ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/openmdDocs/openmdDoc.tex
(Generate patch)

Comparing trunk/openmdDocs/openmdDoc.tex (file contents):
Revision 3709 by gezelter, Wed Nov 24 20:44:51 2010 UTC vs.
Revision 4104 by gezelter, Mon Apr 28 21:06:04 2014 UTC

# Line 9 | Line 9
9   \usepackage{longtable}
10   \pagestyle{plain}
11   \pagenumbering{arabic}
12 + \usepackage{floatrow}
13   \oddsidemargin 0.0cm
14   \evensidemargin 0.0cm
15   \topmargin -21pt
# Line 17 | Line 18
18   \textwidth 6.5in
19   \brokenpenalty=10000
20   \renewcommand{\baselinestretch}{1.2}
21 + \usepackage[square, comma, sort&compress]{natbib}
22 + \bibpunct{[}{]}{,}{n}{}{;}
23  
24 + \DeclareFloatFont{tiny}{\scriptsize}% "scriptsize" is defined by floatrow, "tiny" not
25 + \floatsetup[table]{font=tiny}
26 +
27 +
28   %\renewcommand\citemid{\ } % no comma in optional reference note
29 < \lstset{language=C,frame=TB,basicstyle=\tiny,basicstyle=\ttfamily, %
29 > \lstset{language=C,frame=TB,basicstyle=\footnotesize\ttfamily, %
30          xleftmargin=0.25in, xrightmargin=0.25in,captionpos=b, %
31          abovecaptionskip=0.5cm, belowcaptionskip=0.5cm, escapeinside={~}{~}}
32   \renewcommand{\lstlistingname}{Scheme}
# Line 38 | Line 45
45   \newcolumntype{H}{p{0.75in}}
46   \newcolumntype{I}{p{5in}}
47  
48 + \newcolumntype{J}{p{1.5in}}
49 + \newcolumntype{K}{p{1.2in}}
50 + \newcolumntype{L}{p{1.5in}}
51 + \newcolumntype{M}{p{1.55in}}
52  
42 \title{{\sc OpenMD}: Molecular Dynamics in the Open}
53  
54 < \author{Kelsey M. Stocker, Shenyu Kuang, Charles F. Vardeman II, \\
55 <  Teng Lin, Christopher J. Fennell,  Xiuquan Sun, \\
54 > \title{{\sc OpenMD-2.2}: Molecular Dynamics in the Open}
55 >
56 > \author{Joseph Michalka, James Marr, Kelsey Stocker, Madan Lamichhane,
57 >  Patrick Louden, \\
58 >  Teng Lin, Charles F. Vardeman II, Christopher J. Fennell, Shenyu
59 >  Kuang, Xiuquan Sun, \\
60    Chunlei Li, Kyle Daily, Yang Zheng, Matthew A. Meineke, and \\
61    J. Daniel Gezelter \\
62    Department of Chemistry and Biochemistry\\
# Line 133 | Line 147 | leave an interaction region.
147   leave an interaction region.
148  
149   {\tt Atoms} may also be grouped in more traditional ways into {\tt
150 < bonds}, {\tt bends}, and {\tt torsions}.  These groupings allow the
151 < correct choice of interaction parameters for short-range interactions
152 < to be chosen from the definitions in the {\tt forceField}.
150 >  bonds}, {\tt bends}, {\tt torsions}, and {\tt inversions}.  These
151 > groupings allow the correct choice of interaction parameters for
152 > short-range interactions to be chosen from the definitions in the {\tt
153 >  forceField}.
154  
155   All of these groups of {\tt atoms} are brought together in the {\tt
156   molecule}, which is the fundamental structure for setting up and {\sc
# Line 491 | Line 506 | fs}^{-1}$), and body-fixed moments of inertia ($\mbox{
506   \endhead
507   \hline
508   \endfoot
509 < {\tt forceField} & string & Sets the force field. & Possible force
510 < fields are DUFF, WATER, LJ, EAM, SC, and CLAY. \\
509 > {\tt forceField} & string & Sets the base name for the force field file &
510 > OpenMD appends a {\tt .frc} to the end of this to look for a force
511 > field file.\\
512   {\tt component} & & Defines the molecular components of the system &
513   Every {\tt $<$MetaData$>$} block must have a component statement. \\
514   {\tt minimizer} & string & Chooses a minimizer & Possible minimizers
# Line 562 | Line 578 | column names are: {\sc time, total\_energy, potential\
578   default is the first eight of these columns in order.)  \\
579   & & \multicolumn{2}{p{3.5in}}{Allowed
580   column names are: {\sc time, total\_energy, potential\_energy, kinetic\_energy,
581 < temperature, pressure, volume, conserved\_quantity,
581 > temperature, pressure, volume, conserved\_quantity, hullvolume, gyrvolume,
582   translational\_kinetic, rotational\_kinetic,  long\_range\_potential,
583   short\_range\_potential, vanderwaals\_potential,
584 < electrostatic\_potential, bond\_potential, bend\_potential,
585 < dihedral\_potential, improper\_potential, vraw, vharm,
586 < pressure\_tensor\_x, pressure\_tensor\_y, pressure\_tensor\_z}} \\
584 > electrostatic\_potential, metallic\_potential,
585 > hydrogen\_bonding\_potential, bond\_potential, bend\_potential,
586 > dihedral\_potential, inversion\_potential, raw\_potential, restraint\_potential,
587 > pressure\_tensor, system\_dipole, heatflux, electronic\_temperature}} \\
588   {\tt printPressureTensor} & logical & sets whether {\sc OpenMD} will print
589   out the pressure tensor & can be useful for calculations of the bulk
590   modulus \\
# Line 762 | Line 779 | statistics file is denoted with the \texttt{.stat} fil
779   allowing the user to gauge the stability of the integrator. The
780   statistics file is denoted with the \texttt{.stat} file extension.
781  
782 < \chapter{\label{section:empiricalEnergy}The Empirical Energy
766 < Functions}
782 > \chapter{\label{chapter:forceFields}Force Fields}
783  
784 < Like many simulation packages, {\sc OpenMD} splits the potential energy
785 < into the short-ranged (bonded) portion and a long-range (non-bonded)
786 < potential,
784 > Like many molecular simulation packages, {\sc OpenMD} splits the
785 > potential energy into the short-ranged (bonded) portion and a
786 > long-range (non-bonded) potential,
787   \begin{equation}
788   V = V_{\mathrm{short-range}} + V_{\mathrm{long-range}}.
789   \end{equation}
790 < The short-ranged portion includes the explicit bonds, bends, and
791 < torsions which have been defined in the meta-data file for the
792 < molecules which are present in the simulation.  The functional forms and
793 < parameters for these interactions are defined by the force field which
794 < is chosen.
790 > The short-ranged portion includes the bonds, bends, torsions, and
791 > inversions which have been defined in the meta-data file for the
792 > molecules.  The functional forms and parameters for these interactions
793 > are defined by the force field which is selected in the MetaData
794 > section.
795  
796 < Calculating the long-range (non-bonded) potential involves a sum over
797 < all pairs of atoms (except for those atoms which are involved in a
782 < bond, bend, or torsion with each other).  If done poorly, calculating
783 < the the long-range interactions for $N$ atoms would involve $N(N-1)/2$
784 < evaluations of atomic distances.  To reduce the number of distance
785 < evaluations between pairs of atoms, {\sc OpenMD} uses a switched cutoff
786 < with Verlet neighbor lists.\cite{Allen87} It is well known that
787 < neutral groups which contain charges will exhibit pathological forces
788 < unless the cutoff is applied to the neutral groups evenly instead of
789 < to the individual atoms.\cite{leach01:mm} {\sc OpenMD} allows users to
790 < specify cutoff groups which may contain an arbitrary number of atoms
791 < in the molecule.  Atoms in a cutoff group are treated as a single unit
792 < for the evaluation of the switching function:
793 < \begin{equation}
794 < V_{\mathrm{long-range}} = \sum_{a} \sum_{b>a} s(r_{ab}) \sum_{i \in a} \sum_{j \in b} V_{ij}(r_{ij}),
795 < \end{equation}
796 < where $r_{ab}$ is the distance between the centers of mass of the two
797 < cutoff groups ($a$ and $b$).
796 > \section{\label{section:divisionOfLabor}Separation into Internal and
797 >  Cross interactions}
798  
799 < The sums over $a$ and $b$ are over the cutoff groups that are present
800 < in the simulation.  Atoms which are not explicitly defined as members
801 < of a {\tt cutoffGroup} are treated as a group consisting of only one
802 < atom.  The switching function, $s(r)$ is the standard cubic switching
803 < function,
799 > The classical potential energy function for a system composed of $N$
800 > molecules is traditionally written
801   \begin{equation}
802 < S(r) =
803 <        \begin{cases}
804 <        1 & \text{if $r \le r_{\text{sw}}$},\\
808 <        \frac{(r_{\text{cut}} + 2r - 3r_{\text{sw}})(r_{\text{cut}} - r)^2}
809 <        {(r_{\text{cut}} - r_{\text{sw}})^3}
810 <        & \text{if $r_{\text{sw}} < r \le r_{\text{cut}}$}, \\
811 <        0 & \text{if $r > r_{\text{cut}}$.}
812 <        \end{cases}
813 < \label{eq:dipoleSwitching}
802 > V = \sum^{N}_{I=1} V^{I}_{\text{Internal}}
803 >        + \sum^{N-1}_{I=1} \sum_{J>I} V^{IJ}_{\text{Cross}},
804 > \label{eq:totalPotential}
805   \end{equation}
806 < Here, $r_{\text{sw}}$ is the {\tt switchingRadius}, or the distance
807 < beyond which interactions are reduced, and $r_{\text{cut}}$ is the
808 < {\tt cutoffRadius}, or the distance at which interactions are
809 < truncated.
806 > where $V^{I}_{\text{Internal}}$ contains all of the terms internal to
807 > molecule $I$ (e.g. bonding, bending, torsional, and inversion terms)
808 > and $V^{IJ}_{\text{Cross}}$ contains all intermolecular interactions
809 > between molecules $I$ and $J$.  For large molecules, the internal
810 > potential may also include some non-bonded terms like electrostatic or
811 > van der Waals interactions.
812  
813 < Users of {\sc OpenMD} do not need to specify the {\tt cutoffRadius} or
814 < {\tt switchingRadius}.  In simulations containing only Lennard-Jones
815 < atoms, the cutoff radius has a default value of $2.5\sigma_{ii}$,
816 < where $\sigma_{ii}$ is the largest Lennard-Jones length parameter
817 < present in the simulation.  In simulations containing charged or
825 < dipolar atoms, the default cutoff radius is $15 \mbox{\AA}$.  
826 <
827 < The {\tt switchingRadius} is set to a default value of 95\% of the
828 < {\tt cutoffRadius}.  In the special case of a simulation containing
829 < {\it only} Lennard-Jones atoms, the default switching radius takes the
830 < same value as the cutoff radius, and {\sc OpenMD} will use a shifted
831 < potential to remove discontinuities in the potential at the cutoff.
832 < Both radii may be specified in the meta-data file.
813 > The types of atoms being simulated, as well as the specific functional
814 > forms and parameters of the intra-molecular functions and the
815 > long-range potentials are defined by the force field. In the following
816 > sections we discuss the stucture of an OpenMD force field file and the
817 > specification of blocks that may be present within these files.
818  
819 < Force fields can be added to {\sc OpenMD}, although it comes with a few
835 < simple examples (Lennard-Jones, {\sc duff}, {\sc water}, and {\sc
836 < eam}) which are explained in the following sections.
