij}}\right) ^{m_{ij}}
1528   \end{equation}
1529  
# Line 1292 | Line 1531 | the interactions between the valence electrons and the
1531   interactions of the pseudo-atom cores.  The $\sqrt{\rho_i}$ term in
1532   Eq. (\ref{eq:SCP1}) is an attractive many-body potential that models
1533   the interactions between the valence electrons and the cores of the
1534 < pseudo-atoms.  $D_{ij}$, $D_{ii}$, $c_i$ and $\alpha_{ij}$ are
1535 < parameters used to tune the potential for different transition
1536 < metals.
1534 > pseudo-atoms.  $\epsilon_{ij}$, $\epsilon_{ii}$, $c_i$ and
1535 > $\alpha_{ij}$ are parameters used to tune the potential for different
1536 > transition metals.
1537  
1538   The {\sc sc} potential form has also been parameterized by Qi {\it et
1539   al.}\cite{Qi99} These parameters were obtained via empirical and {\it
1540   ab initio} calculations to match structural features of the FCC
1541 < crystal.  To specify the original Sutton-Chen variant of the {\sc sc}
1542 < force field, the user would add the {\tt forceFieldVariant = "SC";}
1304 < line to the meta-data file, while specification of the Qi {\it et al.}
1305 < quantum-adapted variant of the {\sc sc} potential, the user would add
1306 < the {\tt forceFieldVariant = "QSC";} line to the meta-data file.
1541 > crystal.  Interested readers are encouraged to consult reference
1542 > \citealp{Qi99} for further details.
1543  
1544 + \begin{lstlisting}[caption={[An example of a SCAtomTypes block.] A
1545 + simple example of a SCAtomTypes block.  Distances ($\alpha$)
1546 + are given in \AA\ and energies ($\epsilon$) are (by convention) given in
1547 + units of eV.  These units must be specified in the {\tt Options} block
1548 + using the keyword {\tt MetallicEnergyUnitScaling}.  Without this {\tt
1549 + Options} keyword, the default units for $\epsilon$ are kcal/mol.  The
1550 + other parameters, $m$, $n$, and $c$ are unitless.},
1551 + label={sch:SCAtomTypes}]
1552 + begin SCAtomTypes
1553 + // Name  epsilon(eV)      c      m       n      alpha(angstroms)
1554 + Ni      0.0073767       84.745  5.0     10.0    3.5157
1555 + Cu      0.0057921       84.843  5.0     10.0    3.6030
1556 + Rh      0.0024612       305.499 5.0     13.0    3.7984
1557 + Pd      0.0032864       148.205 6.0     12.0    3.8813
1558 + Ag      0.0039450       96.524  6.0     11.0    4.0691
1559 + Ir      0.0037674       224.815 6.0     13.0    3.8344  
1560 + Pt      0.0097894       71.336  7.0     11.0    3.9163
1561 + Au      0.0078052       53.581  8.0     11.0    4.0651
1562 + Au2     0.0078052       53.581  8.0     11.0    4.0651
1563 + end SCAtomTypes
1564 + \end{lstlisting}
1565 +
1566   \subsection{\label{section::ffShortRange}Short Range Interactions}
1567   \subsubsection{\label{section:ffBond}The BondTypes block}
1568   \subsubsection{\label{section:ffBend}The BendTypes block}
# Line 1355 | Line 1613 | energy.
1613  
1614   \subsubsection{\label{section:ffInversion}The InversionTypes block}
1615   \subsection{\label{section::ffLongRange}Long Range Interactions}
1616 < \subsubsection{\label{section:ffInversion}The NonBondedInteraction block}
1616 > \subsubsection{\label{section:ffNBinteraction}The NonBondedInteraction block}
1617  
1618  
1619  

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines