ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/openmdDocs/openmdDoc.tex
(Generate patch)

Comparing trunk/openmdDocs/openmdDoc.tex (file contents):
Revision 3792 by gezelter, Thu Aug 9 18:48:23 2012 UTC vs.
Revision 4103 by gezelter, Tue Apr 22 18:19:31 2014 UTC

# Line 9 | Line 9
9   \usepackage{longtable}
10   \pagestyle{plain}
11   \pagenumbering{arabic}
12 + \usepackage{floatrow}
13   \oddsidemargin 0.0cm
14   \evensidemargin 0.0cm
15   \topmargin -21pt
# Line 17 | Line 18
18   \textwidth 6.5in
19   \brokenpenalty=10000
20   \renewcommand{\baselinestretch}{1.2}
21 + \usepackage[square, comma, sort&compress]{natbib}
22 + \bibpunct{[}{]}{,}{n}{}{;}
23  
24 + \DeclareFloatFont{tiny}{\scriptsize}% "scriptsize" is defined by floatrow, "tiny" not
25 + \floatsetup[table]{font=tiny}
26 +
27 +
28   %\renewcommand\citemid{\ } % no comma in optional reference note
29 < \lstset{language=C,frame=TB,basicstyle=\tiny,basicstyle=\ttfamily, %
29 > \lstset{language=C,frame=TB,basicstyle=\footnotesize\ttfamily, %
30          xleftmargin=0.25in, xrightmargin=0.25in,captionpos=b, %
31          abovecaptionskip=0.5cm, belowcaptionskip=0.5cm, escapeinside={~}{~}}
32   \renewcommand{\lstlistingname}{Scheme}
# Line 44 | Line 51
51   \newcolumntype{M}{p{1.55in}}
52  
53  
54 < \title{{\sc OpenMD}: Molecular Dynamics in the Open}
54 > \title{{\sc OpenMD-2.2}: Molecular Dynamics in the Open}
55  
56 < \author{Shenyu Kuang, Charles F. Vardeman II, \\
57 <  Teng Lin, Christopher J. Fennell,  Xiuquan Sun, \\
56 > \author{Joseph Michalka, James Marr, Kelsey Stocker, Madan Lamichhane,
57 >  Patrick Louden, \\
58 >  Teng Lin, Charles F. Vardeman II, Christopher J. Fennell, Shenyu
59 >  Kuang, Xiuquan Sun, \\
60    Chunlei Li, Kyle Daily, Yang Zheng, Matthew A. Meineke, and \\
61    J. Daniel Gezelter \\
62    Department of Chemistry and Biochemistry\\
# Line 138 | Line 147 | leave an interaction region.
147   leave an interaction region.
148  
149   {\tt Atoms} may also be grouped in more traditional ways into {\tt
150 < bonds}, {\tt bends}, and {\tt torsions}.  These groupings allow the
151 < correct choice of interaction parameters for short-range interactions
152 < to be chosen from the definitions in the {\tt forceField}.
150 >  bonds}, {\tt bends}, {\tt torsions}, and {\tt inversions}.  These
151 > groupings allow the correct choice of interaction parameters for
152 > short-range interactions to be chosen from the definitions in the {\tt
153 >  forceField}.
154  
155   All of these groups of {\tt atoms} are brought together in the {\tt
156   molecule}, which is the fundamental structure for setting up and {\sc
# Line 496 | Line 506 | fs}^{-1}$), and body-fixed moments of inertia ($\mbox{
506   \endhead
507   \hline
508   \endfoot
509 < {\tt forceField} & string & Sets the force field. & Possible force
510 < fields are DUFF, WATER, LJ, EAM, SC, and CLAY. \\
509 > {\tt forceField} & string & Sets the base name for the force field file &
510 > OpenMD appends a {\tt .frc} to the end of this to look for a force
511 > field file.\\
512   {\tt component} & & Defines the molecular components of the system &
513   Every {\tt $<$MetaData$>$} block must have a component statement. \\
514   {\tt minimizer} & string & Chooses a minimizer & Possible minimizers
# Line 567 | Line 578 | column names are: {\sc time, total\_energy, potential\
578   default is the first eight of these columns in order.)  \\
579   & & \multicolumn{2}{p{3.5in}}{Allowed
580   column names are: {\sc time, total\_energy, potential\_energy, kinetic\_energy,
581 < temperature, pressure, volume, conserved\_quantity,
581 > temperature, pressure, volume, conserved\_quantity, hullvolume, gyrvolume,
582   translational\_kinetic, rotational\_kinetic,  long\_range\_potential,
583   short\_range\_potential, vanderwaals\_potential,
584 < electrostatic\_potential, bond\_potential, bend\_potential,
585 < dihedral\_potential, improper\_potential, vraw, vharm,
586 < pressure\_tensor\_x, pressure\_tensor\_y, pressure\_tensor\_z}} \\
584 > electrostatic\_potential, metallic\_potential,
585 > hydrogen\_bonding\_potential, bond\_potential, bend\_potential,
586 > dihedral\_potential, inversion\_potential, raw\_potential, restraint\_potential,
587 > pressure\_tensor, system\_dipole, heatflux, electronic\_temperature}} \\
588   {\tt printPressureTensor} & logical & sets whether {\sc OpenMD} will print
589   out the pressure tensor & can be useful for calculations of the bulk
590   modulus \\
# Line 767 | Line 779 | statistics file is denoted with the \texttt{.stat} fil
779   allowing the user to gauge the stability of the integrator. The
780   statistics file is denoted with the \texttt{.stat} file extension.
781  
782 < \chapter{\label{section:empiricalEnergy}The Empirical Energy
771 < Functions}
782 > \chapter{\label{chapter:forceFields}Force Fields}
783  
784 < Like many simulation packages, {\sc OpenMD} splits the potential energy
785 < into the short-ranged (bonded) portion and a long-range (non-bonded)
786 < potential,
784 > Like many molecular simulation packages, {\sc OpenMD} splits the
785 > potential energy into the short-ranged (bonded) portion and a
786 > long-range (non-bonded) potential,
787   \begin{equation}
788   V = V_{\mathrm{short-range}} + V_{\mathrm{long-range}}.
789   \end{equation}
790 < The short-ranged portion includes the explicit bonds, bends, and
791 < torsions which have been defined in the meta-data file for the
792 < molecules which are present in the simulation.  The functional forms and
793 < parameters for these interactions are defined by the force field which
794 < is chosen.
784 <
785 < Calculating the long-range (non-bonded) potential involves a sum over
786 < all pairs of atoms (except for those atoms which are involved in a
787 < bond, bend, or torsion with each other).  If done poorly, calculating
788 < the the long-range interactions for $N$ atoms would involve $N(N-1)/2$
789 < evaluations of atomic distances.  To reduce the number of distance
790 < evaluations between pairs of atoms, {\sc OpenMD} uses a switched cutoff
791 < with Verlet neighbor lists.\cite{Allen87} It is well known that
792 < neutral groups which contain charges will exhibit pathological forces
793 < unless the cutoff is applied to the neutral groups evenly instead of
794 < to the individual atoms.\cite{leach01:mm} {\sc OpenMD} allows users to
795 < specify cutoff groups which may contain an arbitrary number of atoms
796 < in the molecule.  Atoms in a cutoff group are treated as a single unit
797 < for the evaluation of the switching function:
798 < \begin{equation}
799 < V_{\mathrm{long-range}} = \sum_{a} \sum_{b>a} s(r_{ab}) \sum_{i \in a} \sum_{j \in b} V_{ij}(r_{ij}),
800 < \end{equation}
801 < where $r_{ab}$ is the distance between the centers of mass of the two
802 < cutoff groups ($a$ and $b$).
790 > The short-ranged portion includes the bonds, bends, torsions, and
791 > inversions which have been defined in the meta-data file for the
792 > molecules.  The functional forms and parameters for these interactions
793 > are defined by the force field which is selected in the MetaData
794 > section.
795  
796 < The sums over $a$ and $b$ are over the cutoff groups that are present
797 < in the simulation.  Atoms which are not explicitly defined as members
798 < of a {\tt cutoffGroup} are treated as a group consisting of only one
799 < atom.  The switching function, $s(r)$ is the standard cubic switching
800 < function,
796 > \section{\label{section:divisionOfLabor}Separation into Internal and
797 >  Cross interactions}
798 >
799 > The classical potential energy function for a system composed of $N$
800 > molecules is traditionally written
801   \begin{equation}
802 < S(r) =
803 <        \begin{cases}
804 <        1 & \text{if $r \le r_{\text{sw}}$},\\
813 <        \frac{(r_{\text{cut}} + 2r - 3r_{\text{sw}})(r_{\text{cut}} - r)^2}
814 <        {(r_{\text{cut}} - r_{\text{sw}})^3}
815 <        & \text{if $r_{\text{sw}} < r \le r_{\text{cut}}$}, \\
816 <        0 & \text{if $r > r_{\text{cut}}$.}
817 <        \end{cases}
818 < \label{eq:dipoleSwitching}
802 > V = \sum^{N}_{I=1} V^{I}_{\text{Internal}}
803 >        + \sum^{N-1}_{I=1} \sum_{J>I} V^{IJ}_{\text{Cross}},
804 > \label{eq:totalPotential}
805   \end{equation}
806 < Here, $r_{\text{sw}}$ is the {\tt switchingRadius}, or the distance
807 < beyond which interactions are reduced, and $r_{\text{cut}}$ is the
808 < {\tt cutoffRadius}, or the distance at which interactions are
809 < truncated.
806 > where $V^{I}_{\text{Internal}}$ contains all of the terms internal to
807 > molecule $I$ (e.g. bonding, bending, torsional, and inversion terms)
808 > and $V^{IJ}_{\text{Cross}}$ contains all intermolecular interactions
809 > between molecules $I$ and $J$.  For large molecules, the internal
810 > potential may also include some non-bonded terms like electrostatic or
811 > van der Waals interactions.
812  
813 < Users of {\sc OpenMD} do not need to specify the {\tt cutoffRadius} or
814 < {\tt switchingRadius}.  In simulations containing only Lennard-Jones
815 < atoms, the cutoff radius has a default value of $2.5\sigma_{ii}$,
816 < where $\sigma_{ii}$ is the largest Lennard-Jones length parameter
817 < present in the simulation.  In simulations containing charged or
830 < dipolar atoms, the default cutoff radius is $15 \mbox{\AA}$.  
813 > The types of atoms being simulated, as well as the specific functional
814 > forms and parameters of the intra-molecular functions and the
815 > long-range potentials are defined by the force field. In the following
816 > sections we discuss the stucture of an OpenMD force field file and the
817 > specification of blocks that may be present within these files.
818  
819 < The {\tt switchingRadius} is set to a default value of 95\% of the
833 < {\tt cutoffRadius}.  In the special case of a simulation containing
834 < {\it only} Lennard-Jones atoms, the default switching radius takes the
835 < same value as the cutoff radius, and {\sc OpenMD} will use a shifted
836 < potential to remove discontinuities in the potential at the cutoff.
837 < Both radii may be specified in the meta-data file.
838 <
839 < Force fields can be added to {\sc OpenMD}, although it comes with a few
840 < simple examples (Lennard-Jones, {\sc duff}, {\sc water}, and {\sc
841 < eam}) which are explained in the following sections.
819 > \section{\label{section:frcFile}Force Field Files}
820  
821 < \section{\label{sec:LJPot}The Lennard Jones Force Field}
821 > Force field files have a number of ``Blocks'' to delineate different
822 > types of information.  The blocks contain AtomType data, which provide
823 > properties belonging to a single AtomType, as well as interaction
824 > information which provides information about bonded or non-bonded
825 > interactions that cannot be deduced from AtomType information alone.
826 > A simple example of a forceField file is shown in scheme
827 > \ref{sch:frcExample}.
828  
829 < The most basic force field implemented in {\sc OpenMD} is the
830 < Lennard-Jones force field, which mimics the van der Waals interaction
831 < at long distances and uses an empirical repulsion at short
832 < distances. The Lennard-Jones potential is given by:
829 > \begin{lstlisting}[float,caption={[An example of a complete OpenMD
830 > force field file for straight-chain united-atom alkanes.] An example
831 > showing a complete OpenMD force field for straight-chain united-atom
832 > alkanes.}, label={sch:frcExample}]
833 > begin Options
834 >  Name = "alkane"
835 > end Options
836 >
837 > begin BaseAtomTypes  
838 > //name          mass  
839 > C               12.0107
840 > end BaseAtomTypes
841 >
842 > begin AtomTypes
843 > //name  base    mass
844 > CH4     C       16.05          
845 > CH3     C       15.04          
846 > CH2     C       14.03          
847 > end AtomTypes
848 >
849 > begin LennardJonesAtomTypes
850 > //name          epsilon         sigma
851 > CH4             0.2941          3.73
852 > CH3             0.1947          3.75
853 > CH2             0.09140         3.95
854 > end LennardJonesAtomTypes
855 >
856 > begin BondTypes
857 > //AT1       AT2 Type                    r0              k
858 > CH3         CH3 Harmonic                1.526           260
859 > CH3         CH2 Harmonic                1.526           260
860 > CH2         CH2 Harmonic                1.526           260
861 > end BondTypes
862 >
863 > begin BendTypes
864 > //AT1   AT2     AT3     Type            theta0   k
865 > CH3     CH2     CH3     Harmonic        114.0    124.19
866 > CH3     CH2     CH2     Harmonic        114.0    124.19
867 > CH2     CH2     CH2     Harmonic        114.0    124.19
868 > end BendTypes
869 >
870 > begin TorsionTypes
871 > //AT1 AT2  AT3  AT4  Type    
872 > CH3   CH2  CH2  CH3  Trappe  0.0  0.70544  -0.13549  1.5723
873 > CH3   CH2  CH2  CH2  Trappe  0.0  0.70544  -0.13549  1.5723  
874 > CH2   CH2  CH2  CH2  Trappe  0.0  0.70544  -0.13549  1.5723  
875 > end TorsionTypes
876 > \end{lstlisting}
877 >
878 > \section{\label{section:ffOptions}The Options block}
879 >
880 > The Options block defines properties governing how the force field
881 > interactions are carried out.  This block is delineated with the text
882 > tags {\tt begin Options} and {\tt end Options}.  Most options don't
883 > need to be set as they come with fairly sensible default values, but
884 > the various keywords and their possible values are given in Scheme
885 > \ref{sch:optionsBlock}.
886 >
887 > \begin{lstlisting}[caption={[A force field Options block showing default values
888 > for many force field options.] A force field Options block showing default values
889 > for many force field options.  Most of these options do not need to be
890 > specified if the default values are working.},
891 > label={sch:optionsBlock}]
892 > begin Options
893 > Name                      = "alkane"       // any string
894 > vdWtype                   = "Lennard-Jones"
895 > DistanceMixingRule        = "arithmetic"   // can also be "geometric" or "cubic"
896 > DistanceType              = "sigma"        // can also be "Rmin"
897 > EnergyMixingRule          = "geometric"    // can also be "arithmetic" or "hhg"
898 > EnergyUnitScaling         = 1.0
899 > MetallicEnergyUnitScaling = 1.0
900 > DistanceUnitScaling       = 1.0
901 > AngleUnitScaling          = 1.0
902 > TorsionAngleConvention    = "180_is_trans" // can also be "0_is_trans"
903 > vdW-12-scale              = 0.0
904 > vdW-13-scale              = 0.0
905 > vdW-14-scale              = 0.0
906 > electrostatic-12-scale    = 0.0
907 > electrostatic-13-scale    = 0.0
908 > electrostatic-14-scale    = 0.0
909 > GayBerneMu                = 2.0
910 > GayBerneNu                = 1.0
911 > EAMMixingMethod           = "Johnson"      // can also be "Daw"
912 > end Options
913 > \end{lstlisting}
914 >
915 > \section{\label{section:ffBase}The BaseAtomTypes block}
916 >
917 > An AtomType the primary data structure that OpenMD uses to store
918 > static data about an atom.  Things that belong to AtomType are
919 > universal properties (i.e. does this atom have a fixed charge?  What
920 > is its mass?)  Dynamic properties of an atom are not intended to be
921 > properties of an atom type.  A BaseAtomType can be used to build
922 > extended sets of related atom types that all fall back to one
923 > particular type.  For example, one might want a series of atomTypes
924 > that inherit from more basic types:
925 > \begin{displaymath}
926 > \mathtt{ALA-CA} \rightarrow \mathtt{CT} \rightarrow \mathtt{CSP3} \rightarrow \mathtt{C}
927 > \end{displaymath}
928 > where for each step to the right, the atomType falls back to more
929 > primitive data.  That is, the mass could be a property of the {\tt C}
930 > type, while Lennard-Jones parameters could be properties of the {\tt
931 >  CSP3} type.  {\tt CT} could have charge information and its own set
932 > of Lennard-Jones parameter that override the CSP3 parameters.  And the
933 > {\tt ALA-CA} type might have specific torsion or charge information
934 > that override the lower level types.  A BaseAtomType contains only
935 > information a primitive name and the mass of this atom type.
936 > BaseAtomTypes can also be useful in creating files that can be easily
937 > viewed in visualization programs.  The {\tt Dump2XYZ} utility has the
938 > ability to print out the names of the base atom types for displaying
939 > simulations in Jmol or VMD.
940 >
941 > \begin{lstlisting}[caption={[A simple example of a BaseAtomTypes
942 > block.] A simple example of a BaseAtomTypes block.},
943 > label={sch:baseAtomTypesBlock}]
944 > begin BaseAtomTypes
945 > //Name  mass (amu)
946 > H       1.0079
947 > O       15.9994
948 > Si      28.0855
949 > Al      26.981538
950 > Mg      24.3050
951 > Ca      40.078
952 > Fe      55.845
953 > Li      6.941
954 > Na      22.98977
955 > K       39.0983
956 > Cs      132.90545
957 > Ca      40.078
958 > Ba      137.327
959 > Cl      35.453
960 > end BaseAtomTypes
961 > \end{lstlisting}
962 >
963 > \section{\label{section:ffAtom}The AtomTypes block}
964 >
965 > AtomTypes inherit most properties from BaseAtomTypes, but can override
966 > their lower-level properties as well.  Scheme \ref{sch:atomTypesBlock}
967 > shows an example where multiple types of oxygen atoms can inherit mass
968 > from the oxygen base type.
969 >
970 > \begin{lstlisting}[caption={[An example of a AtomTypes block.] A
971 > simple example of an AtomTypes block which
972 > shows how multiple types can inherit from the same base type.},
973 > label={sch:atomTypesBlock}]
974 > begin AtomTypes    
975 > //Name  baseatomtype
976 > h*      H
977 > ho      H
978 > o*      O
979 > oh      O
980 > ob      O
981 > obos    O
982 > obts    O
983 > obss    O
984 > ohs     O
985 > st      Si
986 > ao      Al
987 > at      Al
988 > mgo     Mg
989 > mgh     Mg
990 > cao     Ca
991 > cah     Ca
992 > feo     Fe
993 > lio     Li
994 > end AtomTypes
995 > \end{lstlisting}
996 >
997 > \section{\label{section:ffDirectionalAtom}The DirectionalAtomTypes
998 >  block}
999 > DirectionalAtoms have orientational degrees of freedom as well as
1000 > translation, so moving these atoms requires information about the
1001 > moments of inertias in the same way that translational motion requires
1002 > mass.  For DirectionalAtoms, OpenMD treats the mass distribution with
1003 > higher priority than electrostatic distributions; the moment of
1004 > inertia tensor, $\overleftrightarrow{\mathsf I}$, should be
1005 > diagonalized to obtain body-fixed axes, and the three diagonal moments
1006 > should correspond to rotational motion \textit{around} each of these
1007 > body-fixed axes.  Charge distributions may then result in dipole
1008 > vectors that are oriented along a linear combination of the body-axes,
1009 > and in quadrupole tensors that are not necessarily diagonal in the
1010 > body frame.
1011 >
1012 > \begin{lstlisting}[caption={[An example of a DirectionalAtomTypes block.] A
1013 > simple example of a DirectionalAtomTypes block.},
1014 > label={sch:datomTypesBlock}]
1015 > begin DirectionalAtomTypes
1016 > //Name          I_xx    I_yy    I_zz    (All moments in (amu*Ang^2)
1017 > SSD             1.7696  0.6145  1.1550  
1018 > GBC6H6          88.781  88.781  177.561
1019 > GBCH3OH         4.056   20.258  20.999
1020 > GBH2O           1.777   0.581   1.196
1021 > CO2             43.06   43.06   0.0    // single-site model for CO2
1022 > end DirectionalAtomTypes                    
1023 >
1024 > \end{lstlisting}
1025 >
1026 > For a DirectionalAtom that represents a linear object, it is
1027 > appropriate for one of the moments of inertia to be zero.  In this
1028 > case, OpenMD identifies that DirectionalAtom as having only 5 degrees
1029 > of freedom (three translations and two rotations), and will alter
1030 > calculation of temperatures to reflect this.
1031 >
1032 > \section{\label{section::ffAtomProperties}AtomType properties}
1033 > \subsection{\label{section:ffLJ}The LennardJonesAtomTypes block}
1034 > One of the most basic interatomic interactions implemented in {\sc
1035 >  OpenMD} is the Lennard-Jones potential, which mimics the van der
1036 > Waals interaction at long distances and uses an empirical repulsion at
1037 > short distances. The Lennard-Jones potential is given by:
1038   \begin{equation}
1039   V_{\text{LJ}}(r_{ij}) =
1040          4\epsilon_{ij} \biggl[
# Line 856 | Line 1045 | $\sigma_{ij}$ scales the length of the interaction, an
1045   \end{equation}
1046   where $r_{ij}$ is the distance between particles $i$ and $j$,
1047   $\sigma_{ij}$ scales the length of the interaction, and
1048 < $\epsilon_{ij}$ scales the well depth of the potential. Scheme
860 < \ref{sch:LJFF} gives an example meta-data file that
861 < sets up a system of 108 Ar particles to be simulated using the
862 < Lennard-Jones force field.
1048 > $\epsilon_{ij}$ scales the well depth of the potential.
1049  
864 \begin{lstlisting}[float,caption={[Invocation of the Lennard-Jones
865 force field] A sample startup file for a small Lennard-Jones
866 simulation.},label={sch:LJFF}]
867 <OpenMD>
868  <MetaData>
869 #include "argon.md"
870
871 component{
872  type = "Ar";
873  nMol = 108;
874 }
875
876 forceField = "LJ";
877  </MetaData>
878  <Snapshot>     // not shown in this scheme
879  </Snapshot>
880 </OpenMD>
881 \end{lstlisting}
882
1050   Interactions between dissimilar particles requires the generation of
1051   cross term parameters for $\sigma$ and $\epsilon$. These parameters
1052 < are determined using the Lorentz-Berthelot mixing
1052 > are usually determined using the Lorentz-Berthelot mixing
1053   rules:\cite{Allen87}
1054   \begin{equation}
1055   \sigma_{ij} = \frac{1}{2}[\sigma_{ii} + \sigma_{jj}],
# Line 894 | Line 1061 | and
1061   \label{eq:epsilonMix}
1062   \end{equation}
1063  
1064 < \section{\label{section:DUFF}Dipolar Unified-Atom Force Field}
1064 > The values of $\sigma_{ii}$ and $\epsilon_{ii}$ are properties of atom
1065 > type $i$, and must be specified in a section of the force field file
1066 > called the {\tt LennardJonesAtomTypes} block (see listing
1067 > \ref{sch:LJatomTypesBlock}).  Separate Lennard-Jones interactions
1068 > which are not determined by the mixing rules can also be specified in
1069 > the {\tt NonbondedInteractionTypes} block (see section
1070 > \ref{section:ffNBinteraction}).
1071  
1072 < The dipolar unified-atom force field ({\sc duff}) was developed to
1073 < simulate lipid bilayers. These types of simulations require a model
1074 < capable of forming bilayers, while still being sufficiently
1075 < computationally efficient to allow large systems ($\sim$100's of
1076 < phospholipids, $\sim$1000's of waters) to be simulated for long times
1077 < ($\sim$10's of nanoseconds). With this goal in mind, {\sc duff} has no
1078 < point charges. Charge-neutral distributions are replaced with dipoles,
1079 < while most atoms and groups of atoms are reduced to Lennard-Jones
1080 < interaction sites. This simplification reduces the length scale of
1081 < long range interactions from $\frac{1}{r}$ to $\frac{1}{r^3}$,
1082 < removing the need for the computationally expensive Ewald
1083 < sum. Instead, Verlet neighbor-lists and cutoff radii are used for the
1084 < dipolar interactions, and, if desired, a reaction field may be added
1085 < to mimic longer range interactions.
1072 > \begin{lstlisting}[caption={[An example of a LennardJonesAtomTypes block.] A
1073 > simple example of a LennardJonesAtomTypee block.   Units for
1074 > $\epsilon$ are kcal / mol and for $\sigma$ are \AA\ .},
1075 > label={sch:LJatomTypesBlock}]
1076 > begin LennardJonesAtomTypes
1077 > //Name          epsilon             sigma      
1078 > O_TIP4P         0.1550          3.15365
1079 > O_TIP4P-Ew      0.16275         3.16435
1080 > O_TIP5P         0.16            3.12  
1081 > O_TIP5P-E       0.178           3.097  
1082 > O_SPCE          0.15532         3.16549
1083 > O_SPC           0.15532         3.16549
1084 > CH4             0.279           3.73
1085 > CH3             0.185           3.75
1086 > CH2             0.0866          3.95
1087 > CH              0.0189          4.68
1088 > end LennardJonesAtomTypes
1089 > \end{lstlisting}
1090  
1091 < As an example, lipid head-groups in {\sc duff} are represented as
915 < point dipole interaction sites.  Placing a dipole at the head group's
916 < center of mass mimics the charge separation found in common
917 < phospholipid head groups such as phosphatidylcholine.\cite{Cevc87}
918 < Additionally, a large Lennard-Jones site is located at the
919 < pseudoatom's center of mass. The model is illustrated by the red atom
920 < in Fig.~\ref{fig:lipidModel}. The water model we use to
921 < complement the dipoles of the lipids is a
922 < reparameterization\cite{fennell04} of the soft sticky dipole (SSD)
923 < model of Ichiye
924 < \emph{et al.}\cite{liu96:new_model}
1091 > \subsection{\label{section:ffCharge}The ChargeAtomTypes block}
1092  
1093 < \begin{figure}
1094 < \centering
1095 < \includegraphics[width=\linewidth]{lipidModel.pdf}
1096 < \caption[A representation of a lipid model in {\sc duff}]{A
1097 < representation of the lipid model. $\phi$ is the torsion angle,
1098 < $\theta$ is the bend angle, and $\mu$ is the dipole moment of the head
1099 < group.}
1100 < \label{fig:lipidModel}
1101 < \end{figure}
1102 <
1103 < A set of scalable parameters has been used to model the alkyl groups
1104 < with Lennard-Jones sites. For this, parameters from the TraPPE force
1105 < field of Siepmann \emph{et al.}\cite{Siepmann1998} have been
1106 < utilized. TraPPE is a unified-atom representation of n-alkanes which
1107 < is parametrized against phase equilibria using Gibbs ensemble Monte
1108 < Carlo simulation techniques.\cite{Siepmann1998} One of the advantages
1109 < of TraPPE is that it generalizes the types of atoms in an alkyl chain
1110 < to keep the number of pseudoatoms to a minimum; thus, the parameters
1111 < for a unified atom such as $\text{CH}_2$ do not change depending on
1112 < what species are bonded to it.
946 <
947 < As is required by TraPPE, {\sc duff} also constrains all bonds to be
948 < of fixed length. Typically, bond vibrations are the fastest motions in
949 < a molecular dynamic simulation.  With these vibrations present, small
950 < time steps between force evaluations must be used to ensure adequate
951 < energy conservation in the bond degrees of freedom. By constraining
952 < the bond lengths, larger time steps may be used when integrating the
953 < equations of motion. A simulation using {\sc duff} is illustrated in
954 < Scheme \ref{sch:DUFF}.
955 <
956 < \begin{lstlisting}[float,caption={[Invocation of {\sc duff}]A portion
957 < of a startup file showing a simulation utilizing {\sc
958 < duff}},label={sch:DUFF}]  
959 < <OpenMD>
960 <  <MetaData>
961 < #include "water.md"
962 < #include "lipid.md"
963 <
964 < component{
965 <  type = "simpleLipid_16";
966 <  nMol = 60;
967 < }
968 <
969 < component{
970 <  type = "SSD_water";
971 <  nMol = 1936;
972 < }
1093 > In molecular simulations, proper accumulation of the electrostatic
1094 > interactions is essential and is one of the most
1095 > computationally-demanding tasks.  Most common molecular mechanics
1096 > force fields represent atomic sites with full or partial charges
1097 > protected by Lennard-Jones (short range) interactions.  Partial charge
1098 > values, $q_i$ are empirical representations of the distribution of
1099 > electronic charge in a molecule.  This means that nearly every pair
1100 > interaction involves a calculation of charge-charge forces.  Coupled
1101 > with relatively long-ranged $r^{-1}$ decay, the monopole interactions
1102 > quickly become the most expensive part of molecular simulations.  The
1103 > interactions between point charges can be handled via a number of
1104 > different algorithms, but Coulomb's law is the fundamental physical
1105 > principle governing these interactions,
1106 > \begin{equation}
1107 >  V_{\text{charge}}(r_{ij}) = \sum_{ij}\frac{q_iq_je^2}{4 \pi \epsilon_0
1108 >    r_{ij}},
1109 > \end{equation}
1110 > where $q$ represents the charge on particle $i$ or $j$, and $e$ is the
1111 > charge of an electron in Coulombs.  $\epsilon_0$ is the permittivity
1112 > of free space.
1113  
1114 < forceField = "DUFF";
1115 <  </MetaData>
1116 <  <Snapshot>     // not shown in this scheme
1117 <  </Snapshot>
1118 < </OpenMD>
1114 > \begin{lstlisting}[caption={[An example of a ChargeAtomTypes block.] A
1115 > simple example of a ChargeAtomTypes block.   Units for
1116 > charge are in multiples of electron charge.},
1117 > label={sch:ChargeAtomTypesBlock}]
1118 > begin ChargeAtomTypes
1119 > // Name         charge
1120 > O_TIP3P        -0.834
1121 > O_SPCE         -0.8476
1122 > H_TIP3P         0.417
1123 > H_TIP4P         0.520
1124 > H_SPCE          0.4238
1125 > EP_TIP4P       -1.040
1126 > Na+             1.0
1127 > Cl-            -1.0
1128 > end ChargeAtomTypes
1129   \end{lstlisting}
1130  
1131 < \subsection{\label{section:energyFunctions}{\sc duff} Energy Functions}
1132 <
1133 < The total potential energy function in {\sc duff} is
1131 > \subsection{\label{section:ffMultipole}The MultipoleAtomTypes
1132 >  block}
1133 > For complex charge distributions that are centered on single sites, it
1134 > is convenient to write the total electrostatic potential in terms of
1135 > multipole moments,
1136   \begin{equation}
1137 < V = \sum^{N}_{I=1} V^{I}_{\text{Internal}}
986 <        + \sum^{N-1}_{I=1} \sum_{J>I} V^{IJ}_{\text{Cross}},
987 < \label{eq:totalPotential}
1137 > U_{\bf{ab}}(r)=\hat{M}_{\bf a} \hat{M}_{\bf b} \frac{1}{r}  \label{kernel}.
1138   \end{equation}
1139 < where $V^{I}_{\text{Internal}}$ is the internal potential of molecule $I$:
1139 > where the multipole operator on site $\bf a$,
1140   \begin{equation}
1141 < V^{I}_{\text{Internal}} =
1142 <        \sum_{\theta_{ijk} \in I} V_{\text{bend}}(\theta_{ijk})
1143 <        + \sum_{\phi_{ijkl} \in I} V_{\text{torsion}}(\phi_{ijkl})
994 <        + \sum_{i \in I} \sum_{(j>i+4) \in I}
995 <        \biggl[ V_{\text{LJ}}(r_{ij}) +  V_{\text{dipole}}
996 <        (\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},\boldsymbol{\Omega}_{j})
997 <        \biggr].