819 > \section{\label{section:frcFile}Force Field Files}
820  
821 < \section{\label{sec:LJPot}The Lennard Jones Force Field}
821 > Force field files have a number of ``Blocks'' to delineate different
822 > types of information.  The blocks contain AtomType data, which provide
823 > properties belonging to a single AtomType, as well as interaction
824 > information which provides information about bonded or non-bonded
825 > interactions that cannot be deduced from AtomType information alone.
826 > A simple example of a forceField file is shown in scheme
827 > \ref{sch:frcExample}.
828  
829 < The most basic force field implemented in {\sc OpenMD} is the
830 < Lennard-Jones force field, which mimics the van der Waals interaction
831 < at long distances and uses an empirical repulsion at short
832 < distances. The Lennard-Jones potential is given by:
829 > \begin{lstlisting}[float,caption={[An example of a complete OpenMD
830 > force field file for straight-chain united-atom alkanes.] An example
831 > showing a complete OpenMD force field for straight-chain united-atom
832 > alkanes.}, label={sch:frcExample}]
833 > begin Options
834 >  Name = "alkane"
835 > end Options
836 >
837 > begin BaseAtomTypes  
838 > //name          mass  
839 > C               12.0107
840 > end BaseAtomTypes
841 >
842 > begin AtomTypes
843 > //name  base    mass
844 > CH4     C       16.05          
845 > CH3     C       15.04          
846 > CH2     C       14.03          
847 > end AtomTypes
848 >
849 > begin LennardJonesAtomTypes
850 > //name          epsilon         sigma
851 > CH4             0.2941          3.73
852 > CH3             0.1947          3.75
853 > CH2             0.09140         3.95
854 > end LennardJonesAtomTypes
855 >
856 > begin BondTypes
857 > //AT1       AT2 Type                    r0              k
858 > CH3         CH3 Harmonic                1.526           260
859 > CH3         CH2 Harmonic                1.526           260
860 > CH2         CH2 Harmonic                1.526           260
861 > end BondTypes
862 >
863 > begin BendTypes
864 > //AT1   AT2     AT3     Type            theta0   k
865 > CH3     CH2     CH3     Harmonic        114.0    124.19
866 > CH3     CH2     CH2     Harmonic        114.0    124.19
867 > CH2     CH2     CH2     Harmonic        114.0    124.19
868 > end BendTypes
869 >
870 > begin TorsionTypes
871 > //AT1 AT2  AT3  AT4  Type    
872 > CH3   CH2  CH2  CH3  Trappe  0.0  0.70544  -0.13549  1.5723
873 > CH3   CH2  CH2  CH2  Trappe  0.0  0.70544  -0.13549  1.5723  
874 > CH2   CH2  CH2  CH2  Trappe  0.0  0.70544  -0.13549  1.5723  
875 > end TorsionTypes
876 > \end{lstlisting}
877 >
878 > \section{\label{section:ffOptions}The Options block}
879 >
880 > The Options block defines properties governing how the force field
881 > interactions are carried out.  This block is delineated with the text
882 > tags {\tt begin Options} and {\tt end Options}.  Most options don't
883 > need to be set as they come with fairly sensible default values, but
884 > the various keywords and their possible values are given in Scheme
885 > \ref{sch:optionsBlock}.
886 >
887 > \begin{lstlisting}[caption={[A force field Options block showing default values
888 > for many force field options.] A force field Options block showing default values
889 > for many force field options.  Most of these options do not need to be
890 > specified if the default values are working.},
891 > label={sch:optionsBlock}]
892 > begin Options
893 > Name                      = "alkane"       // any string
894 > vdWtype                   = "Lennard-Jones"
895 > DistanceMixingRule        = "arithmetic"   // can also be "geometric" or "cubic"
896 > DistanceType              = "sigma"        // can also be "Rmin"
897 > EnergyMixingRule          = "geometric"    // can also be "arithmetic" or "hhg"
898 > EnergyUnitScaling         = 1.0
899 > MetallicEnergyUnitScaling = 1.0
900 > DistanceUnitScaling       = 1.0
901 > AngleUnitScaling          = 1.0
902 > TorsionAngleConvention    = "180_is_trans" // can also be "0_is_trans"
903 > vdW-12-scale              = 0.0
904 > vdW-13-scale              = 0.0
905 > vdW-14-scale              = 0.0
906 > electrostatic-12-scale    = 0.0
907 > electrostatic-13-scale    = 0.0
908 > electrostatic-14-scale    = 0.0
909 > GayBerneMu                = 2.0
910 > GayBerneNu                = 1.0
911 > EAMMixingMethod           = "Johnson"      // can also be "Daw"
912 > end Options
913 > \end{lstlisting}
914 >
915 > \section{\label{section:ffBase}The BaseAtomTypes block}
916 >
917 > An AtomType the primary data structure that OpenMD uses to store
918 > static data about an atom.  Things that belong to AtomType are
919 > universal properties (i.e. does this atom have a fixed charge?  What
920 > is its mass?)  Dynamic properties of an atom are not intended to be
921 > properties of an atom type.  A BaseAtomType can be used to build
922 > extended sets of related atom types that all fall back to one
923 > particular type.  For example, one might want a series of atomTypes
924 > that inherit from more basic types:
925 > \begin{displaymath}
926 > \mathtt{ALA-CA} \rightarrow \mathtt{CT} \rightarrow \mathtt{CSP3} \rightarrow \mathtt{C}
927 > \end{displaymath}
928 > where for each step to the right, the atomType falls back to more
929 > primitive data.  That is, the mass could be a property of the {\tt C}
930 > type, while Lennard-Jones parameters could be properties of the {\tt
931 >  CSP3} type.  {\tt CT} could have charge information and its own set
932 > of Lennard-Jones parameter that override the CSP3 parameters.  And the
933 > {\tt ALA-CA} type might have specific torsion or charge information
934 > that override the lower level types.  A BaseAtomType contains only
935 > information a primitive name and the mass of this atom type.
936 > BaseAtomTypes can also be useful in creating files that can be easily
937 > viewed in visualization programs.  The {\tt Dump2XYZ} utility has the
938 > ability to print out the names of the base atom types for displaying
939 > simulations in Jmol or VMD.
940 >
941 > \begin{lstlisting}[caption={[A simple example of a BaseAtomTypes
942 > block.] A simple example of a BaseAtomTypes block.},
943 > label={sch:baseAtomTypesBlock}]
944 > begin BaseAtomTypes
945 > //Name  mass (amu)
946 > H       1.0079
947 > O       15.9994
948 > Si      28.0855
949 > Al      26.981538
950 > Mg      24.3050
951 > Ca      40.078
952 > Fe      55.845
953 > Li      6.941
954 > Na      22.98977
955 > K       39.0983
956 > Cs      132.90545
957 > Ca      40.078
958 > Ba      137.327
959 > Cl      35.453
960 > end BaseAtomTypes
961 > \end{lstlisting}
962 >
963 > \section{\label{section:ffAtom}The AtomTypes block}
964 >
965 > AtomTypes inherit most properties from BaseAtomTypes, but can override
966 > their lower-level properties as well.  Scheme \ref{sch:atomTypesBlock}
967 > shows an example where multiple types of oxygen atoms can inherit mass
968 > from the oxygen base type.
969 >
970 > \begin{lstlisting}[caption={[An example of a AtomTypes block.] A
971 > simple example of an AtomTypes block which
972 > shows how multiple types can inherit from the same base type.},
973 > label={sch:atomTypesBlock}]
974 > begin AtomTypes    
975 > //Name  baseatomtype
976 > h*      H
977 > ho      H
978 > o*      O
979 > oh      O
980 > ob      O
981 > obos    O
982 > obts    O
983 > obss    O
984 > ohs     O
985 > st      Si
986 > ao      Al
987 > at      Al
988 > mgo     Mg
989 > mgh     Mg
990 > cao     Ca
991 > cah     Ca
992 > feo     Fe
993 > lio     Li
994 > end AtomTypes
995 > \end{lstlisting}
996 >
997 > \section{\label{section:ffDirectionalAtom}The DirectionalAtomTypes
998 >  block}
999 > DirectionalAtoms have orientational degrees of freedom as well as
1000 > translation, so moving these atoms requires information about the
1001 > moments of inertias in the same way that translational motion requires
1002 > mass.  For DirectionalAtoms, OpenMD treats the mass distribution with
1003 > higher priority than electrostatic distributions; the moment of
1004 > inertia tensor, $\overleftrightarrow{\mathsf I}$, should be
1005 > diagonalized to obtain body-fixed axes, and the three diagonal moments
1006 > should correspond to rotational motion \textit{around} each of these
1007 > body-fixed axes.  Charge distributions may then result in dipole
1008 > vectors that are oriented along a linear combination of the body-axes,
1009 > and in quadrupole tensors that are not necessarily diagonal in the
1010 > body frame.
1011 >
1012 > \begin{lstlisting}[caption={[An example of a DirectionalAtomTypes block.] A
1013 > simple example of a DirectionalAtomTypes block.},
1014 > label={sch:datomTypesBlock}]
1015 > begin DirectionalAtomTypes
1016 > //Name          I_xx    I_yy    I_zz    (All moments in (amu*Ang^2)
1017 > SSD             1.7696  0.6145  1.1550  
1018 > GBC6H6          88.781  88.781  177.561
1019 > GBCH3OH         4.056   20.258  20.999
1020 > GBH2O           1.777   0.581   1.196
1021 > CO2             43.06   43.06   0.0    // single-site model for CO2
1022 > end DirectionalAtomTypes                    
1023 >
1024 > \end{lstlisting}
1025 >
1026 > For a DirectionalAtom that represents a linear object, it is
1027 > appropriate for one of the moments of inertia to be zero.  In this
1028 > case, OpenMD identifies that DirectionalAtom as having only 5 degrees
1029 > of freedom (three translations and two rotations), and will alter
1030 > calculation of temperatures to reflect this.
1031 >
1032 > \section{\label{section::ffAtomProperties}AtomType properties}
1033 > \subsection{\label{section:ffLJ}The LennardJonesAtomTypes block}
1034 > One of the most basic interatomic interactions implemented in {\sc
1035 >  OpenMD} is the Lennard-Jones potential, which mimics the van der
1036 > Waals interaction at long distances and uses an empirical repulsion at
1037 > short distances. The Lennard-Jones potential is given by:
1038   \begin{equation}
1039   V_{\text{LJ}}(r_{ij}) =
1040          4\epsilon_{ij} \biggl[
# Line 851 | Line 1045 | $\sigma_{ij}$ scales the length of the interaction, an
1045   \end{equation}
1046   where $r_{ij}$ is the distance between particles $i$ and $j$,
1047   $\sigma_{ij}$ scales the length of the interaction, and
1048 < $\epsilon_{ij}$ scales the well depth of the potential. Scheme
855 < \ref{sch:LJFF} gives an example meta-data file that
856 < sets up a system of 108 Ar particles to be simulated using the
857 < Lennard-Jones force field.
1048 > $\epsilon_{ij}$ scales the well depth of the potential.
1049  
859 \begin{lstlisting}[float,caption={[Invocation of the Lennard-Jones
860 force field] A sample startup file for a small Lennard-Jones
861 simulation.},label={sch:LJFF}]
862 <OpenMD>
863  <MetaData>
864 #include "argon.md"
865
866 component{
867  type = "Ar";
868  nMol = 108;
869 }
870
871 forceField = "LJ";
872  </MetaData>
873  <Snapshot>     // not shown in this scheme
874  </Snapshot>
875 </OpenMD>
876 \end{lstlisting}
877
1050   Interactions between dissimilar particles requires the generation of
1051   cross term parameters for $\sigma$ and $\epsilon$. These parameters
1052 < are determined using the Lorentz-Berthelot mixing
1052 > are usually determined using the Lorentz-Berthelot mixing
1053   rules:\cite{Allen87}
1054   \begin{equation}
1055   \sigma_{ij} = \frac{1}{2}[\sigma_{ii} + \sigma_{jj}],
# Line 889 | Line 1061 | and
1061   \label{eq:epsilonMix}
1062   \end{equation}
1063  
1064 < \section{\label{section:DUFF}Dipolar Unified-Atom Force Field}
1064 > The values of $\sigma_{ii}$ and $\epsilon_{ii}$ are properties of atom
1065 > type $i$, and must be specified in a section of the force field file
1066 > called the {\tt LennardJonesAtomTypes} block (see listing
1067 > \ref{sch:LJatomTypesBlock}).  Separate Lennard-Jones interactions
1068 > which are not determined by the mixing rules can also be specified in
1069 > the {\tt NonbondedInteractionTypes} block (see section
1070 > \ref{section:ffNBinteraction}).
1071  
1072 < The dipolar unified-atom force field ({\sc duff}) was developed to
1073 < simulate lipid bilayers. These types of simulations require a model
1074 < capable of forming bilayers, while still being sufficiently
1075 < computationally efficient to allow large systems ($\sim$100's of
1076 < phospholipids, $\sim$1000's of waters) to be simulated for long times
1077 < ($\sim$10's of nanoseconds). With this goal in mind, {\sc duff} has no
1078 < point charges. Charge-neutral distributions are replaced with dipoles,
1079 < while most atoms and groups of atoms are reduced to Lennard-Jones
1080 < interaction sites. This simplification reduces the length scale of
1081 < long range interactions from $\frac{1}{r}$ to $\frac{1}{r^3}$,
1082 < removing the need for the computationally expensive Ewald
1083 < sum. Instead, Verlet neighbor-lists and cutoff radii are used for the
1084 < dipolar interactions, and, if desired, a reaction field may be added
1085 < to mimic longer range interactions.
1072 > \begin{lstlisting}[caption={[An example of a LennardJonesAtomTypes block.] A
1073 > simple example of a LennardJonesAtomTypee block.   Units for
1074 > $\epsilon$ are kcal / mol and for $\sigma$ are \AA\ .},
1075 > label={sch:LJatomTypesBlock}]
1076 > begin LennardJonesAtomTypes
1077 > //Name          epsilon             sigma      
1078 > O_TIP4P         0.1550          3.15365
1079 > O_TIP4P-Ew      0.16275         3.16435
1080 > O_TIP5P         0.16            3.12  
1081 > O_TIP5P-E       0.178           3.097  
1082 > O_SPCE          0.15532         3.16549
1083 > O_SPC           0.15532         3.16549
1084 > CH4             0.279           3.73
1085 > CH3             0.185           3.75
1086 > CH2             0.0866          3.95
1087 > CH              0.0189          4.68
1088 > end LennardJonesAtomTypes
1089 > \end{lstlisting}
1090  
1091 < As an example, lipid head-groups in {\sc duff} are represented as
910 < point dipole interaction sites.  Placing a dipole at the head group's
911 < center of mass mimics the charge separation found in common
912 < phospholipid head groups such as phosphatidylcholine.\cite{Cevc87}
913 < Additionally, a large Lennard-Jones site is located at the
914 < pseudoatom's center of mass. The model is illustrated by the red atom
915 < in Fig.~\ref{fig:lipidModel}. The water model we use to
916 < complement the dipoles of the lipids is a
917 < reparameterization\cite{fennell04} of the soft sticky dipole (SSD)
918 < model of Ichiye
919 < \emph{et al.}\cite{liu96:new_model}
1091 > \subsection{\label{section:ffCharge}The ChargeAtomTypes block}
1092  
1093 < \begin{figure}
1094 < \centering
1095 < \includegraphics[width=\linewidth]{lipidModel.pdf}
1096 < \caption[A representation of a lipid model in {\sc duff}]{A
1097 < representation of the lipid model. $\phi$ is the torsion angle,
1098 < $\theta$ is the bend angle, and $\mu$ is the dipole moment of the head
1099 < group.}
1100 < \label{fig:lipidModel}
1101 < \end{figure}
1102 <
1103 < A set of scalable parameters has been used to model the alkyl groups
1104 < with Lennard-Jones sites. For this, parameters from the TraPPE force
1105 < field of Siepmann \emph{et al.}\cite{Siepmann1998} have been
934 < utilized. TraPPE is a unified-atom representation of n-alkanes which
935 < is parametrized against phase equilibria using Gibbs ensemble Monte
936 < Carlo simulation techniques.\cite{Siepmann1998} One of the advantages
937 < of TraPPE is that it generalizes the types of atoms in an alkyl chain
938 < to keep the number of pseudoatoms to a minimum; thus, the parameters
939 < for a unified atom such as $\text{CH}_2$ do not change depending on
940 < what species are bonded to it.
941 <
942 < As is required by TraPPE, {\sc duff} also constrains all bonds to be
943 < of fixed length. Typically, bond vibrations are the fastest motions in
944 < a molecular dynamic simulation.  With these vibrations present, small
945 < time steps between force evaluations must be used to ensure adequate
946 < energy conservation in the bond degrees of freedom. By constraining
947 < the bond lengths, larger time steps may be used when integrating the
948 < equations of motion. A simulation using {\sc duff} is illustrated in
949 < Scheme \ref{sch:DUFF}.
950 <
951 < \begin{lstlisting}[float,caption={[Invocation of {\sc duff}]A portion
952 < of a startup file showing a simulation utilizing {\sc
953 < duff}},label={sch:DUFF}]  
954 < <OpenMD>
955 <  <MetaData>
956 < #include "water.md"
957 < #include "lipid.md"
958 <
959 < component{
960 <  type = "simpleLipid_16";
961 <  nMol = 60;
962 < }
963 <
964 < component{
965 <  type = "SSD_water";
966 <  nMol = 1936;
967 < }
968 <
969 < forceField = "DUFF";
970 <  </MetaData>
971 <  <Snapshot>     // not shown in this scheme
972 <  </Snapshot>
973 < </OpenMD>
974 < \end{lstlisting}
975 <
976 < \subsection{\label{section:energyFunctions}{\sc duff} Energy Functions}
977 <
978 < The total potential energy function in {\sc duff} is
1093 > In molecular simulations, proper accumulation of the electrostatic
1094 > interactions is essential and is one of the most
1095 > computationally-demanding tasks.  Most common molecular mechanics
1096 > force fields represent atomic sites with full or partial charges
1097 > protected by Lennard-Jones (short range) interactions.  Partial charge
1098 > values, $q_i$ are empirical representations of the distribution of
1099 > electronic charge in a molecule.  This means that nearly every pair
1100 > interaction involves a calculation of charge-charge forces.  Coupled
1101 > with relatively long-ranged $r^{-1}$ decay, the monopole interactions
1102 > quickly become the most expensive part of molecular simulations.  The
1103 > interactions between point charges can be handled via a number of
1104 > different algorithms, but Coulomb's law is the fundamental physical
1105 > principle governing these interactions,
1106   \begin{equation}
1107 < V = \sum^{N}_{I=1} V^{I}_{\text{Internal}}
1108 <        + \sum^{N-1}_{I=1} \sum_{J>I} V^{IJ}_{\text{Cross}},
982 < \label{eq:totalPotential}
1107 >  V_{\text{charge}}(r_{ij}) = \sum_{ij}\frac{q_iq_je^2}{4 \pi \epsilon_0
1108 >    r_{ij}},
1109   \end{equation}
1110 < where $V^{I}_{\text{Internal}}$ is the internal potential of molecule $I$:
1111 < \begin{equation}
1112 < V^{I}_{\text{Internal}} =
987 <        \sum_{\theta_{ijk} \in I} V_{\text{bend}}(\theta_{ijk})
988 <        + \sum_{\phi_{ijkl} \in I} V_{\text{torsion}}(\phi_{ijkl})
989 <        + \sum_{i \in I} \sum_{(j>i+4) \in I}
990 <        \biggl[ V_{\text{LJ}}(r_{ij}) +  V_{\text{dipole}}
991 <        (\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},\boldsymbol{\Omega}_{j})
992 <        \biggr].
993 < \label{eq:internalPotential}
994 < \end{equation}
995 < Here $V_{\text{bend}}$ is the bend potential for all 1, 3 bonded pairs
996 < within the molecule $I$, and $V_{\text{torsion}}$ is the torsion
997 < potential for all 1, 4 bonded pairs.  The pairwise portions of the
998 < non-bonded interactions are excluded for atom pairs that are involved
999 < in the smae bond, bend, or torsion. All other atom pairs within a
1000 < molecule are subject to the LJ pair potential.
1110 > where $q$ represents the charge on particle $i$ or $j$, and $e$ is the
1111 > charge of an electron in Coulombs.  $\epsilon_0$ is the permittivity
1112 > of free space.
1113  
1114 < The bend potential of a molecule is represented by the following function:
1115 < \begin{equation}
1116 < V_{\text{bend}}(\theta_{ijk}) = k_{\theta}( \theta_{ijk} - \theta_0
1117 < )^2, \label{eq:bendPot}
1118 < \end{equation}
1119 < where $\theta_{ijk}$ is the angle defined by atoms $i$, $j$, and $k$
1120 < (see Fig.~\ref{fig:lipidModel}), $\theta_0$ is the equilibrium
1121 < bond angle, and $k_{\theta}$ is the force constant which determines the
1122 < strength of the harmonic bend. The parameters for $k_{\theta}$ and
1123 < $\theta_0$ are borrowed from those in TraPPE.\cite{Siepmann1998}
1114 > \begin{lstlisting}[caption={[An example of a ChargeAtomTypes block.] A
1115 > simple example of a ChargeAtomTypes block.   Units for
1116 > charge are in multiples of electron charge.},
1117 > label={sch:ChargeAtomTypesBlock}]
1118 > begin ChargeAtomTypes
1119 > // Name         charge
1120 > O_TIP3P        -0.834
1121 > O_SPCE         -0.8476
1122 > H_TIP3P         0.417
1123 > H_TIP4P         0.520
1124 > H_SPCE          0.4238
1125 > EP_TIP4P       -1.040
1126 > Na+             1.0
1127 > Cl-            -1.0
1128 > end ChargeAtomTypes
1129 > \end{lstlisting}
1130  
1131 < The torsion potential and parameters are also borrowed from TraPPE. It is
1132 < of the form:
1131 > \subsection{\label{section:ffMultipole}The MultipoleAtomTypes
1132 >  block}
1133 > For complex charge distributions that are centered on single sites, it
1134 > is convenient to write the total electrostatic potential in terms of
1135 > multipole moments,
1136   \begin{equation}
1137 < V_{\text{torsion}}(\phi) = c_1[1 + \cos \phi]
1017 <        + c_2[1 + \cos(2\phi)]
1018 <        + c_3[1 + \cos(3\phi)],
1019 < \label{eq:origTorsionPot}
1137 > U_{\bf{ab}}(r)=\hat{M}_{\bf a} \hat{M}_{\bf b} \frac{1}{r}  \label{kernel}.
1138   \end{equation}
1139 < where:
1139 > where the multipole operator on site $\bf a$,
1140   \begin{equation}
1141 < \cos\phi = (\hat{\mathbf{r}}_{ij} \times \hat{\mathbf{r}}_{jk}) \cdot
1142 <        (\hat{\mathbf{r}}_{jk} \times \hat{\mathbf{r}}_{kl}).