998 < \label{eq:internalPotential}
1141 > \hat{M}_{\bf a} = C_{\bf a} - D_{{\bf a}\alpha} \frac{\partial}{\partial r_{\alpha}}
1142 > +  Q_{{\bf a}\alpha\beta}
1143 > \frac{\partial^2}{\partial r_{\alpha} \partial r_{\beta}} + \dots
1144   \end{equation}
1145 < Here $V_{\text{bend}}$ is the bend potential for all 1, 3 bonded pairs
1146 < within the molecule $I$, and $V_{\text{torsion}}$ is the torsion
1147 < potential for all 1, 4 bonded pairs.  The pairwise portions of the
1148 < non-bonded interactions are excluded for atom pairs that are involved
1149 < in the smae bond, bend, or torsion. All other atom pairs within a
1150 < molecule are subject to the LJ pair potential.
1145 > Here, the point charge, dipole, and quadrupole for site $\bf a$ are
1146 > given by $C_{\bf a}$, $D_{{\bf a}\alpha}$, and $Q_{{\bf
1147 >    a}\alpha\beta}$, respectively.  These are the {\it primitive}
1148 > multipoles.  If the site is representing a distribution of charges,
1149 > these can be expressed as,
1150 > \begin{align}
1151 > C_{\bf a} =&\sum_{k \, \text{in \bf a}} q_k , \label{eq:charge} \\
1152 > D_{{\bf a}\alpha} =&\sum_{k \, \text{in \bf a}} q_k r_{k\alpha}, \label{eq:dipole}\\
1153 > Q_{{\bf a}\alpha\beta} =& \frac{1}{2} \sum_{k \, \text{in \bf a}} q_k
1154 > r_{k\alpha}  r_{k\beta} . \label{eq:quadrupole}
1155 > \end{align}
1156 > Note that the definition of the primitive quadrupole here differs from
1157 > the standard traceless form, and contains an additional Taylor-series
1158 > based factor of $1/2$.  
1159  
1160 < The bend potential of a molecule is represented by the following function:
1160 > The details of the multipolar interactions will be given later, but
1161 > many readers are familiar with the dipole-dipole potential:
1162   \begin{equation}
1009 V_{\text{bend}}(\theta_{ijk}) = k_{\theta}( \theta_{ijk} - \theta_0
1010 )^2, \label{eq:bendPot}
1011 \end{equation}
1012 where $\theta_{ijk}$ is the angle defined by atoms $i$, $j$, and $k$
1013 (see Fig.~\ref{fig:lipidModel}), $\theta_0$ is the equilibrium
1014 bond angle, and $k_{\theta}$ is the force constant which determines the
1015 strength of the harmonic bend. The parameters for $k_{\theta}$ and
1016 $\theta_0$ are borrowed from those in TraPPE.\cite{Siepmann1998}
1017
1018 The torsion potential and parameters are also borrowed from TraPPE. It is
1019 of the form:
1020 \begin{equation}
1021 V_{\text{torsion}}(\phi) = c_1[1 + \cos \phi]
1022        + c_2[1 + \cos(2\phi)]
1023        + c_3[1 + \cos(3\phi)],
1024 \label{eq:origTorsionPot}
1025 \end{equation}
1026 where:
1027 \begin{equation}
1028 \cos\phi = (\hat{\mathbf{r}}_{ij} \times \hat{\mathbf{r}}_{jk}) \cdot
1029        (\hat{\mathbf{r}}_{jk} \times \hat{\mathbf{r}}_{kl}).
1030 \label{eq:torsPhi}
1031 \end{equation}
1032 Here, $\hat{\mathbf{r}}_{\alpha\beta}$ are the set of unit bond
1033 vectors between atoms $i$, $j$, $k$, and $l$. For computational
1034 efficiency, the torsion potential has been recast after the method of
1035 {\sc charmm},\cite{Brooks83} in which the angle series is converted to
1036 a power series of the form:
1037 \begin{equation}
1038 V_{\text{torsion}}(\phi) =  
1039        k_3 \cos^3 \phi + k_2 \cos^2 \phi + k_1 \cos \phi + k_0,
1040 \label{eq:torsionPot}
1041 \end{equation}
1042 where:
1043 \begin{align*}
1044 k_0 &= c_1 + c_3, \\
1045 k_1 &= c_1 - 3c_3, \\
1046 k_2 &= 2 c_2, \\
1047 k_3 &= 4c_3.
1048 \end{align*}
1049 By recasting the potential as a power series, repeated trigonometric
1050 evaluations are avoided during the calculation of the potential
1051 energy.
1052
1053
1054 The cross potential between molecules $I$ and $J$,
1055 $V^{IJ}_{\text{Cross}}$, is as follows:
1056 \begin{equation}
1057 V^{IJ}_{\text{Cross}} =
1058        \sum_{i \in I} \sum_{j \in J}
1059        \biggl[ V_{\text{LJ}}(r_{ij}) +  V_{\text{dipole}}
1060        (\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},\boldsymbol{\Omega}_{j})
1061        + V_{\text{sticky}}
1062        (\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},\boldsymbol{\Omega}_{j})
1063        \biggr],
1064 \label{eq:crossPotentail}
1065 \end{equation}
1066 where $V_{\text{LJ}}$ is the Lennard Jones potential,
1067 $V_{\text{dipole}}$ is the dipole dipole potential, and
1068 $V_{\text{sticky}}$ is the sticky potential defined by the SSD model
1069 (Sec.~\ref{section:SSD}). Note that not all atom types include all
1070 interactions.
1071
1072 The dipole-dipole potential has the following form:
1073 \begin{equation}
1163   V_{\text{dipole}}(\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},
1164 <        \boldsymbol{\Omega}_{j}) = \frac{|\mu_i||\mu_j|}{4\pi\epsilon_{0}r_{ij}^{3}} \biggl[
1164 >        \boldsymbol{\Omega}_{j}) = \frac{|{\bf D}_i||{\bf D}_j|}{4\pi\epsilon_{0}r_{ij}^{3}} \biggl[
1165          \boldsymbol{\hat{u}}_{i} \cdot \boldsymbol{\hat{u}}_{j}
1166          -
1167          3(\boldsymbol{\hat{u}}_i \cdot \hat{\mathbf{r}}_{ij}) %
# Line 1082 | Line 1171 | are the orientational degrees of freedom for atoms $i$
1171   Here $\mathbf{r}_{ij}$ is the vector starting at atom $i$ pointing
1172   towards $j$, and $\boldsymbol{\Omega}_i$ and $\boldsymbol{\Omega}_j$
1173   are the orientational degrees of freedom for atoms $i$ and $j$
1174 < respectively. The magnitude of the dipole moment of atom $i$ is
1175 < $|\mu_i|$, $\boldsymbol{\hat{u}}_i$ is the standard unit orientation
1174 > respectively. The magnitude of the dipole moment of atom $i$ is $|{\bf
1175 >  D}_i|$, $\boldsymbol{\hat{u}}_i$ is the standard unit orientation
1176   vector of $\boldsymbol{\Omega}_i$, and $\boldsymbol{\hat{r}}_{ij}$ is
1177   the unit vector pointing along $\mathbf{r}_{ij}$
1178   ($\boldsymbol{\hat{r}}_{ij}=\mathbf{r}_{ij}/|\mathbf{r}_{ij}|$).
1179  
1091 \subsection{\label{section:SSD}The {\sc duff} Water Models: SSD/E
1092 and SSD/RF}
1180  
1181 < In the interest of computational efficiency, the default solvent used
1182 < by {\sc OpenMD} is the extended Soft Sticky Dipole (SSD/E) water
1183 < model.\cite{fennell04} The original SSD was developed by Ichiye
1184 < \emph{et al.}\cite{liu96:new_model} as a modified form of the hard-sphere
1181 > \begin{lstlisting}[caption={[An example of a MultipoleAtomTypes block.] A
1182 > simple example of a MultipoleAtomTypes block.   Dipoles are given in
1183 > units of Debyes, and Quadrupole moments are given in units of Debye
1184 > \AA~(or $10^{-26} \mathrm{~esu~cm}^2$)},
1185 > label={sch:MultipoleAtomTypesBlock}]
1186 > begin MultipoleAtomTypes
1187 > // Euler angles are given in zxz convention in units of degrees.
1188 > //
1189 > // point dipoles:
1190 > // name d phi theta psi dipole_moment
1191 > DIP     d 0.0 0.0   0.0     1.91   // dipole points along z-body axis
1192 > //
1193 > // point quadrupoles:
1194 > // name q phi theta psi Qxx Qyy Qzz
1195 > CO2     q 0.0 0.0   0.0 0.0 0.0 -0.430592  //quadrupole tensor has zz element
1196 > //
1197 > // Atoms with both dipole and quadrupole moments:
1198 > // name dq phi theta psi dipole_moment  Qxx    Qyy     Qzz
1199 > SSD     dq 0.0 0.0   0.0     2.35      -1.682  1.762   -0.08
1200 > end MultipoleAtomTypes
1201 > \end{lstlisting}
1202 >
1203 > Specifying a MultipoleAtomType requires declaring how the
1204 > electrostatic frame for the site is rotated relative to the body-fixed
1205 > axes for that atom. The Euler angles $(\phi, \theta, \psi)$ for this
1206 > rotation must be given, and then the dipole, quadrupole, or all of
1207 > these moments are specified in the electrostatic frame.  In OpenMD,
1208 > the Euler angles are specified in the $zxz$ convention and are entered
1209 > in units of degrees.  Dipole moments are entered in units of Debye,
1210 > and Quadrupole moments in units of Debye \AA.
1211 >
1212 > \subsection{\label{section:ffGB}The FluctuatingChargeAtomTypes  block}
1213 > %\subsubsection{\label{section:ffPol}The PolarizableAtomTypes block}
1214 >
1215 > \subsection{\label{section:ffGB}The GayBerneAtomTypes block}
1216 >
1217 > The Gay-Berne potential has been widely used in the liquid crystal
1218 > community to describe anisotropic phase
1219 > behavior.~\cite{Gay:1981yu,Berne:1972pb,Kushick:1976xy,Luckhurst:1990fy,Cleaver:1996rt}
1220 > The form of the Gay-Berne potential implemented in OpenMD was
1221 > generalized by Cleaver {\it et al.} and is appropriate for dissimilar
1222 > uniaxial ellipsoids.\cite{Cleaver:1996rt} The potential is constructed
1223 > in the familiar form of the Lennard-Jones function using
1224 > orientation-dependent $\sigma$ and $\epsilon$ parameters,
1225 > \begin{equation*}
1226 > V_{ij}({{\bf \hat u}_i}, {{\bf \hat u}_j}, {{\bf \hat
1227 > r}_{ij}}) = 4\epsilon ({{\bf \hat u}_i}, {{\bf \hat u}_j},
1228 > {{\bf \hat r}_{ij}})\left[\left(\frac{\sigma_0}{r_{ij}-\sigma({{\bf \hat u
1229 > }_i},
1230 > {{\bf \hat u}_j}, {{\bf \hat r}_{ij}})+\sigma_0}\right)^{12}
1231 > -\left(\frac{\sigma_0}{r_{ij}-\sigma({{\bf \hat u}_i}, {{\bf \hat u}_j},
1232 > {{\bf \hat r}_{ij}})+\sigma_0}\right)^6\right]
1233 > \label{eq:gb}
1234 > \end{equation*}
1235 >
1236 > The range $(\sigma({\bf \hat{u}}_{i},{\bf \hat{u}}_{j},{\bf
1237 > \hat{r}}_{ij}))$, and strength $(\epsilon({\bf \hat{u}}_{i},{\bf
1238 > \hat{u}}_{j},{\bf \hat{r}}_{ij}))$ parameters
1239 > are dependent on the relative orientations of the two ellipsoids (${\bf
1240 > \hat{u}}_{i},{\bf \hat{u}}_{j}$) as well as the direction of the
1241 > inter-ellipsoid separation (${\bf \hat{r}}_{ij}$).  The shape and
1242 > attractiveness of each ellipsoid is governed by a relatively small set
1243 > of parameters:
1244 > \begin{itemize}
1245 > \item  $d$:  range parameter for the side-by-side (S) and cross (X) configurations
1246 > \item  $l$:  range parameter for the end-to-end (E) configuration
1247 > \item  $\epsilon_X$:  well-depth parameter for the cross (X) configuration
1248 > \item  $\epsilon_S$:  well-depth parameter for the side-by-side (S) configuration
1249 > \item  $\epsilon_E$:  well depth parameter for the end-to-end (E) configuration
1250 > \item  $dw$: The ``softness'' of the potential
1251 > \end{itemize}
1252 > Additionally, there are two universal paramters to govern the overall
1253 > importance of the purely orientational ($\nu$) and the mixed
1254 > orientational / translational ($\mu$) parts of strength of the
1255 > interactions.  These parameters have default or ``canonical'' values,
1256 > but may be changed as a force field option:
1257 > \begin{itemize}
1258 >  \item $\nu$: purely orientational part : defaults to 1
1259 >  \item $\mu$: mixed orientational / translational part : defaults to
1260 >    2
1261 > \end{itemize}
1262 > Further details of the potential are given
1263 > elsewhere,\cite{Luckhurst:1990fy,Golubkov06,SunX._jp0762020} and an
1264 > excellent overview of the computational methods that can be used to
1265 > efficiently compute forces and torques for this potential can be found
1266 > in Ref. \citealp{Golubkov06}
1267 >
1268 > \begin{lstlisting}[caption={[An example of a GayBerneAtomTypes block.] A
1269 > simple example of a GayBerneAtomTypes block.  Distances ($d$ and $l$)
1270 > are given in \AA\ and energies ($\epsilon_X, \epsilon_S, \epsilon_E$)
1271 > are in units of kcal/mol. $dw$ is unitless.},
1272 > label={sch:GayBerneAtomTypes}]
1273 > begin GayBerneAtomTypes
1274 > //Name          d       l       eps_X           eps_S           eps_E     dw
1275 > GBlinear        2.8104  9.993   0.774729        0.774729        0.116839  1.0
1276 > GBC6H6          4.65    2.03    0.540           0.540           1.9818    0.6
1277 > GBCH3OH         2.55    3.18    0.542           0.542           0.55826   1.0
1278 > end GayBerneAtomTypes                  
1279 > \end{lstlisting}
1280 >
1281 > \subsection{\label{section:ffSticky}The StickyAtomTypes block}
1282 >
1283 > One of the solvents that can be simulated by {\sc OpenMD} is the
1284 > extended Soft Sticky Dipole (SSD/E) water model.\cite{fennell04} The
1285 > original SSD was developed by Ichiye \emph{et
1286 >  al.}\cite{liu96:new_model} as a modified form of the hard-sphere
1287   water model proposed by Bratko, Blum, and
1288   Luzar.\cite{Bratko85,Bratko95} It consists of a single point dipole
1289   with a Lennard-Jones core and a sticky potential that directs the
# Line 1160 | Line 1349 | HOH angle in each water molecule. }
1349   \label{fig:ssd}
1350   \end{figure}
1351  
1163
1352   Since SSD/E is a single-point {\it dipolar} model, the force
1353   calculations are simplified significantly relative to the standard
1354   {\it charged} multi-point models. In the original Monte Carlo
# Line 1179 | Line 1367 | SSD model that led to lower than expected densities at
1367  
1368   Recent constant pressure simulations revealed issues in the original
1369   SSD model that led to lower than expected densities at all target
1370 < pressures.\cite{Ichiye03,fennell04} The default model in {\sc OpenMD}
1371 < is therefore SSD/E, a density corrected derivative of SSD that
1372 < exhibits improved liquid structure and transport behavior. If the use
1373 < of a reaction field long-range interaction correction is desired, it
1374 < is recommended that the parameters be modified to those of the SSD/RF
1375 < model (an SSD variant parameterized for reaction field). These solvent
1188 < parameters are listed and can be easily modified in the {\sc duff}
1189 < force field file ({\tt DUFF.frc}).  A table of the parameter values
1190 < and the drawbacks and benefits of the different density corrected SSD
1191 < models can be found in reference~\cite{fennell04}.
1370 > pressures,\cite{Ichiye03,fennell04} so variants on the sticky
1371 > potential can be specified by using one of a number of substitute atom
1372 > types (see listing \ref{sch:StickyAtomTypes}).  A table of the
1373 > parameter values and the drawbacks and benefits of the different
1374 > density corrected SSD models can be found in
1375 > reference~\citealp{fennell04}.
1376  
1377 < \section{\label{section:WATER}The {\sc water} Force Field}
1377 > \begin{lstlisting}[caption={[An example of a StickyAtomTypes block.] A
1378 > simple example of a StickyAtomTypes block.  Distances ($r_l$, $r_u$,
1379 > $r_{l}'$ and $r_{u}'$) are given in \AA\ and energies ($v_0, v_{0}'$)
1380 > are in units of kcal/mol. $w_0$ is unitless.},
1381 > label={sch:StickyAtomTypes}]
1382 > begin StickyAtomTypes
1383 > //name  w0      v0 (kcal/mol)   v0p     rl (Ang)  ru    rlp     rup
1384 > SSD_E   0.07715 3.90            3.90    2.40      3.80  2.75    3.35
1385 > SSD_RF  0.07715 3.90            3.90    2.40      3.80  2.75    3.35
1386 > SSD     0.07715 3.7284          3.7284  2.75      3.35  2.75    4.0
1387 > SSD1    0.07715 3.6613          3.6613  2.75      3.35  2.75    4.0
1388 > end StickyAtomTypes
1389 > \end{lstlisting}
1390  
1391 < In addition to the {\sc duff} force field's solvent description, a
1196 < separate {\sc water} force field has been included for simulating most
1197 < of the common rigid-body water models. This force field includes the
1198 < simple and point-dipolar models (SSD, SSD1, SSD/E, SSD/RF, and DPD
1199 < water), as well as the common charge-based models (SPC, SPC/E, TIP3P,
1200 < TIP4P, and
1201 < TIP5P).\cite{liu96:new_model,Ichiye03,fennell04,Marrink01,Berendsen81,Berendsen87,Jorgensen83,Mahoney00}
1202 < In order to handle these models, charge-charge interactions were
1203 < included in the force-loop:
1204 < \begin{equation}
1205 < V_{\text{charge}}(r_{ij}) = \sum_{ij}\frac{q_iq_je^2}{r_{ij}},
1206 < \end{equation}
1207 < where $q$ represents the charge on particle $i$ or $j$, and $e$ is the
1208 < charge of an electron in Coulombs. The charge-charge interaction
1209 < support is rudimentary in the current version of {\sc OpenMD}.  As with
1210 < the other pair interactions, charges can be simulated with a pure
1211 < cutoff or a reaction field.  The various methods for performing the
1212 < Ewald summation have not yet been included.  The {\sc water} force
1213 < field can be easily expanded through modification of the {\sc water}
1214 < force field file ({\tt WATER.frc}). By adding atom types and inserting
1215 < the appropriate parameters, it is possible to extend the force field
1216 < to handle rigid molecules other than water.
1391 > \section{\label{section::ffMetals}Metallic Atom Types}
1392  
1393 < \section{\label{section:eam}Embedded Atom Method}
1394 <
1395 < {\sc OpenMD} implements a potential that describes bonding in
1396 < transition metal
1397 < systems.~\cite{Finnis84,Ercolessi88,Chen90,Qi99,Ercolessi02} This
1398 < potential has an attractive interaction which models ``Embedding'' a
1399 < positively charged pseudo-atom core in the electron density due to the
1400 < free valance ``sea'' of electrons created by the surrounding atoms in
1226 < the system.  A pairwise part of the potential (which is primarily
1227 < repulsive) describes the interaction of the positively charged metal
1228 < core ions with one another.  The Embedded Atom Method ({\sc
1229 < eam})~\cite{Daw84,FBD86,johnson89,Lu97} has been widely adopted in the
1230 < materials science community and has been included in {\sc OpenMD}. A
1231 < good review of {\sc eam} and other formulations of metallic potentials
1232 < was given by Voter.\cite{Voter:95}
1233 <
1234 < The {\sc eam} potential has the form:
1393 > {\sc OpenMD} implements a number of related potentials that describe
1394 > bonding in transition metals. These potentials have an attractive
1395 > interaction which models ``Embedding'' a positively charged
1396 > pseudo-atom core in the electron density due to the free valance
1397 > ``sea'' of electrons created by the surrounding atoms in the system.
1398 > A pairwise part of the potential (which is primarily repulsive)
1399 > describes the interaction of the positively charged metal core ions
1400 > with one another.  These potentials have the form:
1401   \begin{equation}
1402   V  =  \sum_{i} F_{i}\left[\rho_{i}\right] + \sum_{i} \sum_{j \neq i}
1403   \phi_{ij}({\bf r}_{ij})
# Line 1248 | Line 1414 | to compute the inter-atomic forces.
1414   transition metal potentials require two loops through the atom pairs
1415   to compute the inter-atomic forces.
1416  
1417 < The pairwise portion of the potential, $\phi_{ij}$, is a primarily
1418 < repulsive interaction between atoms $i$ and $j$. In the original
1253 < formulation of {\sc eam}\cite{Daw84}, $\phi_{ij}$ was an entirely
1254 < repulsive term; however later refinements to {\sc eam} allowed for
1255 < more general forms for $\phi$.\cite{Daw89} The effective cutoff
1256 < distance, $r_{{\text cut}}$ is the distance at which the values of
1257 < $f(r)$ and $\phi(r)$ drop to zero for all atoms present in the
1258 < simulation.  In practice, this distance is fairly small, limiting the
1259 < summations in the {\sc eam} equation to the few dozen atoms
1260 < surrounding atom $i$ for both the density $\rho$ and pairwise $\phi$
1261 < interactions.
1417 > The pairwise portion of the potential, $\phi_{ij}$, is usually a
1418 > repulsive interaction between atoms $i$ and $j$.
1419  
1420 < In computing forces for alloys, mixing rules as outlined by
1421 < Johnson~\cite{johnson89} are used to compute the heterogenous pair
1422 < potential,
1420 > \subsection{\label{section:ffEAM}The EAMAtomTypes block}
1421 > The Embedded Atom Method ({\sc eam}) is one of the most widely-used
1422 > potentials for transition
1423 > metals.~\cite{Finnis84,Ercolessi88,Chen90,Qi99,Ercolessi02,Daw84,FBD86,johnson89,Lu97}
1424 > It has been widely adopted in the materials science community and a
1425 > good review of {\sc eam} and other formulations of metallic potentials
1426 > was given by Voter.\cite{Voter:95}
1427 >
1428 > In the original formulation of {\sc eam}\cite{Daw84}, the pair
1429 > potential, $\phi_{ij}$ was an entirely repulsive term; however later
1430 > refinements to {\sc eam} allowed for more general forms for
1431 > $\phi$.\cite{Daw89} The effective cutoff distance, $r_{{\text cut}}$
1432 > is the distance at which the values of $f(r)$ and $\phi(r)$ drop to
1433 > zero for all atoms present in the simulation.  In practice, this
1434 > distance is fairly small, limiting the summations in the {\sc eam}
1435 > equation to the few dozen atoms surrounding atom $i$ for both the
1436 > density $\rho$ and pairwise $\phi$ interactions.
1437 >
1438 > In computing forces for alloys, OpenMD uses mixing rules outlined by
1439 > Johnson~\cite{johnson89} to compute the heterogenous pair potential,
1440   \begin{equation}
1441   \label{eq:johnson}
1442   \phi_{ab}(r)=\frac{1}{2}\left(
# Line 1294 | Line 1468 | files.  
1468   $\mbox{kcal mol}^{-1}$ as in the rest of the {\sc OpenMD} force field
1469   files.  
1470  
1471 < \section{\label{section:sc}The Sutton-Chen Force Field}
1471 > \begin{lstlisting}[caption={[An example of a EAMAtomTypes block.] A
1472 > simple example of a EAMAtomTypes block. Here the only data provided is
1473 > the name of a {\tt funcfl} file which contains the raw data for spline
1474 > interpolations for the density, functional, and pair potential.},
1475 > label={sch:EAMAtomTypes}]
1476 > begin EAMAtomTypes
1477 > Au      Au.u3.funcfl
1478 > Ag      Ag.u3.funcfl
1479 > Cu      Cu.u3.funcfl
1480 > Ni      Ni.u3.funcfl
1481 > Pd      Pd.u3.funcfl
1482 > Pt      Pt.u3.funcfl
1483 > end EAMAtomTypes
1484 > \end{lstlisting}
1485  
1486 + \subsection{\label{section:ffSC}The SuttonChenAtomTypes block}
1487 +
1488   The Sutton-Chen ({\sc sc})~\cite{Chen90} potential has been used to
1489 < study a wide range of phenomena in metals.  Although it is similar in
1490 < form to the {\sc eam} potential, the Sutton-Chen model takes on a
1491 < simpler form,
1489 > study a wide range of phenomena in metals.  Although it has the same
1490 > basic form as the {\sc eam} potential, the Sutton-Chen model requires
1491 > a simpler set of parameters,
1492   \begin{equation}
1493   \label{eq:SCP1}
1494   U_{tot}=\sum _{i}\left[ \frac{1}{2}\sum _{j\neq
1495 < i}D_{ij}V^{pair}_{ij}(r_{ij})-c_{i}D_{ii}\sqrt{\rho_{i}}\right] ,
1495 > i}\epsilon_{ij}V^{pair}_{ij}(r_{ij})-c_{i}\epsilon_{ii}\sqrt{\rho_{i}}\right] ,
1496   \end{equation}
1497   where $V^{pair}_{ij}$ and $\rho_{i}$ are given by
1498   \begin{equation}
1499   \label{eq:SCP2}
1500   V^{pair}_{ij}(r)=\left(
1501 < \frac{\alpha_{ij}}{r_{ij}}\right)^{n_{ij}}, \rho_{i}=\sum_{j\neq i}\left(
1501 > \frac{\alpha_{ij}}{r_{ij}}\right)^{n_{ij}} \hspace{1in} \rho_{i}=\sum_{j\neq i}\left(
1502   \frac{\alpha_{ij}}{r_{ij}}\right) ^{m_{ij}}
1503   \end{equation}
1504  
# Line 1317 | Line 1506 | the interactions between the valence electrons and the
1506   interactions of the pseudo-atom cores.  The $\sqrt{\rho_i}$ term in
1507   Eq. (\ref{eq:SCP1}) is an attractive many-body potential that models
1508   the interactions between the valence electrons and the cores of the
1509 < pseudo-atoms.  $D_{ij}$, $D_{ii}$, $c_i$ and $\alpha_{ij}$ are
1510 < parameters used to tune the potential for different transition
1511 < metals.
1509 > pseudo-atoms.  $\epsilon_{ij}$, $\epsilon_{ii}$, $c_i$ and
1510 > $\alpha_{ij}$ are parameters used to tune the potential for different
1511 > transition metals.
1512  
1513   The {\sc sc} potential form has also been parameterized by Qi {\it et
1514   al.}\cite{Qi99} These parameters were obtained via empirical and {\it
1515   ab initio} calculations to match structural features of the FCC
1516 < crystal.  To specify the original Sutton-Chen variant of the {\sc sc}
1517 < force field, the user would add the {\tt forceFieldVariant = "SC";}
1329 < line to the meta-data file, while specification of the Qi {\it et al.}
1330 < quantum-adapted variant of the {\sc sc} potential, the user would add
1331 < the {\tt forceFieldVariant = "QSC";} line to the meta-data file.
1516 > crystal.  Interested readers are encouraged to consult reference
1517 > \citealp{Qi99} for further details.
1518  
1519 < \section{\label{section:clay}The CLAY force field}
1519 > \begin{lstlisting}[caption={[An example of a SCAtomTypes block.] A
1520 > simple example of a SCAtomTypes block.  Distances ($\alpha$)
1521 > are given in \AA\ and energies ($\epsilon$) are (by convention) given in
1522 > units of eV.  These units must be specified in the {\tt Options} block
1523 > using the keyword {\tt MetallicEnergyUnitScaling}.  Without this {\tt
1524 > Options} keyword, the default units for $\epsilon$ are kcal/mol.  The
1525 > other parameters, $m$, $n$, and $c$ are unitless.},
1526 > label={sch:SCAtomTypes}]
1527 > begin SCAtomTypes
1528 > // Name  epsilon(eV)      c      m       n      alpha(angstroms)
1529 > Ni      0.0073767       84.745  5.0     10.0    3.5157
1530 > Cu      0.0057921       84.843  5.0     10.0    3.6030
1531 > Rh      0.0024612       305.499 5.0     13.0    3.7984
1532 > Pd      0.0032864       148.205 6.0     12.0    3.8813
1533 > Ag      0.0039450       96.524  6.0     11.0    4.0691
1534 > Ir      0.0037674       224.815 6.0     13.0    3.8344  
1535 > Pt      0.0097894       71.336  7.0     11.0    3.9163
1536 > Au      0.0078052       53.581  8.0     11.0    4.0651
1537 > Au2     0.0078052       53.581  8.0     11.0    4.0651
1538 > end SCAtomTypes
1539 > \end{lstlisting}
1540  
1541 < The {\sc clay} force field is based on an ionic (nonbonded)
1542 < description of the metal-oxygen interactions associated with hydrated
1543 < phases. All atoms are represented as point charges and are allowed
1544 < complete translational freedom. Metal-oxygen interactions are based on
1545 < a simple Lennard-Jones potential combined with electrostatics. The
1546 < empirical parameters were optimized by Cygan {\it et
1547 < al.}\cite{Cygan04} on the basis of known mineral structures, and
1548 < partial atomic charges were derived from periodic DFT quantum chemical
1549 < calculations of simple oxide, hydroxide, and oxyhydroxide model
1550 < compounds with well-defined structures.
1541 > \section{\label{section::ffShortRange}Short Range Interactions}
1542 > The internal structure of a molecule is usually specified in terms of
1543 > a set of ``bonded'' terms in the potential energy function for
1544 > molecule $I$,
1545 > \begin{align*}
1546 > V^{I}_{\text{Internal}} =  &
1547 > \sum_{r_{ij} \in I} V_{\text{bond}}(r_{ij})
1548 > + \sum_{\theta_{ijk} \in I} V_{\text{bend}}(\theta_{ijk})
1549 > + \sum_{\phi_{ijkl} \in I} V_{\text{torsion}}(\phi_{ijkl})
1550 > + \sum_{\omega_{ijkl} \in I} V_{\text{inversion}}(\omega_{ijkl}) \\
1551 > & + \sum_{i \in I} \sum_{(j>i+4) \in I}
1552 > \biggl[ V_{\text{dispersion}}(r_{ij}) +  V_{\text{electrostatic}}
1553 > (\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},\boldsymbol{\Omega}_{j})
1554 > \biggr].
1555 > \label{eq:internalPotential}
1556 > \end{align*}
1557 > Here $V_{\text{bond}}, V_{\text{bend}},
1558 > V_{\text{torsion}},\mathrm{~and~} V_{\text{inversion}}$ represent the
1559 > bond, bend, torsion, and inversion potentials for all
1560 > topologically-connected sets of atoms within the molecule.  Bonds are
1561 > the primary way of specifying how the atoms are connected together to
1562 > form the molecule (i.e. they define the molecular topology).  The
1563 > other short-range interactions may be specified explicitly in the
1564 > molecule definition, or they may be deduced from bonding information.
1565 > For example, bends can be implicitly deduced from two bonds which
1566 > share an atom.  Torsions can be deduced from two bends that share a
1567 > bond.  Inversion potentials are utilized primarily to enforce
1568 > planarity around $sp^2$-hybridized sites, and these are specified with
1569 > central atoms and satellites (or an atom with bonds to exactly three
1570 > satellites). Non-bonded interactions are usually excluded for atom
1571 > pairs that are involved in the same bond, bend, or torsion, but all
1572 > other atom pairs are included in the standard non-bonded interactions.