1143 < \label{eq:torsPhi}
1141 > \hat{M}_{\bf a} = C_{\bf a} - D_{{\bf a}\alpha} \frac{\partial}{\partial r_{\alpha}}
1142 > +  Q_{{\bf a}\alpha\beta}
1143 > \frac{\partial^2}{\partial r_{\alpha} \partial r_{\beta}} + \dots
1144   \end{equation}
1145 < Here, $\hat{\mathbf{r}}_{\alpha\beta}$ are the set of unit bond
1146 < vectors between atoms $i$, $j$, $k$, and $l$. For computational
1147 < efficiency, the torsion potential has been recast after the method of
1148 < {\sc charmm},\cite{Brooks83} in which the angle series is converted to
1149 < a power series of the form:
1150 < \begin{equation}
1151 < V_{\text{torsion}}(\phi) =  
1152 <        k_3 \cos^3 \phi + k_2 \cos^2 \phi + k_1 \cos \phi + k_0,
1153 < \label{eq:torsionPot}
1154 < \end{equation}
1155 < where:
1156 < \begin{align*}
1157 < k_0 &= c_1 + c_3, \\
1158 < k_1 &= c_1 - 3c_3, \\
1041 < k_2 &= 2 c_2, \\
1042 < k_3 &= 4c_3.
1043 < \end{align*}
1044 < By recasting the potential as a power series, repeated trigonometric
1045 < evaluations are avoided during the calculation of the potential
1046 < energy.
1145 > Here, the point charge, dipole, and quadrupole for site $\bf a$ are
1146 > given by $C_{\bf a}$, $D_{{\bf a}\alpha}$, and $Q_{{\bf
1147 >    a}\alpha\beta}$, respectively.  These are the {\it primitive}
1148 > multipoles.  If the site is representing a distribution of charges,
1149 > these can be expressed as,
1150 > \begin{align}
1151 > C_{\bf a} =&\sum_{k \, \text{in \bf a}} q_k , \label{eq:charge} \\
1152 > D_{{\bf a}\alpha} =&\sum_{k \, \text{in \bf a}} q_k r_{k\alpha}, \label{eq:dipole}\\
1153 > Q_{{\bf a}\alpha\beta} =& \frac{1}{2} \sum_{k \, \text{in \bf a}} q_k
1154 > r_{k\alpha}  r_{k\beta} . \label{eq:quadrupole}
1155 > \end{align}
1156 > Note that the definition of the primitive quadrupole here differs from
1157 > the standard traceless form, and contains an additional Taylor-series
1158 > based factor of $1/2$.  
1159  
1160 <
1161 < The cross potential between molecules $I$ and $J$,
1050 < $V^{IJ}_{\text{Cross}}$, is as follows:
1160 > The details of the multipolar interactions will be given later, but
1161 > many readers are familiar with the dipole-dipole potential:
1162   \begin{equation}
1052 V^{IJ}_{\text{Cross}} =
1053        \sum_{i \in I} \sum_{j \in J}
1054        \biggl[ V_{\text{LJ}}(r_{ij}) +  V_{\text{dipole}}
1055        (\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},\boldsymbol{\Omega}_{j})
1056        + V_{\text{sticky}}
1057        (\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},\boldsymbol{\Omega}_{j})
1058        \biggr],
1059 \label{eq:crossPotentail}
1060 \end{equation}
1061 where $V_{\text{LJ}}$ is the Lennard Jones potential,
1062 $V_{\text{dipole}}$ is the dipole dipole potential, and
1063 $V_{\text{sticky}}$ is the sticky potential defined by the SSD model
1064 (Sec.~\ref{section:SSD}). Note that not all atom types include all
1065 interactions.
1066
1067 The dipole-dipole potential has the following form:
1068 \begin{equation}
1163   V_{\text{dipole}}(\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},
1164 <        \boldsymbol{\Omega}_{j}) = \frac{|\mu_i||\mu_j|}{4\pi\epsilon_{0}r_{ij}^{3}} \biggl[
1164 >        \boldsymbol{\Omega}_{j}) = \frac{|{\bf D}_i||{\bf D}_j|}{4\pi\epsilon_{0}r_{ij}^{3}} \biggl[
1165          \boldsymbol{\hat{u}}_{i} \cdot \boldsymbol{\hat{u}}_{j}
1166          -
1167          3(\boldsymbol{\hat{u}}_i \cdot \hat{\mathbf{r}}_{ij}) %
# Line 1077 | Line 1171 | are the orientational degrees of freedom for atoms $i$
1171   Here $\mathbf{r}_{ij}$ is the vector starting at atom $i$ pointing
1172   towards $j$, and $\boldsymbol{\Omega}_i$ and $\boldsymbol{\Omega}_j$
1173   are the orientational degrees of freedom for atoms $i$ and $j$
1174 < respectively. The magnitude of the dipole moment of atom $i$ is
1175 < $|\mu_i|$, $\boldsymbol{\hat{u}}_i$ is the standard unit orientation
1174 > respectively. The magnitude of the dipole moment of atom $i$ is $|{\bf
1175 >  D}_i|$, $\boldsymbol{\hat{u}}_i$ is the standard unit orientation
1176   vector of $\boldsymbol{\Omega}_i$, and $\boldsymbol{\hat{r}}_{ij}$ is
1177   the unit vector pointing along $\mathbf{r}_{ij}$
1178   ($\boldsymbol{\hat{r}}_{ij}=\mathbf{r}_{ij}/|\mathbf{r}_{ij}|$).
1179  
1086 \subsection{\label{section:SSD}The {\sc duff} Water Models: SSD/E
1087 and SSD/RF}
1180  
1181 < In the interest of computational efficiency, the default solvent used
1182 < by {\sc OpenMD} is the extended Soft Sticky Dipole (SSD/E) water
1183 < model.\cite{fennell04} The original SSD was developed by Ichiye
1184 < \emph{et al.}\cite{liu96:new_model} as a modified form of the hard-sphere
1181 > \begin{lstlisting}[caption={[An example of a MultipoleAtomTypes block.] A
1182 > simple example of a MultipoleAtomTypes block.   Dipoles are given in
1183 > units of Debyes, and Quadrupole moments are given in units of Debye
1184 > \AA~(or $10^{-26} \mathrm{~esu~cm}^2$)},
1185 > label={sch:MultipoleAtomTypesBlock}]
1186 > begin MultipoleAtomTypes
1187 > // Euler angles are given in zxz convention in units of degrees.
1188 > //
1189 > // point dipoles:
1190 > // name d phi theta psi dipole_moment
1191 > DIP     d 0.0 0.0   0.0     1.91   // dipole points along z-body axis
1192 > //
1193 > // point quadrupoles:
1194 > // name q phi theta psi Qxx Qyy Qzz
1195 > CO2     q 0.0 0.0   0.0 0.0 0.0 -0.430592  //quadrupole tensor has zz element
1196 > //
1197 > // Atoms with both dipole and quadrupole moments:
1198 > // name dq phi theta psi dipole_moment  Qxx    Qyy     Qzz
1199 > SSD     dq 0.0 0.0   0.0     2.35      -1.682  1.762   -0.08
1200 > end MultipoleAtomTypes
1201 > \end{lstlisting}
1202 >
1203 > Specifying a MultipoleAtomType requires declaring how the
1204 > electrostatic frame for the site is rotated relative to the body-fixed
1205 > axes for that atom. The Euler angles $(\phi, \theta, \psi)$ for this
1206 > rotation must be given, and then the dipole, quadrupole, or all of
1207 > these moments are specified in the electrostatic frame.  In OpenMD,
1208 > the Euler angles are specified in the $zxz$ convention and are entered
1209 > in units of degrees.  Dipole moments are entered in units of Debye,
1210 > and Quadrupole moments in units of Debye \AA.
1211 >
1212 > \subsection{\label{section:ffGB}The FluctuatingChargeAtomTypes  block}
1213 > %\subsubsection{\label{section:ffPol}The PolarizableAtomTypes block}
1214 >
1215 > \subsection{\label{section:ffGB}The GayBerneAtomTypes block}
1216 >
1217 > The Gay-Berne potential has been widely used in the liquid crystal
1218 > community to describe anisotropic phase
1219 > behavior.~\cite{Gay:1981yu,Berne:1972pb,Kushick:1976xy,Luckhurst:1990fy,Cleaver:1996rt}
1220 > The form of the Gay-Berne potential implemented in OpenMD was
1221 > generalized by Cleaver {\it et al.} and is appropriate for dissimilar
1222 > uniaxial ellipsoids.\cite{Cleaver:1996rt} The potential is constructed
1223 > in the familiar form of the Lennard-Jones function using
1224 > orientation-dependent $\sigma$ and $\epsilon$ parameters,
1225 > \begin{equation*}
1226 > V_{ij}({{\bf \hat u}_i}, {{\bf \hat u}_j}, {{\bf \hat
1227 > r}_{ij}}) = 4\epsilon ({{\bf \hat u}_i}, {{\bf \hat u}_j},
1228 > {{\bf \hat r}_{ij}})\left[\left(\frac{\sigma_0}{r_{ij}-\sigma({{\bf \hat u
1229 > }_i},
1230 > {{\bf \hat u}_j}, {{\bf \hat r}_{ij}})+\sigma_0}\right)^{12}
1231 > -\left(\frac{\sigma_0}{r_{ij}-\sigma({{\bf \hat u}_i}, {{\bf \hat u}_j},
1232 > {{\bf \hat r}_{ij}})+\sigma_0}\right)^6\right]
1233 > \label{eq:gb}
1234 > \end{equation*}
1235 >
1236 > The range $(\sigma({\bf \hat{u}}_{i},{\bf \hat{u}}_{j},{\bf
1237 > \hat{r}}_{ij}))$, and strength $(\epsilon({\bf \hat{u}}_{i},{\bf
1238 > \hat{u}}_{j},{\bf \hat{r}}_{ij}))$ parameters
1239 > are dependent on the relative orientations of the two ellipsoids (${\bf
1240 > \hat{u}}_{i},{\bf \hat{u}}_{j}$) as well as the direction of the
1241 > inter-ellipsoid separation (${\bf \hat{r}}_{ij}$).  The shape and
1242 > attractiveness of each ellipsoid is governed by a relatively small set
1243 > of parameters:
1244 > \begin{itemize}
1245 > \item  $d$:  range parameter for the side-by-side (S) and cross (X) configurations
1246 > \item  $l$:  range parameter for the end-to-end (E) configuration
1247 > \item  $\epsilon_X$:  well-depth parameter for the cross (X) configuration
1248 > \item  $\epsilon_S$:  well-depth parameter for the side-by-side (S) configuration
1249 > \item  $\epsilon_E$:  well depth parameter for the end-to-end (E) configuration
1250 > \item  $dw$: The ``softness'' of the potential
1251 > \end{itemize}
1252 > Additionally, there are two universal paramters to govern the overall
1253 > importance of the purely orientational ($\nu$) and the mixed
1254 > orientational / translational ($\mu$) parts of strength of the
1255 > interactions.  These parameters have default or ``canonical'' values,
1256 > but may be changed as a force field option:
1257 > \begin{itemize}
1258 >  \item $\nu$: purely orientational part : defaults to 1
1259 >  \item $\mu$: mixed orientational / translational part : defaults to
1260 >    2
1261 > \end{itemize}
1262 > Further details of the potential are given
1263 > elsewhere,\cite{Luckhurst:1990fy,Golubkov06,SunX._jp0762020} and an
1264 > excellent overview of the computational methods that can be used to
1265 > efficiently compute forces and torques for this potential can be found
1266 > in Ref. \citealp{Golubkov06}
1267 >
1268 > \begin{lstlisting}[caption={[An example of a GayBerneAtomTypes block.] A
1269 > simple example of a GayBerneAtomTypes block.  Distances ($d$ and $l$)
1270 > are given in \AA\ and energies ($\epsilon_X, \epsilon_S, \epsilon_E$)
1271 > are in units of kcal/mol. $dw$ is unitless.},
1272 > label={sch:GayBerneAtomTypes}]
1273 > begin GayBerneAtomTypes
1274 > //Name          d       l       eps_X           eps_S           eps_E     dw
1275 > GBlinear        2.8104  9.993   0.774729        0.774729        0.116839  1.0
1276 > GBC6H6          4.65    2.03    0.540           0.540           1.9818    0.6
1277 > GBCH3OH         2.55    3.18    0.542           0.542           0.55826   1.0
1278 > end GayBerneAtomTypes                  
1279 > \end{lstlisting}
1280 >
1281 > \subsection{\label{section:ffSticky}The StickyAtomTypes block}
1282 >
1283 > One of the solvents that can be simulated by {\sc OpenMD} is the
1284 > extended Soft Sticky Dipole (SSD/E) water model.\cite{fennell04} The
1285 > original SSD was developed by Ichiye \emph{et
1286 >  al.}\cite{liu96:new_model} as a modified form of the hard-sphere
1287   water model proposed by Bratko, Blum, and
1288   Luzar.\cite{Bratko85,Bratko95} It consists of a single point dipole
1289   with a Lennard-Jones core and a sticky potential that directs the
# Line 1155 | Line 1349 | HOH angle in each water molecule. }
1349   \label{fig:ssd}
1350   \end{figure}
1351  
1158
1352   Since SSD/E is a single-point {\it dipolar} model, the force
1353   calculations are simplified significantly relative to the standard
1354   {\it charged} multi-point models. In the original Monte Carlo
# Line 1174 | Line 1367 | SSD model that led to lower than expected densities at
1367  
1368   Recent constant pressure simulations revealed issues in the original
1369   SSD model that led to lower than expected densities at all target
1370 < pressures.\cite{Ichiye03,fennell04} The default model in {\sc OpenMD}
1371 < is therefore SSD/E, a density corrected derivative of SSD that
1372 < exhibits improved liquid structure and transport behavior. If the use
1373 < of a reaction field long-range interaction correction is desired, it
1374 < is recommended that the parameters be modified to those of the SSD/RF
1375 < model (an SSD variant parameterized for reaction field). These solvent
1183 < parameters are listed and can be easily modified in the {\sc duff}
1184 < force field file ({\tt DUFF.frc}).  A table of the parameter values
1185 < and the drawbacks and benefits of the different density corrected SSD
1186 < models can be found in reference~\cite{fennell04}.
1370 > pressures,\cite{Ichiye03,fennell04} so variants on the sticky
1371 > potential can be specified by using one of a number of substitute atom
1372 > types (see listing \ref{sch:StickyAtomTypes}).  A table of the
1373 > parameter values and the drawbacks and benefits of the different
1374 > density corrected SSD models can be found in
1375 > reference~\citealp{fennell04}.
1376  
1377 < \section{\label{section:WATER}The {\sc water} Force Field}
1377 > \begin{lstlisting}[caption={[An example of a StickyAtomTypes block.] A
1378 > simple example of a StickyAtomTypes block.  Distances ($r_l$, $r_u$,
1379 > $r_{l}'$ and $r_{u}'$) are given in \AA\ and energies ($v_0, v_{0}'$)
1380 > are in units of kcal/mol. $w_0$ is unitless.},
1381 > label={sch:StickyAtomTypes}]
1382 > begin StickyAtomTypes
1383 > //name  w0      v0 (kcal/mol)   v0p     rl (Ang)  ru    rlp     rup
1384 > SSD_E   0.07715 3.90            3.90    2.40      3.80  2.75    3.35
1385 > SSD_RF  0.07715 3.90            3.90    2.40      3.80  2.75    3.35
1386 > SSD     0.07715 3.7284          3.7284  2.75      3.35  2.75    4.0
1387 > SSD1    0.07715 3.6613          3.6613  2.75      3.35  2.75    4.0
1388 > end StickyAtomTypes
1389 > \end{lstlisting}
1390  
1391 < In addition to the {\sc duff} force field's solvent description, a
1191 < separate {\sc water} force field has been included for simulating most
1192 < of the common rigid-body water models. This force field includes the
1193 < simple and point-dipolar models (SSD, SSD1, SSD/E, SSD/RF, and DPD
1194 < water), as well as the common charge-based models (SPC, SPC/E, TIP3P,
1195 < TIP4P, and
1196 < TIP5P).\cite{liu96:new_model,Ichiye03,fennell04,Marrink01,Berendsen81,Berendsen87,Jorgensen83,Mahoney00}
1197 < In order to handle these models, charge-charge interactions were
1198 < included in the force-loop:
1199 < \begin{equation}
1200 < V_{\text{charge}}(r_{ij}) = \sum_{ij}\frac{q_iq_je^2}{r_{ij}},
1201 < \end{equation}
1202 < where $q$ represents the charge on particle $i$ or $j$, and $e$ is the
1203 < charge of an electron in Coulombs. The charge-charge interaction
1204 < support is rudimentary in the current version of {\sc OpenMD}.  As with
1205 < the other pair interactions, charges can be simulated with a pure
1206 < cutoff or a reaction field.  The various methods for performing the
1207 < Ewald summation have not yet been included.  The {\sc water} force
1208 < field can be easily expanded through modification of the {\sc water}
1209 < force field file ({\tt WATER.frc}). By adding atom types and inserting
1210 < the appropriate parameters, it is possible to extend the force field
1211 < to handle rigid molecules other than water.
1391 > \section{\label{section::ffMetals}Metallic Atom Types}
1392  
1393 < \section{\label{section:eam}Embedded Atom Method}
1394 <
1395 < {\sc OpenMD} implements a potential that describes bonding in
1396 < transition metal
1397 < systems.~\cite{Finnis84,Ercolessi88,Chen90,Qi99,Ercolessi02} This
1398 < potential has an attractive interaction which models ``Embedding'' a
1399 < positively charged pseudo-atom core in the electron density due to the
1400 < free valance ``sea'' of electrons created by the surrounding atoms in
1221 < the system.  A pairwise part of the potential (which is primarily
1222 < repulsive) describes the interaction of the positively charged metal
1223 < core ions with one another.  The Embedded Atom Method ({\sc
1224 < eam})~\cite{Daw84,FBD86,johnson89,Lu97} has been widely adopted in the
1225 < materials science community and has been included in {\sc OpenMD}. A
1226 < good review of {\sc eam} and other formulations of metallic potentials
1227 < was given by Voter.\cite{Voter:95}
1228 <
1229 < The {\sc eam} potential has the form:
1393 > {\sc OpenMD} implements a number of related potentials that describe
1394 > bonding in transition metals. These potentials have an attractive
1395 > interaction which models ``Embedding'' a positively charged
1396 > pseudo-atom core in the electron density due to the free valance
1397 > ``sea'' of electrons created by the surrounding atoms in the system.
1398 > A pairwise part of the potential (which is primarily repulsive)
1399 > describes the interaction of the positively charged metal core ions
1400 > with one another.  These potentials have the form:
1401   \begin{equation}
1402   V  =  \sum_{i} F_{i}\left[\rho_{i}\right] + \sum_{i} \sum_{j \neq i}
1403   \phi_{ij}({\bf r}_{ij})
# Line 1243 | Line 1414 | to compute the inter-atomic forces.
1414   transition metal potentials require two loops through the atom pairs
1415   to compute the inter-atomic forces.
1416  
1417 < The pairwise portion of the potential, $\phi_{ij}$, is a primarily
1418 < repulsive interaction between atoms $i$ and $j$. In the original
1248 < formulation of {\sc eam}\cite{Daw84}, $\phi_{ij}$ was an entirely
1249 < repulsive term; however later refinements to {\sc eam} allowed for
1250 < more general forms for $\phi$.\cite{Daw89} The effective cutoff
1251 < distance, $r_{{\text cut}}$ is the distance at which the values of
1252 < $f(r)$ and $\phi(r)$ drop to zero for all atoms present in the
1253 < simulation.  In practice, this distance is fairly small, limiting the
1254 < summations in the {\sc eam} equation to the few dozen atoms
1255 < surrounding atom $i$ for both the density $\rho$ and pairwise $\phi$
1256 < interactions.
1417 > The pairwise portion of the potential, $\phi_{ij}$, is usually a
1418 > repulsive interaction between atoms $i$ and $j$.
1419  
1420 < In computing forces for alloys, mixing rules as outlined by
1421 < Johnson~\cite{johnson89} are used to compute the heterogenous pair
1422 < potential,
1420 > \subsection{\label{section:ffEAM}The EAMAtomTypes block}
1421 > The Embedded Atom Method ({\sc eam}) is one of the most widely-used
1422 > potentials for transition
1423 > metals.~\cite{Finnis84,Ercolessi88,Chen90,Qi99,Ercolessi02,Daw84,FBD86,johnson89,Lu97}
1424 > It has been widely adopted in the materials science community and a
1425 > good review of {\sc eam} and other formulations of metallic potentials
1426 > was given by Voter.\cite{Voter:95}
1427 >
1428 > In the original formulation of {\sc eam}\cite{Daw84}, the pair
1429 > potential, $\phi_{ij}$ was an entirely repulsive term; however later
1430 > refinements to {\sc eam} allowed for more general forms for
1431 > $\phi$.\cite{Daw89} The effective cutoff distance, $r_{{\text cut}}$
1432 > is the distance at which the values of $f(r)$ and $\phi(r)$ drop to
1433 > zero for all atoms present in the simulation.  In practice, this
1434 > distance is fairly small, limiting the summations in the {\sc eam}
1435 > equation to the few dozen atoms surrounding atom $i$ for both the
1436 > density $\rho$ and pairwise $\phi$ interactions.
1437 >
1438 > In computing forces for alloys, OpenMD uses mixing rules outlined by
1439 > Johnson~\cite{johnson89} to compute the heterogenous pair potential,
1440   \begin{equation}
1441   \label{eq:johnson}
1442   \phi_{ab}(r)=\frac{1}{2}\left(
# Line 1289 | Line 1468 | files.  
1468   $\mbox{kcal mol}^{-1}$ as in the rest of the {\sc OpenMD} force field
1469   files.  