1573 >
1574 > Bond lengths, angles, and torsions (dihedrals) are ``natural''
1575 > coordinates to treat molecular motion, as it is usually in these
1576 > coordinates that most chemists understand the behavior of molecules.
1577 > The bond lengths and angles are often considered ``hard'' degrees of
1578 > freedom.  That is, we can't deform them very much without a
1579 > significant energetic penalty.  On the other hand, dihedral angles or
1580 > torsions are ``soft'' and typically undergo significant deformation
1581 > under normal conditions.
1582 >
1583 > \subsection{\label{section:ffBond}The BondTypes block}
1584 >
1585 > Bonds are the primary way to specify how the atoms are connected
1586 > together to form the molecule.  In general, bonds exert strong
1587 > restoring forces to keep the molecule compact.  The bond energy
1588 > functions are relatively simple functions of the distance between two
1589 > atomic sites,
1590 > \begin{equation}
1591 > b = \left| \vec{r}_{ij} \right| = \sqrt{(x_j - x_i)^2 + (y_j - y_i)^2
1592 >  + (z_j - z_i)^2}.
1593 > \end{equation}
1594 > All BondTypes must specify two AtomType names ($i$ and $j$) that
1595 > describe when that bond should be applied, as well as an equilibrium
1596 > bond length, $b_{ij}^0$, in units of \AA. The most common forms for
1597 > bonding potentials are {\tt Harmonic} bonds,
1598 > \begin{equation}
1599 > V_{\text{bond}}(b) = \frac{k_{ij}}{2} \left(b -
1600 >  b_{ij}^0 \right)^2
1601 > \end{equation}
1602 > and {\tt Morse} bonds,
1603 > \begin{equation}
1604 > V_{\text{bond}}(b) = D_{ij} \left[ 1 - e^{-\beta_{ij} (b - b_{ij}^0)} \right]^2
1605 > \end{equation}
1606 >
1607 > OpenMD can also simulate some less common types of bond potentials,
1608 > including {\tt Fixed} bonds (which are constrained to be at a
1609 > specified bond length),
1610 > \begin{equation}
1611 > V_{\text{bond}}(b) = 0.
1612 > \end{equation}
1613 > {\tt Cubic} bonds include terms to model anharmonicity,
1614 > \begin{equation}
1615 > V_{\text{bond}}(b) =  K_3 (b -  b_{ij}^0)^3 + K_2 (b - b_{ij}^0)^2 + K_1 (b -  b_{ij}^0) + K_0,
1616 > \end{equation}
1617 > and {\tt Quartic} bonds, include another term in the Taylor
1618 > expansion around $b_{ij}^0$,
1619 > \begin{equation}
1620 > V_{\text{bond}}(b) = K_4 (b -  b_{ij}^0)^4 +  K_3 (b -  b_{ij}^0)^3 +
1621 > K_2 (b - b_{ij}^0)^2 + K_1 (b -  b_{ij}^0) + K_0,
1622 > \end{equation}
1623 > can also be simulated.  Note that the factor of $1/2$ that is included
1624 > in the {\tt Harmonic} bond type force constant is {\it not} present in
1625 > either the {\tt Cubic} or {\tt Quartic} bond types.
1626 >
1627 > {\tt Polynomial} bonds which can have any number of terms,
1628 > \begin{equation}
1629 > V_{\text{bond}}(b) = \sum_n K_n (b -  b_{ij}^0)^n.
1630 > \end{equation}
1631 > can also be specified by giving a sequence of integer ($n$) and force
1632 > constant ($K_n$) pairs.
1633 >
1634 > The order of terms in the BondTypes block is:
1635 > \begin{itemize}
1636 > \item {\tt AtomType} 1
1637 > \item {\tt AtomType} 2
1638 > \item {\tt BondType} (one of {\tt Harmonic}, {\tt Morse}, {\tt Fixed}, {\tt
1639 >        Cubic}, {\tt Quartic}, or {\tt Polynomial})
1640 > \item $b_{ij}^0$, the equilibrium bond length in \AA
1641 > \item any other parameters required by the {\tt BondType}
1642 > \end{itemize}
1643 >
1644 > \begin{lstlisting}[caption={[An example of a BondTypes block.] A
1645 > simple example of a BondTypes block.  Distances ($b_0$)
1646 > are given in \AA\ and force constants are given in
1647 > units so that when multiplied by the correct power of distance they
1648 > return energies in kcal/mol.  For example $k$ for a Harmonic bond is
1649 > in units of kcal/mol/\AA$^2$.},
1650 > label={sch:BondTypes}]
1651 > begin BondTypes
1652 > //Atom1 Atom2   Harmonic        b0        k (kcal/mol/A^2)
1653 > CH2     CH2     Harmonic        1.526     260
1654 > //Atom1 Atom2   Morse           b0        D       beta (A^-1)
1655 > CN      NC      Morse           1.157437  212.95  2.5802
1656 > //Atom1 Atom2   Fixed           b0
1657 > CT      HC      Fixed           1.09
1658 > //Atom1 Atom2   Cubic           b0        K3      K2      K1      K0
1659 > //Atom1 Atom2   Quartic         b0        K4      K3      K2      K1      K0
1660 > //Atom1 Atom2   Polynomial      b0        n       Kn      [m      Km]
1661 > end BondTypes
1662 > \end{lstlisting}
1663 >
1664 > There are advantages and disadvantages of all of the different types
1665 > of bonds, but specific simulation tasks may call for specific
1666 > behaviors.
1667 >
1668 > \subsection{\label{section:ffBend}The BendTypes block}
1669 > The equilibrium geometries and energy functions for bending motions in
1670 > a molecule are strongly dependent on the bonding environment of the
1671 > central atomic site.  For example, different types of hybridized
1672 > carbon centers require different bending angles and force constants to
1673 > describe the local geometry.
1674 >
1675 > The bending potential energy functions used in most force fields are
1676 > often simple functions of the angle between two bonds,
1677 > \begin{equation}
1678 > \theta_{ijk} = \cos^{-1} \left(\frac{\vec{r}_{ij} \cdot
1679 >    \vec{r}_{jk}}{\left| \vec{r}_{ij} \right| \left| \vec{r}_{ij}
1680 >    \right|} \right)
1681 > \end{equation}
1682 > Here atom $j$ is the central atom that is bonded to two partners $i$
1683 > and $k$.
1684 >
1685 > All BendTypes must specify three AtomType names ($i$, $j$ and $k$)
1686 > that describe when that bend potential should be applied, as well as
1687 > an equilibrium bending angle, $\theta_{ijk}^0$, in units of
1688 > degrees. The most common forms for bending potentials are {\tt
1689 >  Harmonic} bends,
1690 > \begin{equation}
1691 > V_{\text{bend}}(\theta_{ijk}) = \frac{k_{ijk}}{2}( \theta_{ijk} - \theta_{ijk}^0
1692 > )^2, \label{eq:bendPot}
1693 > \end{equation}
1694 > where $k_{ijk}$ is the force constant which determines the strength of
1695 > the harmonic bend. {\tt UreyBradley} bends utilize an additional 1-3
1696 > bond-type interaction in addition to the harmonic bending potential:
1697 > \begin{equation}
1698 >  V_{\text{bend}}(\vec{r}_i , \vec{r}_j, \vec{r}_k)
1699 >  =\frac{k_{ijk}}{2}( \theta_{ijk} - \theta_{ijk}^0)^2
1700 >  + \frac{k_{ub}}{2}( r_{ik} - s_0 )^2. \label{eq:ubBend}
1701 > \end{equation}
1702 >
1703 > A {\tt Cosine} bend is a variant on the harmonic bend which utilizes
1704 > the cosine of the angle instead of the angle itself,
1705 > \begin{equation}
1706 > V_{\text{bend}}(\theta_{ijk}) = \frac{k_{ijk}}{2}( \cos\theta_{ijk} -
1707 > \cos \theta_{ijk}^0 )^2. \label{eq:cosBend}
1708 > \end{equation}
1709 >
1710 > OpenMD can also simulate some less common types of bend potentials,
1711 > including {\tt Cubic} bends, which include terms to model anharmonicity,
1712 > \begin{equation}
1713 > V_{\text{bend}}(\theta_{ijk}) =  K_3 (\theta_{ijk} -  \theta_{ijk}^0)^3 + K_2 (\theta_{ijk} -  \theta_{ijk}^0)^2 + K_1 (\theta_{ijk} -  \theta_{ijk}^0) + K_0,
1714 > \end{equation}
1715 > and {\tt Quartic} bends, which include another term in the Taylor
1716 > expansion around $\theta_{ijk}^0$,
1717 > \begin{equation}
1718 >  V_{\text{bend}}(\theta_{ijk}) = K_4 (\theta_{ijk} -  \theta_{ijk}^0)^4 +  K_3 (\theta_{ijk} -  \theta_{ijk}^0)^3 +
1719 >  K_2 (\theta_{ijk} -  \theta_{ijk}^0)^2 + K_1 (\theta_{ijk} -
1720 >  \theta_{ijk}^0) + K_0,
1721 > \end{equation}
1722 > can also be simulated.  Note that the factor of $1/2$ that is included
1723 > in the {\tt Harmonic} bend type force constant is {\it not} present in
1724 > either the {\tt Cubic} or {\tt Quartic} bend types.
1725 >
1726 > {\tt Polynomial} bends which can have any number of terms,
1727 > \begin{equation}
1728 > V_{\text{bend}}(\theta_{ijk}) = \sum_n K_n (\theta_{ijk} -  \theta_{ijk}^0)^n.
1729 > \end{equation}
1730 > can also be specified by giving a sequence of integer ($n$) and force
1731 > constant ($K_n$) pairs.
1732 >
1733 > The order of terms in the BendTypes block is:
1734 > \begin{itemize}
1735 > \item {\tt AtomType} 1
1736 > \item {\tt AtomType} 2 (this is the central atom)
1737 > \item {\tt AtomType} 3
1738 > \item {\tt BendType} (one of {\tt Harmonic}, {\tt UreyBradley}, {\tt
1739 >    Cosine}, {\tt Cubic}, {\tt Quartic}, or {\tt Polynomial})
1740 > \item $\theta_{ijk}^0$, the equilibrium bending angle in degrees.
1741 > \item any other parameters required by the {\tt BendType}
1742 > \end{itemize}
1743 >
1744 > \begin{lstlisting}[caption={[An example of a BendTypes block.] A
1745 > simple example of a BendTypes block.  By convention, equilibrium angles
1746 > ($\theta_0$) are given in degrees but force constants are given in
1747 > units so that when multiplied by the correct power of angle (in
1748 > radians) they return energies in kcal/mol.  For example $k$ for a
1749 > Harmonic bend is in units of kcal/mol/radians$^2$.},
1750 > label={sch:BendTypes}]
1751 > begin BendTypes
1752 > //Atom1 Atom2   Atom3   Harmonic      theta0(deg) Ktheta(kcal/mol/radians^2)
1753 > CT      CT      CT      Harmonic      109.5        80.000000
1754 > CH2     CH      CH2     Harmonic      112.0       117.68
1755 > CH3     CH2     SH      Harmonic       96.0        67.220
1756 > //UreyBradley
1757 > //Atom1 Atom2   Atom3   UreyBradley   theta0      Ktheta  s0  Kub
1758 > //Cosine
1759 > //Atom1 Atom2   Atom3   Cosine        theta0      Ktheta(kcal/mol)
1760 > //Cubic
1761 > //Atom1 Atom2   Atom3   Cubic         theta0      K3      K2  K1   K0
1762 > //Quartic
1763 > //Atom1 Atom2   Atom3   Quartic       theta0      K4      K3  K2   K1   K0
1764 > //Polynomial
1765 > //Atom1 Atom2   Atom3   Polynomial    theta0      n       Kn  [m   Km]
1766 > end BendTypes
1767 > \end{lstlisting}
1768 >
1769 > Note that the parameters for a particular bend type are the same for
1770 > any bending triplet of the same atomic types (in the same or reversed
1771 > order).  Changing the AtomType in the Atom2 position will change the
1772 > matched bend types in the force field.
1773 >
1774 > \subsection{\label{section:ffTorsion}The TorsionTypes block}
1775 > The torsion potential for rotation of groups around a central bond can
1776 > often be represented with various cosine functions.  For two
1777 > tetrahedral ($sp^3$) carbons connected by a single bond, the torsion
1778 > potential might be
1779 > \begin{equation*}
1780 > V_{\text{torsion}} = \frac{v}{2} \left[ 1 + \cos( 3 \phi ) \right]
1781 > \end{equation*}
1782 > where $v$ is the barrier for going from {\em staggered} $\rightarrow$
1783 > {\em eclipsed} conformations, while for $sp^2$ carbons connected by a
1784 > double bond, the potential might be
1785 > \begin{equation*}
1786 > V_{\text{torsion}} = \frac{w}{2} \left[ 1 - \cos( 2 \phi ) \right]
1787 > \end{equation*}
1788 > where $w$ is the barrier for going from  {\em cis} $\rightarrow$ {\em
1789 >  trans} conformations.
1790 >
1791 > A general torsion potentials can be represented as a cosine series of
1792 > the form:
1793 > \begin{equation}
1794 > V_{\text{torsion}}(\phi_{ijkl}) = c_1[1 + \cos \phi_{ijkl}]
1795 >        + c_2[1 - \cos(2\phi_{ijkl})]
1796 >        + c_3[1 + \cos(3\phi_{ijkl})],
1797 > \label{eq:origTorsionPot}
1798 > \end{equation}
1799 > where the angle $\phi_{ijkl}$ is defined
1800 > \begin{equation}
1801 > \cos\phi_{ijkl} = (\hat{\mathbf{r}}_{ij} \times \hat{\mathbf{r}}_{jk}) \cdot
1802 >        (\hat{\mathbf{r}}_{jk} \times \hat{\mathbf{r}}_{kl}).
1803 > \label{eq:torsPhi}
1804 > \end{equation}
1805 > Here, $\hat{\mathbf{r}}_{\alpha\beta}$ are the set of unit bond
1806 > vectors between atoms $i$, $j$, $k$, and $l$.
1807 >
1808 > For computational efficiency, OpenMD recasts torsion potential in the
1809 > method of {\sc charmm},\cite{Brooks83} in which the angle series is
1810 > converted to a power series of the form:
1811 > \begin{equation}
1812 >  V_{\text{torsion}}(\phi_{ijkl}) =  
1813 >  k_3 \cos^3 \phi_{ijkl} + k_2 \cos^2 \phi_{ijkl} + k_1 \cos \phi_{ijkl} + k_0,
1814 > \label{eq:torsionPot}
1815 > \end{equation}
1816 > where:
1817 > \begin{align*}
1818 > k_0 &= c_1 + 2 c_2 + c_3, \\
1819 > k_1 &= c_1 - 3c_3, \\
1820 > k_2 &= - 2 c_2, \\
1821 > k_3 &= 4 c_3.
1822 > \end{align*}
1823 > By recasting the potential as a power series, repeated trigonometric
1824 > evaluations are avoided during the calculation of the potential
1825 > energy.
1826 >
1827 > Using this framework, OpenMD implements a variety of different
1828 > potential energy functions for torsions:
1829 > \begin{itemize}
1830 > \item {\tt Cubic}:
1831 > \begin{equation*}
1832 >  V_{\text{torsion}}(\phi) =  
1833 >  k_3 \cos^3 \phi + k_2 \cos^2 \phi + k_1 \cos \phi + k_0,
1834 > \end{equation*}
1835 > \item {\tt Quartic}:
1836 > \begin{equation*}
1837 >  V_{\text{torsion}}(\phi) =  k_4 \cos^4 \phi +
1838 >  k_3 \cos^3 \phi + k_2 \cos^2 \phi + k_1 \cos \phi + k_0,
1839 > \end{equation*}
1840 > \item {\tt Polynomial}:
1841 > \begin{equation*}
1842 > V_{\text{torsion}}(\phi) =  \sum_n k_n \cos^n \phi ,
1843 > \end{equation*}
1844 > \item {\tt Charmm}:
1845 > \begin{equation*}
1846 > V_{\text{torsion}}(\phi) = \sum_n K_n \left( 1 + cos(n
1847 >  \phi - \delta_n) \right),
1848 > \end{equation*}
1849 > \item {\tt Opls}:
1850 > \begin{equation*}
1851 >  V_{\text{torsion}}(\phi) =  \frac{1}{2} \left(v_1 (1 + \cos \phi) \right)
1852 >    + v_2 (1 - \cos 2 \phi) +  v_3 (1 + \cos 3 \phi),
1853 > \end{equation*}
1854 > \item {\tt Trappe}:\cite{Siepmann1998}
1855 > \begin{equation*}
1856 >  V_{\text{torsion}}(\phi) =  c_0 + c_1 (1 + \cos \phi) + c_2 (1 - \cos 2 \phi)  +
1857 >  c_3 (1 + \cos 3 \phi),
1858 > \end{equation*}
1859 > \item {\tt Harmonic}:
1860 > \begin{equation*}
1861 > V_{\text{torsion}}(\phi) =  \frac{d_0}{2} \left(\phi - \phi^0\right).