1470  
1471 < \section{\label{section:sc}The Sutton-Chen Force Field}
1471 > \begin{lstlisting}[caption={[An example of a EAMAtomTypes block.] A
1472 > simple example of a EAMAtomTypes block. Here the only data provided is
1473 > the name of a {\tt funcfl} file which contains the raw data for spline
1474 > interpolations for the density, functional, and pair potential.},
1475 > label={sch:EAMAtomTypes}]
1476 > begin EAMAtomTypes
1477 > Au      Au.u3.funcfl
1478 > Ag      Ag.u3.funcfl
1479 > Cu      Cu.u3.funcfl
1480 > Ni      Ni.u3.funcfl
1481 > Pd      Pd.u3.funcfl
1482 > Pt      Pt.u3.funcfl
1483 > end EAMAtomTypes
1484 > \end{lstlisting}
1485  
1486 + \subsection{\label{section:ffSC}The SuttonChenAtomTypes block}
1487 +
1488   The Sutton-Chen ({\sc sc})~\cite{Chen90} potential has been used to
1489 < study a wide range of phenomena in metals.  Although it is similar in
1490 < form to the {\sc eam} potential, the Sutton-Chen model takes on a
1491 < simpler form,
1489 > study a wide range of phenomena in metals.  Although it has the same
1490 > basic form as the {\sc eam} potential, the Sutton-Chen model requires
1491 > a simpler set of parameters,
1492   \begin{equation}
1493   \label{eq:SCP1}
1494   U_{tot}=\sum _{i}\left[ \frac{1}{2}\sum _{j\neq
1495 < i}D_{ij}V^{pair}_{ij}(r_{ij})-c_{i}D_{ii}\sqrt{\rho_{i}}\right] ,
1495 > i}\epsilon_{ij}V^{pair}_{ij}(r_{ij})-c_{i}\epsilon_{ii}\sqrt{\rho_{i}}\right] ,
1496   \end{equation}
1497   where $V^{pair}_{ij}$ and $\rho_{i}$ are given by
1498   \begin{equation}
1499   \label{eq:SCP2}
1500   V^{pair}_{ij}(r)=\left(
1501 < \frac{\alpha_{ij}}{r_{ij}}\right)^{n_{ij}}, \rho_{i}=\sum_{j\neq i}\left(
1501 > \frac{\alpha_{ij}}{r_{ij}}\right)^{n_{ij}} \hspace{1in} \rho_{i}=\sum_{j\neq i}\left(
1502   \frac{\alpha_{ij}}{r_{ij}}\right) ^{m_{ij}}
1503   \end{equation}
1504  
# Line 1312 | Line 1506 | the interactions between the valence electrons and the
1506   interactions of the pseudo-atom cores.  The $\sqrt{\rho_i}$ term in
1507   Eq. (\ref{eq:SCP1}) is an attractive many-body potential that models
1508   the interactions between the valence electrons and the cores of the
1509 < pseudo-atoms.  $D_{ij}$, $D_{ii}$, $c_i$ and $\alpha_{ij}$ are
1510 < parameters used to tune the potential for different transition
1511 < metals.
1509 > pseudo-atoms.  $\epsilon_{ij}$, $\epsilon_{ii}$, $c_i$ and
1510 > $\alpha_{ij}$ are parameters used to tune the potential for different
1511 > transition metals.
1512  
1513   The {\sc sc} potential form has also been parameterized by Qi {\it et
1514   al.}\cite{Qi99} These parameters were obtained via empirical and {\it
1515   ab initio} calculations to match structural features of the FCC
1516 < crystal.  To specify the original Sutton-Chen variant of the {\sc sc}
1517 < force field, the user would add the {\tt forceFieldVariant = "SC";}
1324 < line to the meta-data file, while specification of the Qi {\it et al.}
1325 < quantum-adapted variant of the {\sc sc} potential, the user would add
1326 < the {\tt forceFieldVariant = "QSC";} line to the meta-data file.
1516 > crystal.  Interested readers are encouraged to consult reference
1517 > \citealp{Qi99} for further details.
1518  
1519 < \section{\label{section:clay}The CLAY force field}
1519 > \begin{lstlisting}[caption={[An example of a SCAtomTypes block.] A
1520 > simple example of a SCAtomTypes block.  Distances ($\alpha$)
1521 > are given in \AA\ and energies ($\epsilon$) are (by convention) given in
1522 > units of eV.  These units must be specified in the {\tt Options} block
1523 > using the keyword {\tt MetallicEnergyUnitScaling}.  Without this {\tt
1524 > Options} keyword, the default units for $\epsilon$ are kcal/mol.  The
1525 > other parameters, $m$, $n$, and $c$ are unitless.},
1526 > label={sch:SCAtomTypes}]
1527 > begin SCAtomTypes
1528 > // Name  epsilon(eV)      c      m       n      alpha(angstroms)
1529 > Ni      0.0073767       84.745  5.0     10.0    3.5157
1530 > Cu      0.0057921       84.843  5.0     10.0    3.6030
1531 > Rh      0.0024612       305.499 5.0     13.0    3.7984
1532 > Pd      0.0032864       148.205 6.0     12.0    3.8813
1533 > Ag      0.0039450       96.524  6.0     11.0    4.0691
1534 > Ir      0.0037674       224.815 6.0     13.0    3.8344  
1535 > Pt      0.0097894       71.336  7.0     11.0    3.9163
1536 > Au      0.0078052       53.581  8.0     11.0    4.0651
1537 > Au2     0.0078052       53.581  8.0     11.0    4.0651
1538 > end SCAtomTypes
1539 > \end{lstlisting}
1540  
1541 < The {\sc clay} force field is based on an ionic (nonbonded)
1542 < description of the metal-oxygen interactions associated with hydrated
1543 < phases. All atoms are represented as point charges and are allowed
1544 < complete translational freedom. Metal-oxygen interactions are based on
1545 < a simple Lennard-Jones potential combined with electrostatics. The
1546 < empirical parameters were optimized by Cygan {\it et
1547 < al.}\cite{Cygan04} on the basis of known mineral structures, and
1548 < partial atomic charges were derived from periodic DFT quantum chemical
1549 < calculations of simple oxide, hydroxide, and oxyhydroxide model
1550 < compounds with well-defined structures.
1541 > \section{\label{section::ffShortRange}Short Range Interactions}
1542 > The internal structure of a molecule is usually specified in terms of
1543 > a set of ``bonded'' terms in the potential energy function for
1544 > molecule $I$,
1545 > \begin{align*}
1546 > V^{I}_{\text{Internal}} =  &
1547 > \sum_{r_{ij} \in I} V_{\text{bond}}(r_{ij})
1548 > + \sum_{\theta_{ijk} \in I} V_{\text{bend}}(\theta_{ijk})
1549 > + \sum_{\phi_{ijkl} \in I} V_{\text{torsion}}(\phi_{ijkl})
1550 > + \sum_{\omega_{ijkl} \in I} V_{\text{inversion}}(\omega_{ijkl}) \\
1551 > & + \sum_{i \in I} \sum_{(j>i+4) \in I}
1552 > \biggl[ V_{\text{dispersion}}(r_{ij}) +  V_{\text{electrostatic}}
1553 > (\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},\boldsymbol{\Omega}_{j})
1554 > \biggr].
1555 > \label{eq:internalPotential}
1556 > \end{align*}
1557 > Here $V_{\text{bond}}, V_{\text{bend}},
1558 > V_{\text{torsion}},\mathrm{~and~} V_{\text{inversion}}$ represent the
1559 > bond, bend, torsion, and inversion potentials for all
1560 > topologically-connected sets of atoms within the molecule.  Bonds are
1561 > the primary way of specifying how the atoms are connected together to
1562 > form the molecule (i.e. they define the molecular topology).  The
1563 > other short-range interactions may be specified explicitly in the
1564 > molecule definition, or they may be deduced from bonding information.
1565 > For example, bends can be implicitly deduced from two bonds which
1566 > share an atom.  Torsions can be deduced from two bends that share a
1567 > bond.  Inversion potentials are utilized primarily to enforce
1568 > planarity around $sp^2$-hybridized sites, and these are specified with
1569 > central atoms and satellites (or an atom with bonds to exactly three
1570 > satellites). Non-bonded interactions are usually excluded for atom
1571 > pairs that are involved in the same bond, bend, or torsion, but all
1572 > other atom pairs are included in the standard non-bonded interactions.
1573  
1574 + Bond lengths, angles, and torsions (dihedrals) are ``natural''
1575 + coordinates to treat molecular motion, as it is usually in these
1576 + coordinates that most chemists understand the behavior of molecules.
1577 + The bond lengths and angles are often considered ``hard'' degrees of
1578 + freedom.  That is, we can't deform them very much without a
1579 + significant energetic penalty.  On the other hand, dihedral angles or
1580 + torsions are ``soft'' and typically undergo significant deformation
1581 + under normal conditions.
1582  
1583 + \subsection{\label{section:ffBond}The BondTypes block}
1584 +
1585 + Bonds are the primary way to specify how the atoms are connected
1586 + together to form the molecule.  In general, bonds exert strong
1587 + restoring forces to keep the molecule compact.  The bond energy
1588 + functions are relatively simple functions of the distance between two
1589 + atomic sites,
1590 + \begin{equation}
1591 + b = \left| \vec{r}_{ij} \right| = \sqrt{(x_j - x_i)^2 + (y_j - y_i)^2
1592 +  + (z_j - z_i)^2}.
1593 + \end{equation}
1594 + All BondTypes must specify two AtomType names ($i$ and $j$) that
1595 + describe when that bond should be applied, as well as an equilibrium
1596 + bond length, $b_{ij}^0$, in units of \AA. The most common forms for
1597 + bonding potentials are {\tt Harmonic} bonds,
1598 + \begin{equation}
1599 + V_{\text{bond}}(b) = \frac{k_{ij}}{2} \left(b -
1600 +  b_{ij}^0 \right)^2
1601 + \end{equation}
1602 + and {\tt Morse} bonds,
1603 + \begin{equation}
1604 + V_{\text{bond}}(b) = D_{ij} \left[ 1 - e^{-\beta_{ij} (b - b_{ij}^0)} \right]^2
1605 + \end{equation}
1606 +
1607 + \begin{figure}[h]
1608 + \centering
1609 + \includegraphics[width=2.5in]{bond.pdf}
1610 + \caption[Bond coordinates]{The coordinate describing a
1611 + a bond between atoms $i$ and $j$ is $|r_{ij}|$, the length of the
1612 + $\vec{r}_{ij}$ vector. }
1613 + \label{fig:bond}
1614 + \end{figure}
1615 +
1616 + OpenMD can also simulate some less common types of bond potentials,
1617 + including {\tt Fixed} bonds (which are constrained to be at a
1618 + specified bond length),
1619 + \begin{equation}
1620 + V_{\text{bond}}(b) = 0.
1621 + \end{equation}
1622 + {\tt Cubic} bonds include terms to model anharmonicity,
1623 + \begin{equation}
1624 + V_{\text{bond}}(b) =  K_3 (b -  b_{ij}^0)^3 + K_2 (b - b_{ij}^0)^2 + K_1 (b -  b_{ij}^0) + K_0,
1625 + \end{equation}
1626 + and {\tt Quartic} bonds, include another term in the Taylor
1627 + expansion around $b_{ij}^0$,
1628 + \begin{equation}
1629 + V_{\text{bond}}(b) = K_4 (b -  b_{ij}^0)^4 +  K_3 (b -  b_{ij}^0)^3 +
1630 + K_2 (b - b_{ij}^0)^2 + K_1 (b -  b_{ij}^0) + K_0,
1631 + \end{equation}
1632 + can also be simulated.  Note that the factor of $1/2$ that is included
1633 + in the {\tt Harmonic} bond type force constant is {\it not} present in
1634 + either the {\tt Cubic} or {\tt Quartic} bond types.
1635 +
1636 + {\tt Polynomial} bonds which can have any number of terms,
1637 + \begin{equation}
1638 + V_{\text{bond}}(b) = \sum_n K_n (b -  b_{ij}^0)^n.
1639 + \end{equation}
1640 + can also be specified by giving a sequence of integer ($n$) and force
1641 + constant ($K_n$) pairs.
1642 +
1643 + The order of terms in the BondTypes block is:
1644 + \begin{itemize}
1645 + \item {\tt AtomType} 1
1646 + \item {\tt AtomType} 2
1647 + \item {\tt BondType} (one of {\tt Harmonic}, {\tt Morse}, {\tt Fixed}, {\tt
1648 +        Cubic}, {\tt Quartic}, or {\tt Polynomial})
1649 + \item $b_{ij}^0$, the equilibrium bond length in \AA
1650 + \item any other parameters required by the {\tt BondType}
1651 + \end{itemize}
1652 +
1653 + \begin{lstlisting}[caption={[An example of a BondTypes block.] A
1654 + simple example of a BondTypes block.  Distances ($b_0$)
1655 + are given in \AA\ and force constants are given in
1656 + units so that when multiplied by the correct power of distance they
1657 + return energies in kcal/mol.  For example $k$ for a Harmonic bond is
1658 + in units of kcal/mol/\AA$^2$.},
1659 + label={sch:BondTypes}]
1660 + begin BondTypes
1661 + //Atom1 Atom2   Harmonic        b0        k (kcal/mol/A^2)
1662 + CH2     CH2     Harmonic        1.526     260
1663 + //Atom1 Atom2   Morse           b0        D       beta (A^-1)
1664 + CN      NC      Morse           1.157437  212.95  2.5802
1665 + //Atom1 Atom2   Fixed           b0
1666 + CT      HC      Fixed           1.09
1667 + //Atom1 Atom2   Cubic           b0        K3      K2      K1      K0
1668 + //Atom1 Atom2   Quartic         b0        K4      K3      K2      K1      K0
1669 + //Atom1 Atom2   Polynomial      b0        n       Kn      [m      Km]
1670 + end BondTypes
1671 + \end{lstlisting}
1672 +
1673 + There are advantages and disadvantages of all of the different types
1674 + of bonds, but specific simulation tasks may call for specific
1675 + behaviors.
1676 +
1677 + \subsection{\label{section:ffBend}The BendTypes block}
1678 + The equilibrium geometries and energy functions for bending motions in
1679 + a molecule are strongly dependent on the bonding environment of the
1680 + central atomic site.  For example, different types of hybridized
1681 + carbon centers require different bending angles and force constants to
1682 + describe the local geometry.
1683 +
1684 + The bending potential energy functions used in most force fields are
1685 + often simple functions of the angle between two bonds,
1686 + \begin{equation}
1687 + \theta_{ijk} = \cos^{-1} \left(\frac{\vec{r}_{ji} \cdot
1688 +    \vec{r}_{jk}}{\left| \vec{r}_{ji} \right| \left| \vec{r}_{jk}
1689 +    \right|} \right)
1690 + \end{equation}
1691 + Here atom $j$ is the central atom that is bonded to two partners $i$
1692 + and $k$.
1693 +
1694 + \begin{figure}[h]
1695 + \centering
1696 + \includegraphics[width=3.5in]{bend.pdf}
1697 + \caption[Bend angle coordinates]{The coordinate describing a bend
1698 +  between atoms $i$, $j$, and $k$ is the angle $\theta_{ijk} =
1699 +  \cos^{-1} \left(\hat{r}_{ji} \cdot \hat{r}_{jk}\right)$ where $\hat{r}_{ji}$ is
1700 +  the unit vector between atoms $j$ and $i$. }
1701 + \label{fig:bend}
1702 + \end{figure}
1703 +
1704 +
1705 + All BendTypes must specify three AtomType names ($i$, $j$ and $k$)
1706 + that describe when that bend potential should be applied, as well as
1707 + an equilibrium bending angle, $\theta_{ijk}^0$, in units of
1708 + degrees. The most common forms for bending potentials are {\tt
1709 +  Harmonic} bends,
1710 + \begin{equation}
1711 + V_{\text{bend}}(\theta_{ijk}) = \frac{k_{ijk}}{2}( \theta_{ijk} - \theta_{ijk}^0
1712 + )^2, \label{eq:bendPot}
1713 + \end{equation}
1714 + where $k_{ijk}$ is the force constant which determines the strength of
1715 + the harmonic bend. {\tt UreyBradley} bends utilize an additional 1-3
1716 + bond-type interaction in addition to the harmonic bending potential:
1717 + \begin{equation}
1718 +  V_{\text{bend}}(\vec{r}_i , \vec{r}_j, \vec{r}_k)
1719 +  =\frac{k_{ijk}}{2}( \theta_{ijk} - \theta_{ijk}^0)^2
1720 +  + \frac{k_{ub}}{2}( r_{ik} - s_0 )^2. \label{eq:ubBend}
1721 + \end{equation}
1722 +
1723 + A {\tt Cosine} bend is a variant on the harmonic bend which utilizes
1724 + the cosine of the angle instead of the angle itself,
1725 + \begin{equation}
1726 + V_{\text{bend}}(\theta_{ijk}) = \frac{k_{ijk}}{2}( \cos\theta_{ijk} -
1727 + \cos \theta_{ijk}^0 )^2. \label{eq:cosBend}
1728 + \end{equation}
1729 +
1730 + OpenMD can also simulate some less common types of bend potentials,
1731 + including {\tt Cubic} bends, which include terms to model anharmonicity,
1732 + \begin{equation}
1733 + V_{\text{bend}}(\theta_{ijk}) =  K_3 (\theta_{ijk} -  \theta_{ijk}^0)^3 + K_2 (\theta_{ijk} -  \theta_{ijk}^0)^2 + K_1 (\theta_{ijk} -  \theta_{ijk}^0) + K_0,
1734 + \end{equation}
1735 + and {\tt Quartic} bends, which include another term in the Taylor
1736 + expansion around $\theta_{ijk}^0$,
1737 + \begin{equation}
1738 +  V_{\text{bend}}(\theta_{ijk}) = K_4 (\theta_{ijk} -  \theta_{ijk}^0)^4 +  K_3 (\theta_{ijk} -  \theta_{ijk}^0)^3 +
1739 +  K_2 (\theta_{ijk} -  \theta_{ijk}^0)^2 + K_1 (\theta_{ijk} -
1740 +  \theta_{ijk}^0) + K_0,
1741 + \end{equation}
1742 + can also be simulated.  Note that the factor of $1/2$ that is included
1743 + in the {\tt Harmonic} bend type force constant is {\it not} present in
1744 + either the {\tt Cubic} or {\tt Quartic} bend types.
1745 +
1746 + {\tt Polynomial} bends which can have any number of terms,
1747 + \begin{equation}
1748 + V_{\text{bend}}(\theta_{ijk}) = \sum_n K_n (\theta_{ijk} -  \theta_{ijk}^0)^n.
1749 + \end{equation}
1750 + can also be specified by giving a sequence of integer ($n$) and force
1751 + constant ($K_n$) pairs.
1752 +
1753 + The order of terms in the BendTypes block is:
1754 + \begin{itemize}
1755 + \item {\tt AtomType} 1
1756 + \item {\tt AtomType} 2 (this is the central atom)
1757 + \item {\tt AtomType} 3
1758 + \item {\tt BendType} (one of {\tt Harmonic}, {\tt UreyBradley}, {\tt
1759 +    Cosine}, {\tt Cubic}, {\tt Quartic}, or {\tt Polynomial})
1760 + \item $\theta_{ijk}^0$, the equilibrium bending angle in degrees.
1761 + \item any other parameters required by the {\tt BendType}
1762 + \end{itemize}
1763 +
1764 + \begin{lstlisting}[caption={[An example of a BendTypes block.] A
1765 + simple example of a BendTypes block.  By convention, equilibrium angles
1766 + ($\theta_0$) are given in degrees but force constants are given in
1767 + units so that when multiplied by the correct power of angle (in
1768 + radians) they return energies in kcal/mol.  For example $k$ for a
1769 + Harmonic bend is in units of kcal/mol/radians$^2$.},
1770 + label={sch:BendTypes}]
1771 + begin BendTypes
1772 + //Atom1 Atom2   Atom3   Harmonic      theta0(deg) Ktheta(kcal/mol/radians^2)
1773 + CT      CT      CT      Harmonic      109.5        80.000000
1774 + CH2     CH      CH2     Harmonic      112.0       117.68
1775 + CH3     CH2     SH      Harmonic       96.0        67.220
1776 + //UreyBradley
1777 + //Atom1 Atom2   Atom3   UreyBradley   theta0      Ktheta  s0  Kub
1778 + //Cosine
1779 + //Atom1 Atom2   Atom3   Cosine        theta0      Ktheta(kcal/mol)
1780 + //Cubic
1781 + //Atom1 Atom2   Atom3   Cubic         theta0      K3      K2  K1   K0
1782 + //Quartic
1783 + //Atom1 Atom2   Atom3   Quartic       theta0      K4      K3  K2   K1   K0
1784 + //Polynomial
1785 + //Atom1 Atom2   Atom3   Polynomial    theta0      n       Kn  [m   Km]
1786 + end BendTypes
1787 + \end{lstlisting}
1788 +
1789 + Note that the parameters for a particular bend type are the same for
1790 + any bending triplet of the same atomic types (in the same or reversed
1791 + order).  Changing the AtomType in the Atom2 position will change the
1792 + matched bend types in the force field.
1793 +
1794 + \subsection{\label{section:ffTorsion}The TorsionTypes block}
1795 + The torsion potential for rotation of groups around a central bond can
1796 + often be represented with various cosine functions.  For two
1797 + tetrahedral ($sp^3$) carbons connected by a single bond, the torsion
1798 + potential might be
1799 + \begin{equation*}
1800 + V_{\text{torsion}} = \frac{v}{2} \left[ 1 + \cos( 3 \phi ) \right]
1801 + \end{equation*}
1802 + where $v$ is the barrier for going from {\em staggered} $\rightarrow$
1803 + {\em eclipsed} conformations, while for $sp^2$ carbons connected by a
1804 + double bond, the potential might be
1805 + \begin{equation*}
1806 + V_{\text{torsion}} = \frac{w}{2} \left[ 1 - \cos( 2 \phi ) \right]
1807 + \end{equation*}
1808 + where $w$ is the barrier for going from  {\em cis} $\rightarrow$ {\em
1809 +  trans} conformations.
1810 +
1811 + A general torsion potentials can be represented as a cosine series of
1812 + the form:
1813 + \begin{equation}
1814 + V_{\text{torsion}}(\phi_{ijkl}) = c_1[1 + \cos \phi_{ijkl}]
1815 +        + c_2[1 - \cos(2\phi_{ijkl})]
1816 +        + c_3[1 + \cos(3\phi_{ijkl})],
1817 + \label{eq:origTorsionPot}
1818 + \end{equation}
1819 + where the angle $\phi_{ijkl}$ is defined
1820 + \begin{equation}
1821 + \cos\phi_{ijkl} = (\hat{\mathbf{r}}_{ij} \times \hat{\mathbf{r}}_{jk}) \cdot
1822 +        (\hat{\mathbf{r}}_{jk} \times \hat{\mathbf{r}}_{kl}).
1823 + \label{eq:torsPhi}
1824 + \end{equation}
1825 + Here, $\hat{\mathbf{r}}_{\alpha\beta}$ are the set of unit bond
1826 + vectors between atoms $i$, $j$, $k$, and $l$.  Note that some force
1827 + fields define the zero of the $\phi_{ijkl}$ angle when atoms $i$ and
1828 + $l$ are in the {\em trans} configuration, while most define the zero
1829 + angle for when $i$ and $l$ are in the fully eclipsed orientation.  The
1830 + behavior of the torsion parser can be altered with the {\tt
1831 +  TorsionAngleConvention} keyword in the Options block.  The default
1832 + behavior is {\tt "180\_is\_trans"} while the opposite behavior can be
1833 + invoked by setting this keyword to {\tt "0\_is\_trans"}.
1834 +
1835 + \begin{figure}[h]
1836 + \centering
1837 + \includegraphics[width=4.5in]{torsion.pdf}
1838 + \caption[Torsion or dihedral angle coordinates]{The coordinate
1839 +  describing a torsion between atoms $i$, $j$, $k$, and $l$ is the
1840 +  dihedral angle $\phi_{ijkl}$ which measures the relative rotation of
1841 +  the two terminal atoms around the axis defined by the middle bond. }
1842 + \label{fig:torsion}
1843 + \end{figure}
1844 +
1845 + For computational efficiency, OpenMD recasts torsion potential in the
1846 + method of {\sc charmm},\cite{Brooks83} in which the angle series is
1847 + converted to a power series of the form:
1848 + \begin{equation}
1849 +  V_{\text{torsion}}(\phi_{ijkl}) =  
1850 +  k_3 \cos^3 \phi_{ijkl} + k_2 \cos^2 \phi_{ijkl} + k_1 \cos \phi_{ijkl} + k_0,
1851 + \label{eq:torsionPot}
1852 + \end{equation}
1853 + where:
1854 + \begin{align*}
1855 + k_0 &= c_1 + 2 c_2 + c_3, \\
1856 + k_1 &= c_1 - 3c_3, \\
1857 + k_2 &= - 2 c_2, \\
1858 + k_3 &= 4 c_3.
1859 + \end{align*}
1860 + By recasting the potential as a power series, repeated trigonometric
1861 + evaluations are avoided during the calculation of the potential
1862 + energy.
1863 +
1864 + Using this framework, OpenMD implements a variety of different
1865 + potential energy functions for torsions:
1866 + \begin{itemize}
1867 + \item {\tt Cubic}:
1868 + \begin{equation*}
1869 +  V_{\text{torsion}}(\phi) =  
1870 +  k_3 \cos^3 \phi + k_2 \cos^2 \phi + k_1 \cos \phi + k_0,
1871 + \end{equation*}
1872 + \item {\tt Quartic}:
1873 + \begin{equation*}
1874 +  V_{\text{torsion}}(\phi) =  k_4 \cos^4 \phi +
1875 +  k_3 \cos^3 \phi + k_2 \cos^2 \phi + k_1 \cos \phi + k_0,
1876 + \end{equation*}
1877 + \item {\tt Polynomial}:
1878 + \begin{equation*}
1879 + V_{\text{torsion}}(\phi) =  \sum_n k_n \cos^n \phi ,
1880 + \end{equation*}
1881 + \item {\tt Charmm}:
1882 + \begin{equation*}
1883 + V_{\text{torsion}}(\phi) = \sum_n K_n \left( 1 + cos(n
1884 +  \phi - \delta_n) \right),
1885 + \end{equation*}
1886 + \item {\tt Opls}:
1887 + \begin{equation*}
1888 +  V_{\text{torsion}}(\phi) =  \frac{1}{2} \left(v_1 (1 + \cos \phi) \right)
1889 +    + v_2 (1 - \cos 2 \phi) +  v_3 (1 + \cos 3 \phi),
1890 + \end{equation*}
1891 + \item {\tt Trappe}:\cite{Siepmann1998}
1892 + \begin{equation*}
1893 +  V_{\text{torsion}}(\phi) =  c_0 + c_1 (1 + \cos \phi) + c_2 (1 - \cos 2 \phi)  +
1894 +  c_3 (1 + \cos 3 \phi),
1895 + \end{equation*}
1896 + \item {\tt Harmonic}:
1897 + \begin{equation*}
1898 + V_{\text{torsion}}(\phi) =  \frac{d_0}{2} \left(\phi - \phi^0\right).
1899 + \end{equation*}
1900 + \end{itemize}
1901 +
1902 + Most torsion types don't require specific angle information in the
1903 + parameters since they are typically expressed in cosine polynomials.
1904 + {\tt Charmm} and {\tt Harmonic} torsions are a bit different.  {\tt
1905 +  Charmm} torsion types require a set of phase angles, $\delta_n$ that
1906 + are expressed in degrees, and associated periodicity numbers, $n$.
1907 + {\tt Harmonic} torsions have an equilibrium torsion angle, $\phi_0$
1908 + that is measured in degrees, while $d_0$ has units of
1909 + kcal/mol/degrees$^2$.  All other torsion parameters are measured in
1910 + units of kcal/mol.
1911 +
1912 + \begin{lstlisting}[caption={[An example of a TorsionTypes block.] A
1913 + simple example of a TorsionTypes block.  Energy constants are given in
1914 + kcal / mol, and when required by the form, $\delta$ angles are given
1915 + in degrees.},
1916 + label={sch:TorsionTypes}]
1917 + begin TorsionTypes
1918 + //Cubic
1919 + //Atom1 Atom2   Atom3   Atom4   Cubic   k3       k2        k1      k0  
1920 + CH2     CH2     CH2     CH2     Cubic   5.9602   -0.2568   -3.802  2.1586
1921 + CH2     CH      CH      CH2     Cubic   3.3254   -0.4215   -1.686  1.1661
1922 + //Trappe
1923 + //Atom1 Atom2   Atom3   Atom4   Trappe  c0       c1        c2      c3
1924 + CH3     CH2     CH2     SH      Trappe  0.10507  -0.10342  0.03668 0.60874    
1925 + //Charmm
1926 + //Atom1 Atom2   Atom3   Atom4   Charmm  Kchi     n    delta  [Kchi n delta]
1927 + CT      CT      CT      C       Charmm  0.156    3    0.00
1928 + OH      CT      CT      OH      Charmm  0.144    3    0.00    1.175 2  0
1929 + HC      CT      CM      CM      Charmm  1.150    1    0.00    0.38  3 180
1930 + //Quartic
1931 + //Atom1 Atom2   Atom3   Atom4   Quartic          k4    k3    k2    k1    k0
1932 + //Polynomial
1933 + //Atom1 Atom2   Atom3   Atom4   Polynomial  n Kn     [m  Km]
1934 + S       CH2     CH2     C       Polynomial  0 2.218   1  2.905  2 -3.136  3 -0.7313  4 6.272  5 -7.528
1935 + end TorsionTypes
1936 + \end{lstlisting}
1937 +
1938 + Note that the parameters for a particular torsion type are the same
1939 + for any torsional quartet of the same atomic types (in the same or
1940 + reversed order).
1941 +
1942 + \subsection{\label{section:ffInversion}The InversionTypes block}
1943 +
1944 + Inversion potentials are often added to force fields to enforce
1945 + planarity around $sp^2$-hybridized carbons or to correct vibrational
1946 + frequencies for umbrella-like vibrational modes for central atoms
1947 + bonded to exactly three satellite groups.
1948 +
1949 + In OpenMD's version of an inversion, the central atom is entered {\it
1950 +  first} in each line in the {\tt InversionTypes} block. Note that
1951 + this is quite different than how other codes treat Improper torsional
1952 + potentials to mimic inversion behavior.  In some other widely-used
1953 + simulation packages, the central atom is treated as atom 3 in a
1954 + standard torsion form:
1955 + \begin{itemize}
1956 +  \item OpenMD:  I - (J - K - L)  (e.g. I is $sp^2$ hybridized carbon)
1957 +  \item AMBER:   I - J - K - L   (e.g. K is $sp^2$ hybridized carbon)
1958 + \end{itemize}
1959 +
1960 + The inversion angle itself is defined as:
1961 + \begin{equation}
1962 + \cos\omega_{i-jkl} = \left(\hat{\mathbf{r}}_{il} \times
1963 +  \hat{\mathbf{r}}_{ij}\right)\cdot\left( \hat{\mathbf{r}}_{il} \times
1964 +  \hat{\mathbf{r}}_{ik}\right)
1965 + \end{equation}
1966 + Here, $\hat{\mathbf{r}}_{\alpha\beta}$ are the set of unit bond
1967 + vectors between the central atoms $i$, and the satellite atoms $j$,
1968 + $k$, and $l$.  Note that other definitions of inversion angles are
1969 + possible, so users are encouraged to be particularly careful when
1970 + converting other force field files for use with OpenMD.
1971 +
1972 + There are many common ways to create planarity or umbrella behavior in
1973 + a potential energy function, and OpenMD implements a number of the
1974 + more common functions:
1975 + \begin{itemize}
1976 + \item {\tt ImproperCosine}:
1977 + \begin{equation*}
1978 + V_{\text{torsion}}(\omega) = \sum_n \frac{K_n}{2} \left( 1 + cos(n
1979 +  \omega - \delta_n) \right),
1980 + \end{equation*}
1981 + \item {\tt AmberImproper}:
1982 + \begin{equation*}
1983 +  V_{\text{torsion}}(\omega) =  \frac{v}{2} (1 - \cos\left(2 \left(\omega - \omega_0\right)\right),
1984 + \end{equation*}
1985 + \item {\tt Harmonic}:
1986 + \begin{equation*}
1987 + V_{\text{torsion}}(\omega) =  \frac{d}{2} \left(\omega - \omega_0\right).
1988 + \end{equation*}
1989 + \end{itemize}
1990 + \begin{lstlisting}[caption={[An example of an InversionTypes block.] A
1991 + simple example of a InversionTypes block.  Angles ($\delta_n$ and
1992 + $\omega_0$) angles are given in degrees, while energy parameters ($v,
1993 + K_n$) are given in kcal / mol.   The Harmonic Inversion type has a
1994 + force constant that must be given in kcal/mol/degrees$^2$.},
1995 + label={sch:InversionTypes}]
1996 + begin InversionTypes
1997 + //Harmonic
1998 + //Atom1 Atom2   Atom3   Atom4   Harmonic  d(kcal/mol/deg^2)  omega0
1999 + RCHar3  X       X       X       Harmonic  1.21876e-2         180.0
2000 + //AmberImproper
2001 + //Atom1 Atom2   Atom3   Atom4   AmberImproper   v(kcal/mol)
2002 + C       CT      N       O       AmberImproper   10.500000
2003 + CA      CA      CA      CT      AmberImproper   1.100000
2004 + //ImproperCosine
2005 + //Atom1 Atom2   Atom3   Atom4   ImproperCosine  Kn  n  delta_n  [Kn n delta_n]
2006 + end InversionTypes
2007 + \end{lstlisting}
2008 +
2009 + \section{\label{section::ffLongRange}Long Range Interactions}
2010 +
2011 + Calculating the long-range (non-bonded) potential involves a sum over
2012 + all pairs of atoms (except for those atoms which are involved in a
2013 + bond, bend, or torsion with each other).  Many of these interactions
2014 + can be inferred from the AtomTypes,
2015 +
2016 + \subsection{\label{section:ffNBinteraction}The NonBondedInteractions
2017 +  block}
2018 +
2019 + The user might want like to specify explicit or special interactions
2020 + that override the default non-bodned interactions that are inferred
2021 + from the AtomTypes.  To do this, OpenMD implements a
2022 + NonBondedInteractions block to allow the user to specify the following
2023 + (pair-wise) non-bonded interactions:
2024 +
2025 + \begin{itemize}
2026 + \item {\tt LennardJones}:
2027 + \begin{equation*}
2028 + V_{\text{NB}}(r) = 4 \epsilon_{ij} \left(
2029 +  \left(\frac{\sigma_{ij}}{r} \right)^{12} -
2030 +  \left(\frac{\sigma_{ij}}{r} \right)^{6} \right),
2031 + \end{equation*}
2032 + \item {\tt ShiftedMorse}:
2033 + \begin{equation*}
2034 + V_{\text{NB}}(r) = D_{ij} \left( e^{-2 \beta_{ij} (r -
2035 +     r^0)} - 2 e^{- \beta_{ij} (r -
2036 +     r^0)} \right),
2037 + \end{equation*}
2038 + \item {\tt RepulsiveMorse}:
2039 + \begin{equation*}
2040 + V_{\text{NB}}(r) = D_{ij} \left( e^{-2 \beta_{ij} (r -
2041 +     r^0)} \right),
2042 + \end{equation*}
2043 + \item {\tt RepulsivePower}:
2044 + \begin{equation*}
2045 +  V_{\text{NB}}(r) = \epsilon_{ij}