1862 > \end{equation*}
1863 > \end{itemize}
1864 >
1865 > Most torsion types don't require specific angle information in the
1866 > parameters since they are typically expressed in cosine polynomials.
1867 > {\tt Charmm} and {\tt Harmonic} torsions are a bit different.  {\tt
1868 >  Charmm} torsion types require a set of phase angles, $\delta_n$ that
1869 > are expressed in degrees, and associated periodicity numbers, $n$.
1870 > {\tt Harmonic} torsions have an equilibrium torsion angle, $\phi_0$
1871 > that is measured in degrees, while $d_0$ has units of
1872 > kcal/mol/degrees$^2$.  All other torsion parameters are measured in
1873 > units of kcal/mol.
1874 >
1875 > \begin{lstlisting}[caption={[An example of a TorsionTypes block.] A
1876 > simple example of a TorsionTypes block.  Energy constants are given in
1877 > kcal / mol, and when required by the form, $\delta$ angles are given
1878 > in degrees.},
1879 > label={sch:TorsionTypes}]
1880 > begin TorsionTypes
1881 > //Cubic
1882 > //Atom1 Atom2   Atom3   Atom4   Cubic   k3       k2        k1      k0  
1883 > CH2     CH2     CH2     CH2     Cubic   5.9602   -0.2568   -3.802  2.1586
1884 > CH2     CH      CH      CH2     Cubic   3.3254   -0.4215   -1.686  1.1661
1885 > //Trappe
1886 > //Atom1 Atom2   Atom3   Atom4   Trappe  c0       c1        c2      c3
1887 > CH3     CH2     CH2     SH      Trappe  0.10507  -0.10342  0.03668 0.60874    
1888 > //Charmm
1889 > //Atom1 Atom2   Atom3   Atom4   Charmm  Kchi     n    delta  [Kchi n delta]
1890 > CT      CT      CT      C       Charmm  0.156    3    0.00
1891 > OH      CT      CT      OH      Charmm  0.144    3    0.00    1.175 2  0
1892 > HC      CT      CM      CM      Charmm  1.150    1    0.00    0.38  3 180
1893 > //Quartic
1894 > //Atom1 Atom2   Atom3   Atom4   Quartic          k4    k3    k2    k1    k0
1895 > //Polynomial
1896 > //Atom1 Atom2   Atom3   Atom4   Polynomial  n Kn     [m  Km]
1897 > S       CH2     CH2     C       Polynomial  0 2.218   1  2.905  2 -3.136  3 -0.7313  4 6.272  5 -7.528
1898 > end TorsionTypes
1899 > \end{lstlisting}
1900 >
1901 > Note that the parameters for a particular torsion type are the same
1902 > for any torsional quartet of the same atomic types (in the same or
1903 > reversed order).
1904 >
1905 > \subsection{\label{section:ffInversion}The InversionTypes block}
1906 >
1907 > Inversion potentials are often added to force fields to enforce
1908 > planarity around $sp^2$-hybridized carbons or to correct vibrational
1909 > frequencies for umbrella-like vibrational modes for central atoms
1910 > bonded to exactly three satellite groups.
1911 >
1912 > In OpenMD's version of an inversion, the central atom is entered {\it
1913 >  first} in each line in the {\tt InversionTypes} block. Note that
1914 > this is quite different than how other codes treat Improper torsional
1915 > potentials to mimic inversion behavior.  In some other widely-used
1916 > simulation packages, the central atom is treated as atom 3 in a
1917 > standard torsion form:
1918 > \begin{itemize}
1919 >  \item OpenMD:  I - (J - K - L)  (e.g. I is $sp^2$ hybridized carbon)
1920 >  \item AMBER:   I - J - K - L   (e.g. K is $sp^2$ hybridized carbon)
1921 > \end{itemize}
1922 >
1923 > The inversion angle itself is defined as:
1924 > \begin{equation}
1925 > \cos\omega_{i-jkl} = \left(\hat{\mathbf{r}}_{il} \times
1926 >  \hat{\mathbf{r}}_{ij}\right)\cdot\left( \hat{\mathbf{r}}_{il} \times
1927 >  \hat{\mathbf{r}}_{ik}\right)
1928 > \end{equation}
1929 > Here, $\hat{\mathbf{r}}_{\alpha\beta}$ are the set of unit bond
1930 > vectors between the central atoms $i$, and the satellite atoms $j$,
1931 > $k$, and $l$.  Note that other definitions of inversion angles are
1932 > possible, so users are encouraged to be particularly careful when
1933 > converting other force field files for use with OpenMD.
1934  
1935 + There are many common ways to create planarity or umbrella behavior in
1936 + a potential energy function, and OpenMD implements a number of the
1937 + more common functions:
1938 + \begin{itemize}
1939 + \item {\tt ImproperCosine}:
1940 + \begin{equation*}
1941 + V_{\text{torsion}}(\omega) = \sum_n \frac{K_n}{2} \left( 1 + cos(n
1942 +  \omega - \delta_n) \right),
1943 + \end{equation*}
1944 + \item {\tt AmberImproper}:
1945 + \begin{equation*}
1946 +  V_{\text{torsion}}(\omega) =  \frac{v}{2} (1 - \cos\left(2 \left(\omega - \omega_0\right)\right),
1947 + \end{equation*}
1948 + \item {\tt Harmonic}:
1949 + \begin{equation*}
1950 + V_{\text{torsion}}(\omega) =  \frac{d}{2} \left(\omega - \omega_0\right).
1951 + \end{equation*}
1952 + \end{itemize}
1953 + \begin{lstlisting}[caption={[An example of an InversionTypes block.] A
1954 + simple example of a InversionTypes block.  Angles ($\delta_n$ and
1955 + $\omega_0$) angles are given in degrees, while energy parameters ($v,
1956 + K_n$) are given in kcal / mol.   The Harmonic Inversion type has a
1957 + force constant that must be given in kcal/mol/degrees$^2$.},
1958 + label={sch:InversionTypes}]
1959 + begin InversionTypes
1960 + //Harmonic
1961 + //Atom1 Atom2   Atom3   Atom4   Harmonic  d(kcal/mol/deg^2)  omega0
1962 + RCHar3  X       X       X       Harmonic  1.21876e-2         180.0
1963 + //AmberImproper
1964 + //Atom1 Atom2   Atom3   Atom4   AmberImproper   v(kcal/mol)
1965 + C       CT      N       O       AmberImproper   10.500000
1966 + CA      CA      CA      CT      AmberImproper   1.100000
1967 + //ImproperCosine
1968 + //Atom1 Atom2   Atom3   Atom4   ImproperCosine  Kn  n  delta_n  [Kn n delta_n]
1969 + end InversionTypes
1970 + \end{lstlisting}
1971  
1972 + \section{\label{section::ffLongRange}Long Range Interactions}
1973 +
1974 + Calculating the long-range (non-bonded) potential involves a sum over
1975 + all pairs of atoms (except for those atoms which are involved in a
1976 + bond, bend, or torsion with each other).  Many of these interactions
1977 + can be inferred from the AtomTypes,
1978 +
1979 + \subsection{\label{section:ffNBinteraction}The NonBondedInteractions
1980 +  block}
1981 +
1982 + The user might want like to specify explicit or special interactions
1983 + that override the default non-bodned interactions that are inferred
1984 + from the AtomTypes.  To do this, OpenMD implements a
1985 + NonBondedInteractions block to allow the user to specify the following
1986 + (pair-wise) non-bonded interactions:
1987 +
1988 + \begin{itemize}
1989 + \item {\tt LennardJones}:
1990 + \begin{equation*}
1991 + V_{\text{NB}}(r) = 4 \epsilon_{ij} \left(
1992 +  \left(\frac{\sigma_{ij}}{r} \right)^{12} -
1993 +  \left(\frac{\sigma_{ij}}{r} \right)^{6} \right),
1994 + \end{equation*}
1995 + \item {\tt ShiftedMorse}:
1996 + \begin{equation*}
1997 + V_{\text{NB}}(r) = D_{ij} \left( e^{-2 \beta_{ij} (r -
1998 +     r^0)} - 2 e^{- \beta_{ij} (r -
1999 +     r^0)} \right),
2000 + \end{equation*}
2001 + \item {\tt RepulsiveMorse}:
2002 + \begin{equation*}
2003 + V_{\text{NB}}(r) = D_{ij} \left( e^{-2 \beta_{ij} (r -
2004 +     r^0)} \right),
2005 + \end{equation*}
2006 + \item {\tt RepulsivePower}:
2007 + \begin{equation*}
2008 +  V_{\text{NB}}(r) = \epsilon_{ij}
2009 +  \left(\frac{\sigma_{ij}}{r} \right)^{n_{ij}}.
2010 + \end{equation*}
2011 + \end{itemize}
2012 +
2013 + \begin{lstlisting}[caption={[An example of a NonBondedInteractions block.] A
2014 + simple example of a NonBondedInteractions block. Distances ($\sigma,
2015 + r_0$) are given in \AA, while energies ($\epsilon, D0$) are in
2016 + kcal/mol.  The Morse potentials have an additional parameter $\beta_0$
2017 + which is in units of \AA$^{-1}$.},
2018 + label={sch:InversionTypes}]
2019 + begin NonBondedInteractions
2020 +
2021 + //Lennard-Jones
2022 + //Atom1 Atom2   LennardJones    sigma  epsilon
2023 + Au      CH3     LennardJones    3.54   0.2146
2024 + Au      CH2     LennardJones    3.54   0.1749
2025 + Au      CH      LennardJones    3.54   0.1749
2026 + Au      S       LennardJones    2.40   8.465
2027 +
2028 + //Shifted Morse
2029 + //Atom1 Atom2   ShiftedMorse    r0     D0       beta0
2030 + Au      O_SPCE  ShiftedMorse    3.70   0.0424   0.769
2031 +
2032 + //Repulsive Morse
2033 + //Atom1 Atom2   RepulsiveMorse  r0     D0       beta0
2034 + Au      H_SPCE  RepulsiveMorse  -1.00  0.00850  0.769
2035 +
2036 + //Repulsive Power
2037 + //Atom1 Atom2   RepulsivePower   sigma    epsilon    n
2038 + Au      ON      RepulsivePower   3.47005  0.186208   11
2039 + Au      NO      RepulsivePower   3.53955  0.168629   11
2040 + end NonBondedInteractions
2041 + \end{lstlisting}
2042 +
2043   \section{\label{section:electrostatics}Electrostatics}
2044  
2045   To aid in performing simulations in more traditional force fields, we
# Line 1473 | Line 2169 | the shifted potential (eq. (\ref{eq:SPPot})) becomes
2169   \end{equation}
2170   the shifted potential (eq. (\ref{eq:SPPot})) becomes
2171   \begin{equation}
2172 < V_{\textrm{DSP}}(r) = q_iq_j\left(\frac{\textrm{erfc}\left(\alpha r\right)}{r}-\
1477 < frac{\textrm{erfc}\left(\alpha R_\textrm{c}\right)}{R_\textrm{c}}\right) \quad r
2172 > V_{\textrm{DSP}}(r) = q_iq_j\left(\frac{\textrm{erfc}\left(\alpha r\right)}{r}-\frac{\textrm{erfc}\left(\alpha R_\textrm{c}\right)}{R_\textrm{c}}\right) \quad r
2173   \leqslant R_\textrm{c},
2174   \label{eq:DSPPot}
2175   \end{equation}
# Line 1518 | Line 2213 | this reason, the default electrostatic summation metho
2213   this reason, the default electrostatic summation method utilized by
2214   {\sc OpenMD} is the DSF (Eq. \ref{eq:DSFPot}) with a damping parameter
2215   ($\alpha$) that is set algorithmically from the cutoff radius.
2216 +
2217 +
2218 + \section{\label{section:cutoffGroups}Switching Functions}
2219 +
2220 + If done poorly, calculating the the long-range interactions for $N$
2221 + atoms would involve $N(N-1)/2$ evaluations of atomic distances.  To
2222 + reduce the number of distance evaluations between pairs of atoms, {\sc
2223 +  OpenMD} allows the use of switched cutoffs with Verlet neighbor
2224 + lists.\cite{Allen87} Neutral groups which contain charges will exhibit
2225 + pathological forces unless the cutoff is applied to the neutral groups
2226 + evenly instead of to the individual atoms.\cite{leach01:mm} {\sc
2227 +  OpenMD} allows users to specify cutoff groups which may contain an
2228 + arbitrary number of atoms in the molecule.  Atoms in a cutoff group
2229 + are treated as a single unit for the evaluation of the switching
2230 + function:
2231 + \begin{equation}
2232 + V_{\mathrm{long-range}} = \sum_{a} \sum_{b>a} s(r_{ab}) \sum_{i \in a} \sum_{j \in b} V_{ij}(r_{ij}),
2233 + \end{equation}
2234 + where $r_{ab}$ is the distance between the centers of mass of the two
2235 + cutoff groups ($a$ and $b$).
2236  
2237 + The sums over $a$ and $b$ are over the cutoff groups that are present
2238 + in the simulation.  Atoms which are not explicitly defined as members
2239 + of a {\tt cutoffGroup} are treated as a group consisting of only one
2240 + atom.  The switching function, $s(r)$ is the standard cubic switching
2241 + function,
2242 + \begin{equation}
2243 + S(r) =
2244 +        \begin{cases}
2245 +        1 & \text{if $r \le r_{\text{sw}}$},\\
2246 +        \frac{(r_{\text{cut}} + 2r - 3r_{\text{sw}})(r_{\text{cut}} - r)^2}
2247 +        {(r_{\text{cut}} - r_{\text{sw}})^3}
2248 +        & \text{if $r_{\text{sw}} < r \le r_{\text{cut}}$}, \\
2249 +        0 & \text{if $r > r_{\text{cut}}$.}
2250 +        \end{cases}
2251 + \label{eq:dipoleSwitching}
2252 + \end{equation}
2253 + Here, $r_{\text{sw}}$ is the {\tt switchingRadius}, or the distance
2254 + beyond which interactions are reduced, and $r_{\text{cut}}$ is the
2255 + {\tt cutoffRadius}, or the distance at which interactions are
2256 + truncated.
2257 +
2258 + Users of {\sc OpenMD} do not need to specify the {\tt cutoffRadius} or
2259 + {\tt switchingRadius}.  In simulations containing only Lennard-Jones
2260 + atoms, the cutoff radius has a default value of $2.5\sigma_{ii}$,
2261 + where $\sigma_{ii}$ is the largest Lennard-Jones length parameter
2262 + present in the simulation.  In simulations containing charged or
2263 + dipolar atoms, the default cutoff radius is $15 \mbox{\AA}$.  
2264 +
2265 + The {\tt switchingRadius} is set to a default value of 95\% of the
2266 + {\tt cutoffRadius}.  In the special case of a simulation containing
2267 + {\it only} Lennard-Jones atoms, the default switching radius takes the
2268 + same value as the cutoff radius, and {\sc OpenMD} will use a shifted
2269 + potential to remove discontinuities in the potential at the cutoff.
2270 + Both radii may be specified in the meta-data file.
2271 +
2272 +
2273 + \section{\label{section:WATER}The {\sc water} Force Field}
2274 +
2275 + In addition to the {\sc duff} force field's solvent description, a
2276 + separate {\sc water} force field has been included for simulating most
2277 + of the common rigid-body water models. This force field includes the
2278 + simple and point-dipolar models (SSD, SSD1, SSD/E, SSD/RF, and DPD
2279 + water), as well as the common charge-based models (SPC, SPC/E, TIP3P,
2280 + TIP4P, and
2281 + TIP5P).\cite{liu96:new_model,Ichiye03,fennell04,Marrink01,Berendsen81,Berendsen87,Jorgensen83,Mahoney00}
2282 + In order to handle these models, charge-charge interactions were
2283 + included in the force-loop:
2284 + \begin{equation}
2285 + V_{\text{charge}}(r_{ij}) = \sum_{ij}\frac{q_iq_je^2}{r_{ij}},
2286 + \end{equation}
2287 + where $q$ represents the charge on particle $i$ or $j$, and $e$ is the
2288 + charge of an electron in Coulombs. The charge-charge interaction
2289 + support is rudimentary in the current version of {\sc OpenMD}.  As with
2290 + the other pair interactions, charges can be simulated with a pure
2291 + cutoff or a reaction field.  The various methods for performing the
2292 + Ewald summation have not yet been included.  The {\sc water} force
2293 + field can be easily expanded through modification of the {\sc water}
2294 + force field file ({\tt WATER.frc}). By adding atom types and inserting
2295 + the appropriate parameters, it is possible to extend the force field
2296 + to handle rigid molecules other than water.
2297 +
2298 +
2299 +
2300   \section{\label{section:pbc}Periodic Boundary Conditions}
2301  
2302   \newcommand{\roundme}{\operatorname{round}}
# Line 2939 | Line 3717 | Harmonic Forces are used by default
3717   \end{longtable}
3718  
3719   % \chapter{\label{section:restraints}Restraints}
3720 < % Restraints are external potentials that are added to a system to keep
3721 < % particular molecules or collections of particles close to some
3720 > % Restraints are external potentials that are added to a system to
3721 > % keep particular molecules or collections of particles close to some
3722   % reference structure.  A restraint can be a collective
3723  
3724   \chapter{\label{section:thermInt}Thermodynamic Integration}
# Line 3081 | Line 3859 | Einstein crystal
3859   \label{table:thermIntParams}
3860   \end{longtable}
3861  
3862 < \chapter{\label{section:rnemd}RNEMD}
3862 > \chapter{\label{section:rnemd}Reverse Non-Equilibrium Molecular Dynamics (RNEMD)}
3863  
3864   There are many ways to compute transport properties from molecular
3865 < dynamic simulations.  Equilibrium Molecular Dynamics (EMD) simulations
3866 < can be used by computing relevant time correlation functions and
3867 < assuming linear response theory holds.  These approaches are generally
3868 < subject to noise and poor convergence of the relevant correlation
3869 < functions. Traditional Non-equilibrium Molecular Dynamics (NEMD)
3870 < methods impose a gradient (e.g. thermal or momentum) on a simulation.
3871 < However, the resulting flux is often difficult to
3865 > dynamics simulations.  Equilibrium Molecular Dynamics (EMD)
3866 > simulations can be used by computing relevant time correlation
3867 > functions and assuming linear response theory holds.  For some transport properties (notably thermal conductivity), EMD approaches
3868 > are subject to noise and poor convergence of the relevant
3869 > correlation functions. Traditional Non-equilibrium Molecular Dynamics
3870 > (NEMD) methods impose a gradient (e.g. thermal or momentum) on a
3871 > simulation.  However, the resulting flux is often difficult to
3872   measure. Furthermore, problems arise for NEMD simulations of
3873   heterogeneous systems, such as phase-phase boundaries or interfaces,
3874   where the type of gradient to enforce at the boundary between
3875   materials is unclear.
3876  
3877 < {\it Reverse} Non-Equilibrium Molecular Dynamics (RNEMD) methods adopt a
3878 < different approach in that an unphysical {\it flux} is imposed between
3879 < different regions or ``slabs'' of the simulation box.  The response of
3880 < the system is to develop a temperature or momentum {\it gradient}
3881 < between the two regions. Since the amount of the applied flux is known
3882 < exactly, and the measurement of gradient is generally less
3883 < complicated, imposed-flux methods typically take shorter simulation
3884 < times to obtain converged results for transport properties.
3877 > {\it Reverse} Non-Equilibrium Molecular Dynamics (RNEMD) methods adopt
3878 > a different approach in that an unphysical {\it flux} is imposed
3879 > between different regions or ``slabs'' of the simulation box.  The
3880 > response of the system is to develop a temperature or momentum {\it
3881 >  gradient} between the two regions. Since the amount of the applied
3882 > flux is known exactly, and the measurement of gradient is generally
3883 > less complicated, imposed-flux methods typically take shorter
3884 > simulation times to obtain converged results for transport properties.
3885  
3886 < %RNEMD figure
3886 > \begin{figure}
3887 > \includegraphics[width=\linewidth]{rnemdDemo}
3888 > \caption{The (VSS) RNEMD approach imposes unphysical transfer of both
3889 >  linear momentum and kinetic energy between a ``hot'' slab and a
3890 >  ``cold'' slab in the simulation box.  The system responds to this
3891 >  imposed flux by generating both momentum and temperature gradients.
3892 >  The slope of the gradients can then be used to compute transport
3893 >  properties (e.g. shear viscosity and thermal conductivity).}
3894 > \label{rnemdDemo}
3895 > \end{figure}
3896  
3897 + \section{\label{section:algo}Three algorithms for carrying out RNEMD simulations}
3898 + \subsection{\label{subsection:swapping}The swapping algorithm}
3899 + The original ``swapping'' approaches by M\"{u}ller-Plathe {\it et
3900 +  al.}\cite{ISI:000080382700030,MullerPlathe:1997xw} can be understood
3901 + as a sequence of imaginary elastic collisions between particles in
3902 + opposite slabs.  In each collision, the entire momentum vectors of
3903 + both particles may be exchanged to generate a thermal
3904 + flux. Alternatively, a single component of the momentum vectors may be
3905 + exchanged to generate a shear flux.  This algorithm turns out to be
3906 + quite useful in many simulations. However, the M\"{u}ller-Plathe
3907 + swapping approach perturbs the system away from ideal
3908 + Maxwell-Boltzmann distributions, and this may leads to undesirable
3909 + side-effects when the applied flux becomes large.\cite{Maginn:2010}
3910 + This limits the applicability of the swapping algorithm, so in OpenMD,
3911 + we have implemented two additional algorithms for RNEMD in addition to the
3912 + original swapping approach.
3913  
3914 < RNEMD methods further its advantages by utilizing momentum- and
3915 < energy-conserving approaches to apply fluxes. The original
3916 < ``swapping'' approach by Muller-Plathe {\it et al.} %CITATIONS
3917 < can be seen as an imaginary elastic collision between selected
3918 < particles for each momentum exchange. This simple to implement
3919 < algorithm turned out to be quite useful in many simulations. However,
3920 < the approach inherently perturbs the ideal Maxwell-Boltzmann
3921 < distributions, which leads to undesirable side-effects when the
3119 < applied exchanged flux becomes quite large. %CITATION
3120 < This limits the range of flux available to the method, and also its
3121 < applications.
3914 > \subsection{\label{subsection:nivs}Non-Isotropic Velocity Scaling (NIVS)}
3915 > Instead of having momentum exchange between {\it individual particles}
3916 > in each slab, the NIVS algorithm applies velocity scaling to all of
3917 > the selected particles in both slabs.\cite{kuang:164101} A combination of linear
3918 > momentum, kinetic energy, and flux constraint equations governs the
3919 > amount of velocity scaling performed at each step. Interested readers
3920 > should consult ref. \citealp{kuang:164101} for further details on the
3921 > methodology.
3922  
3923 < In OpenMD, we improve the above method by introducing two alternative
3924 < approaches:
3923 > NIVS has been shown to be very effective at producing thermal
3924 > gradients and for computing thermal conductivities, particularly for
3925 > heterogeneous interfaces.  Although the NIVS algorithm can also be
3926 > applied to impose a directional momentum flux, thermal anisotropy was
3927 > observed in relatively high flux simulations, and the method is not
3928 > suitable for imposing a shear flux or for computing shear viscosities.
3929  
3930 < Non-Isotropic Velocity Scaling (NIVS): %CITATION
3931 < Instead of have two individual particles involved in momentum
3932 < exchange, this algorithm applies scaling to all the particles in
3933 < particular regions:
3930 > \subsection{\label{subsection:vss}Velocity Shearing and Scaling (VSS)}
3931 > The third RNEMD algorithm implemented in OpenMD utilizes a series of
3932 > simultaneous velocity shearing and scaling exchanges between the two
3933 > slabs.\cite{2012MolPh.110..691K}  This method results in a set of simpler equations to satisfy
3934 > the conservation constraints while creating a desired flux between the
3935 > two slabs.
3936  
3937 < %NIVS equations
3937 > The VSS approach is versatile in that it may be used to implement both
3938 > thermal and shear transport either separately or simultaneously.
3939 > Perturbations of velocities away from the ideal Maxwell-Boltzmann
3940 > distributions are minimal, and thermal anisotropy is kept to a
3941 > minimum.  This ability to generate simultaneous thermal and shear
3942 > fluxes has been utilized to map out the shear viscosity of SPC/E water
3943 > over a wide range of temperatures (90~K) just with a single simulation.
3944 > VSS-RNEMD also allows the directional momentum flux to have
3945 > arbitary directions, which could aid in the study of anisotropic solid
3946 > surfaces in contact with liquid environments.
3947  
3948 < Although the above matrices can be diagonal as shown, these
3949 < coefficients cannot be always the same, in order to satisfy the linear
3950 < momentum and kinetic energy conservation constraints:
3948 > \section{\label{section:usingRNEMD}Using OpenMD to perform a RNEMD simulation}
3949 > \subsection{\label{section:rnemdParams} What the user needs to specify}
3950 > To carry out a RNEMD simulation,
3951 > a user must specify a number of parameters in the MetaData (.md) file.
3952 > Because the RNEMD methods have a large number of parameters, these
3953 > must be enclosed in a {\it separate} {\tt RNEMD\{...\}} block.  The most important
3954 > parameters to specify are the {\tt useRNEMD}, {\tt fluxType} and flux
3955 > parameters. Most other parameters (summarized in table
3956 > \ref{table:rnemd}) have reasonable default values.  {\tt fluxType}
3957 > sets up the kind of exchange that will be carried out between the two
3958 > slabs (either Kinetic Energy ({\tt KE}) or momentum ({\tt Px, Py, Pz,
3959 >  Pvector}), or some combination of these).  The flux is specified
3960 > with the use of three possible parameters: {\tt kineticFlux} for
3961 > kinetic energy exchange, as well as {\tt momentumFlux} or {\tt
3962 >  momentumFluxVector} for simulations with directional exchange.
3963  
3964 < %Conservation equations
3965 <
3966 < And to apply a kinetic energy exchange between the two regions, the
3967 < following should be satisfied as well:
3968 <
3969 < %Flux equations
3970 <
3971 < Mathematically, any points in the 3-dimensional space of the solution
3972 < set would satisfy the equations. However, to avoid solving an
3973 < ill-conditioned high-order polynomial in actual practice, another
3974 < constraint, ${x_c=y_c}$, is applied, taking into consideration of its
3975 < physical relevance. Therefore, a quartic equation is solved in actual
3976 < practice to determine the sets of possible coefficients. To determine
3977 < which set is actually used to perform the scaling, two criteria are
3978 < mainly considered: 1. ${x,y,z\rightarrow 1}$ so that the perturbation
3979 < could be as gentle as possible. 2. ${K^x, K^y, K^z}$ have minimal
3980 < difference among each other, so that the anisotropy introduced by the
3981 < algorithm can be offset to some extend. One set of scaling
3982 < coefficients is chosen against these criteria, and the best one is
3983 < used to perform the scaling for that particular step. However, if no
3984 < solution found, the NIVS move is not performed in that step.
3964 > \subsection{\label{section:rnemdResults} Processing the results}
3965 > OpenMD will generate a {\tt .rnemd}
3966 > file with the same prefix as the original {\tt .md} file.  This file
3967 > contains a running average of properties of interest computed within a
3968 > set of bins that divide the simulation cell along the $z$-axis.  The
3969 > first column of the {\tt .rnemd} file is the $z$ coordinate of the
3970 > center of each bin, while following columns may contain the average
3971 > temperature, velocity, or density within each bin.  The output format
3972 > in the {\tt .rnemd} file can be altered with the {\tt outputFields},
3973 > {\tt outputBins}, and {\tt outputFileName} parameters.  A report at
3974 > the top of the {\tt .rnemd} file contains the current exchange totals
3975 > as well as the average flux applied during the simulation.  Using the
3976 > slope of the temperature or velocity gradient obtaine from the {\tt
3977 >  .rnemd} file along with the applied flux, the user can very simply
3978 > arrive at estimates of thermal conductivities ($\lambda$),
3979 > \begin{equation}
3980 > J_z = -\lambda \frac{\partial T}{\partial z},
3981 > \end{equation}
3982 > and shear viscosities ($\eta$),
3983 > \begin{equation}
3984 > j_z(p_x) = -\eta \frac{\partial \langle v_x \rangle}{\partial z}.
3985 > \end{equation}
3986 > Here, the quantities on the left hand side are the actual flux values
3987 > (in the header of the {\tt .rnemd} file), while the slopes are
3988 > obtained from linear fits to the gradients observed in the {\tt
3989 >  .rnemd} file.
3990  
3991 < Although the NIVS algorithm can also be applied to impose a
3992 < directional momentum flux, thermal anisotropy was observed in
3993 < relatively high flux simulations. %This is because...
3994 < However, the gentleness and ability to apply a wide range of kinetic
3995 < energy flux makes the method useful in thermal transport simulations,
3996 < particularly for complex and heterogeneous systems including
3997 < interfaces. %CITATION
3998 <
3999 < Velocity Shearing and Scaling (VSS): %CITATION
4000 < Learning from NIVS that imposing directional momentum flux by velocity
4001 < scaling could cause problem, we shift the approach to combine the move
4002 < of velocity shearing and scaling:
4003 <
4004 < %VSS equations
4005 <
4006 < It turned out that this approach results in a set of simpler-to-solve
4007 < equations for conservation and to satisfy momentum exchange:
4008 <
3177 < %conservation equations
3178 <
3179 < Furthermore, isotropic scaling is now possible, with the presence of
3180 < velocity shearing quantities. Only a set of simple quadratic equations
3181 < need to be solved, and the positive set of coefficients are chosen, in
3182 < order to reach minimal perturbations. Similar to the NIVS method, no
3183 < VSS is performed in a step given that no solution can be found.
3991 > More complicated simulations (including interfaces) require a bit more
3992 > care.  Here the second derivative may be required to compute the
3993 > interfacial thermal conductance,
3994 > \begin{align}
3995 >  G^\prime &= \left(\nabla\lambda \cdot \mathbf{\hat{n}}\right)_{z_0} \\
3996 >  &= \frac{\partial}{\partial z}\left(-\frac{J_z}{
3997 >      \left(\frac{\partial T}{\partial z}\right)}\right)_{z_0} \\
3998 >  &= J_z\left(\frac{\partial^2 T}{\partial z^2}\right)_{z_0} \Big/
3999 >  \left(\frac{\partial T}{\partial z}\right)_{z_0}^2.
4000 >  \label{derivativeG}
4001 > \end{align}
4002 > where $z_0$ is the location of the interface between two materials and
4003 > $\mathbf{\hat{n}}$ is a unit vector normal to the interface.  We
4004 > suggest that users interested in interfacial conductance consult
4005 > reference \citealp{kuang:AuThl} for other approaches to computing $G$.
4006 > Users interested in {\it friction coefficients} at heterogeneous
4007 > interfaces may also find reference \citealp{2012MolPh.110..691K}
4008 > useful.
4009  
4010 < The VSS approach turned out to be versatile in both thermal and
3186 < directional momentum transport simulations. It is found that the
3187 < perturbation is minimal and undesired side-effects like thermal
3188 < anisotropy can be avoided. Another nice feature of VSS is its ability
3189 < to combine a thermal and a directional momentum flux. This feature has
3190 < been utilized to map out the shear viscosity of SPC/E water in a wide
3191 < range of temperature (90~K) just with one single simulation. Possible
3192 < applications may also include the studies of thermal-momentum coupled
3193 < transport phenomena. VSS also allows the directional momentum flux to
3194 < have quite arbitary directions, which could benefit researches of
3195 < anisotropic systems.
4010 > \newpage
4011  
3197 Table \ref{table:rnemd} summarizes the parameters used in RNEMD
3198 simulations.
3199
4012   \begin{longtable}[c]{JKLM}
4013 < \caption{The following keywords must be enclosed inside a {\tt RNEMD\{\}} block}
4014 < \\
4013 > \caption{Meta-data Keywords: Parameters for RNEMD simulations}\\
4014 > \multicolumn{4}{c}{The following keywords must be enclosed inside a {\tt RNEMD\{...\}} block.}
4015 > \\ \hline
4016   {\bf keyword} & {\bf units} & {\bf use} & {\bf remarks}  \\ \hline
4017   \endhead
4018   \hline
# Line 3225 | Line 4038 | default is 20 \\
4038   {\tt outputBins} & int & number of $z$-bins in the output histogram &
4039   default is 20 \\
4040   {\tt outputFields} & string & columns to print in the {\tt .rnemd}
4041 < file where each column is separated by a pipe ($\mid$) symbol. & Allowed column names are: {\sc z, temperature, velocity, density}} \\
4041 > file where each column is separated by a pipe ($\mid$) symbol. & Allowed column names are: {\sc z, temperature, velocity, density} \\
4042   \label{table:rnemd}
4043   \end{longtable}
4044  
3232
4045   \chapter{\label{section:minimizer}Energy Minimization}
4046  
4047 < As one of the basic procedures of molecular modeling, energy
3236 < minimization is used to identify local configurations that are stable
4047 > Energy minimization is used to identify local configurations that are stable
4048   points on the potential energy surface. There is a vast literature on
4049   energy minimization algorithms have been developed to search for the
4050   global energy minimum as well as to find local structures which are
# Line 3360 | Line 4171 | diagram of the class heirarchy:
4171   \begin{figure}
4172   \centering
4173   \includegraphics[width=3in]{heirarchy.pdf}
4174 < \caption[Class heirarchy for StuntDoubles in {\sc OpenMD}-4]{ \\ The
4175 < class heirarchy of StuntDoubles in {\sc OpenMD}-4. The selection
4174 > \caption[Class heirarchy for StuntDoubles in {\sc OpenMD}]{ \\ The
4175 > class heirarchy of StuntDoubles in {\sc OpenMD}. The selection
4176   syntax allows the user to select any of the objects that are descended
4177   from a StuntDouble.}
4178   \label{fig:heirarchy}
# Line 3541 | Line 4352 | VMD. The options available for Dump2XYZ are as follows
4352    -z & {\tt -{}-zconstraint}  &                replace the atom types of zconstraint molecules  (default=off) \\
4353    -r & {\tt -{}-rigidbody}  &                  add a pseudo COM atom to rigidbody  (default=off) \\
4354    -t & {\tt -{}-watertype} &                   replace the atom type of water model (default=on) \\
4355 <  -b & {\tt -{}-basetype}  &                   using base atom type  (default=off) \\
4355 >  -b & {\tt -{}-basetype}  &                   using base atom type
4356 >  (default=off) \\
4357 >  -v& {\tt -{}-velocities}             & Print velocities in xyz file  (default=off)\\
4358 >  -f& {\tt -{}-forces}                 & Print forces xyz file  (default=off)\\
4359 >  -u& {\tt -{}-vectors}                & Print vectors (dipoles, etc) in xyz file  
4360 >                                  (default=off)\\
4361 >  -c& {\tt -{}-charges}                & Print charges in xyz file  (default=off)\\
4362 >  -e& {\tt -{}-efield}                 & Print electric field vector in xyz file  
4363 >                                  (default=off)\\
4364       & {\tt -{}-repeatX=INT}  &                 The number of images to repeat in the x direction  (default=`0') \\
4365       & {\tt -{}-repeatY=INT} &                 The number of images to repeat in the y direction  (default=`0') \\
4366       &  {\tt -{}-repeatZ=INT}  &                The number of images to repeat in the z direction  (default=`0') \\
# Line 3633 | Line 4452 | The options available for {\tt StaticProps} are as fol
4452      & {\tt -{}-sele1=selection script}   & select the first StuntDouble set \\
4453      & {\tt -{}-sele2=selection script}   & select the second StuntDouble set \\
4454      & {\tt -{}-sele3=selection script}   & select the third StuntDouble set \\
4455 <    & {\tt -{}-refsele=selection script} & select reference (can only be used with {\tt -{}-gxyz}) \\
4455 >    & {\tt -{}-refsele=selection script} & select reference (can only
4456 >    be used with {\tt -{}-gxyz}) \\
4457 >    & {\tt -{}-comsele=selection script}
4458 >                               & select stunt doubles for center-of-mass
4459 >                                  reference point\\
4460 >    & {\tt -{}-seleoffset=INT}        & global index offset for a second object (used
4461 >                                  to define a vector between sites in molecule)\\
4462 >
4463      & {\tt -{}-molname=STRING}           & molecule name \\
4464      & {\tt -{}-begin=INT}                & begin internal index \\
4465      & {\tt -{}-end=INT}                  & end internal index \\
4466 +    & {\tt -{}-radius=DOUBLE}            & nanoparticle radius\\
4467   \hline
4468   \multicolumn{3}{|l|}{One option from the following group of options is required:} \\
4469   \hline
4470 <    &  {\tt -{}-gofr}                    &  $g(r)$ \\
4471 <    &  {\tt -{}-r\_theta}                 &  $g(r, \cos(\theta))$ \\
4472 <    &  {\tt -{}-r\_omega}                 &  $g(r, \cos(\omega))$ \\
4473 <    &  {\tt -{}-theta\_omega}             &  $g(\cos(\theta), \cos(\omega))$ \\
4470 >    & {\tt -{}-bo}          & bond order parameter ({\tt -{}-rcut} must be specified) \\
4471 >    & {\tt -{}-bor}         & bond order parameter as a function of
4472 >    radius  ({\tt -{}-rcut} must be specified) \\
4473 >    & {\tt -{}-bad}         & $N(\theta)$ bond angle density within ({\tt -{}-rcut} must be specified) \\
4474 >    & {\tt -{}-count}       & count of molecules matching selection
4475 >    criteria (and associated statistics) \\
4476 >  -g&  {\tt -{}-gofr}                    &  $g(r)$ \\
4477 >    &  {\tt -{}-gofz}                    &  $g(z)$ \\
4478 >    &  {\tt -{}-r\_theta}                &  $g(r, \cos(\theta))$ \\
4479 >    &  {\tt -{}-r\_omega}                &  $g(r, \cos(\omega))$ \\
4480 >    &  {\tt -{}-r\_z}                    &  $g(r, z)$ \\
4481 >    &  {\tt -{}-theta\_omega}            &  $g(\cos(\theta), \cos(\omega))$ \\
4482      &  {\tt -{}-gxyz}                    &  $g(x, y, z)$ \\
4483 <    &  {\tt -{}-p2}                      &  $P_2$ order parameter ({\tt -{}-sele1} and {\tt -{}-sele2} must be specified) \\
4483 >    &  {\tt -{}-twodgofr}                & 2D $g(r)$ (Slab width {\tt -{}-dz} must be specified)\\
4484 >  -p&  {\tt -{}-p2}                      &  $P_2$ order parameter  ({\tt -{}-sele1} must be specified, {\tt -{}-sele2} is optional) \\
4485 >    &  {\tt -{}-rp2}                     &  Ripple order parameter ({\tt -{}-sele1} and {\tt -{}-sele2} must be specified) \\
4486      &  {\tt -{}-scd}                     &  $S_{CD}$ order parameter(either {\tt -{}-sele1}, {\tt -{}-sele2}, {\tt -{}-sele3} are specified or {\tt -{}-molname}, {\tt -{}-begin}, {\tt -{}-end} are specified) \\
4487 <    &  {\tt -{}-density}                 &  density plot ({\tt -{}-sele1} must be specified) \\
4488 <    &  {\tt -{}-slab\_density}           &  slab density ({\tt -{}-sele1} must be specified)
4487 >  -d&  {\tt -{}-density}                 &  density plot \\
4488 >    &  {\tt -{}-slab\_density}           &  slab density \\
4489 >    &  {\tt -{}-p\_angle}                & $p(\cos(\theta))$ ($\theta$
4490 >    is the angle between molecular axis and radial vector from origin\\
4491 >    &  {\tt -{}-hxy}                     & Calculates the undulation  spectrum, $h(x,y)$, of an interface \\
4492 >    &  {\tt -{}-rho\_r}                  & $\rho(r)$\\
4493 >    &  {\tt -{}-angle\_r}                &  $\theta(r)$ (spatially resolves the
4494 >    angle between the molecular axis and the radial vector from the
4495 >    origin)\\
4496 >    &  {\tt -{}-hullvol}                 & hull volume of nanoparticle\\
4497 >    &  {\tt -{}-rodlength}               & length of nanorod\\
4498 >  -Q&  {\tt -{}-tet\_param}              & tetrahedrality order parameter ($Q$)\\
4499 >    &  {\tt -{}-tet\_param\_z}           & spatially-resolved tetrahedrality order
4500 >                                   parameter $Q(z)$\\
4501 >    &  {\tt -{}-rnemdz}                  & slab-resolved RNEMD statistics (temperature,
4502 >                                  density, velocity)\\
4503 >    &  {\tt -{}-rnemdr}                  & shell-resolved RNEMD statistics (temperature,
4504 >                                  density, angular velocity)
4505   \end{longtable}
4506  
4507   \subsection{\label{section:DynamicProps}DynamicProps}
# Line 3689 | Line 4542 | The options available for DynamicProps are as follows:
4542    -o& {\tt -{}-output=filename}        & output file name \\
4543      & {\tt -{}-sele1=selection script} & select first StuntDouble set \\
4544      & {\tt -{}-sele2=selection script} & select second StuntDouble set (if sele2 is not set, use script from sele1) \\
4545 +    & {\tt -{}-order=INT}              & Lengendre Polynomial Order\\
4546 +  -z& {\tt -{}-nzbins=INT}             & Number of $z$ bins (default=`100`)\\
4547 +  -m& {\tt -{}-memory=memory specification}
4548 +                                &Available memory  
4549 +                                  (default=`2G`)\\
4550   \hline
4551   \multicolumn{3}{|l|}{One option from the following group of options is required:} \\
4552   \hline
4553 <  -r& {\tt -{}-rcorr}                  & compute mean square displacement \\
4554 <  -v& {\tt -{}-vcorr}                  & compute velocity correlation function \\
4555 <  -d& {\tt -{}-dcorr}                  & compute dipole correlation function
4553 >  -s& {\tt -{}-selecorr}               & selection correlation function \\
4554 >  -r& {\tt -{}-rcorr}                  & compute mean squared displacement \\
4555 >  -v& {\tt -{}-vcorr}                  & velocity autocorrelation function \\
4556 >  -d& {\tt -{}-dcorr}                  & dipole correlation function \\
4557 >  -l& {\tt -{}-lcorr}                  & Lengendre correlation function \\
4558 >    & {\tt -{}-lcorrZ}                 & Lengendre correlation function binned by $z$ \\
4559 >    & {\tt -{}-cohZ}                   & Lengendre correlation function for OH bond vectors binned by $z$\\
4560 >  -M& {\tt -{}-sdcorr}                 & System dipole correlation function\\
4561 >    & {\tt -{}-r\_rcorr}               & Radial mean squared displacement\\
4562 >    & {\tt -{}-thetacorr}              & Angular mean squared displacement\\
4563 >    & {\tt -{}-drcorr}                 & Directional mean squared displacement for particles with unit vectors\\
4564 >    & {\tt -{}-helfandEcorr}           & Helfand moment for thermal conductvity\\
4565 >  -p& {\tt -{}-momentum}               & Helfand momentum for viscosity\\
4566 >    & {\tt -{}-stresscorr}             & Stress tensor correlation function
4567   \end{longtable}
4568  
4569   \chapter{\label{section:PreparingInput} Preparing Input Configurations}
# Line 3761 | Line 4630 | expect the the input specifier on the command line.
4630   to {\tt atom2md}, but they use a specific input format and do not
4631   expect the the input specifier on the command line.
4632  
4633 +
4634   \section{\label{section:SimpleBuilder}SimpleBuilder}
4635  
4636   {\tt SimpleBuilder} creates simple lattice structures.  It requires an
# Line 3787 | Line 4657 | The options available for SimpleBuilder are as follows
4657      &  {\tt -{}-nz=INT}            &  number of unit cells in z
4658   \end{longtable}
4659  
4660 + \section{\label{section:icosahedralBuilder}icosahedralBuilder}
4661 +
4662 + {\tt icosahedralBuilder} creates single-component geometric solids
4663 + that can be useful in simulating nanostructures.  Like the other
4664 + builders, it requires an initial, but skeletal {\sc OpenMD} file to
4665 + specify the component that is to be placed on the lattice.  The total
4666 + number of placed molecules will be shown at the top of the
4667 + configuration file that is generated, and that number may not match
4668 + the original meta-data file, so a new meta-data file is also generated
4669 + which matches the lattice structure.
4670 +
4671 + The options available for icosahedralBuilder are as follows:
4672 + \begin{longtable}[c]{|EFG|}
4673 + \caption{icosahedralBuilder Command-line Options}
4674 + \\ \hline
4675 + {\bf option} & {\bf verbose option} & {\bf behavior} \\ \hline
4676 + \endhead
4677 + \hline
4678 + \endfoot
4679 +  -h& {\tt -{}-help}               & Print help and exit\\
4680 +  -V& {\tt -{}-version}            & Print version and exit\\
4681 +  -o& {\tt -{}-output=STRING}      & Output file name\\
4682 +  -n& {\tt -{}-shells=INT}         & Nanoparticle shells\\
4683 +  -d& {\tt -{}-latticeConstant=DOUBLE} & Lattice spacing in Angstroms for cubic lattice.\\
4684 +  -c& {\tt -{}-columnAtoms=INT}        & Number of atoms along central
4685 +  column (Decahedron only)\\
4686 +  -t& {\tt -{}-twinAtoms=INT}          & Number of atoms along twin
4687 +  boundary (Decahedron only) \\
4688 +  -p& {\tt -{}-truncatedPlanes=INT}   & Number of truncated planes (Curling-stone Decahedron only)\\
4689 + \hline
4690 + \multicolumn{3}{|l|}{One option from the following group of options is required:} \\
4691 + \hline
4692 +   & {\tt -{}-ico}    & Create an Icosahedral cluster \\
4693 +   & {\tt -{}-deca}   & Create a regualar Decahedral cluster\\
4694 +   & {\tt -{}-ino}    & Create an Ino Decahedral cluster\\
4695 +   & {\tt -{}-marks}  & Create a Marks Decahedral cluster\\
4696 +   & {\tt -{}-stone}  & Create a Curling-stone Decahedral cluster
4697 + \end{longtable}
4698 +
4699 +
4700   \section{\label{section:Hydro}Hydro}
4701   {\tt Hydro} generates resistance tensor ({\tt .diff}) files which are
4702   required when using the Langevin integrator using complex rigid
# Line 3820 | Line 4730 | hydrodynamic calculations will not be performed (defau
4730   \end{longtable}
4731  
4732  
4733 +
4734 +
4735 +
4736   \chapter{\label{section:parallelization} Parallel Simulation Implementation}
4737  
4738   Although processor power is continually improving, it is still
# Line 3903 | Line 4816 | DMR-0079647.
4816   DMR-0079647.
4817  
4818  
4819 < \bibliographystyle{jcc}
4819 > \bibliographystyle{aip}
4820   \bibliography{openmdDoc}
4821  
4822   \end{document}

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines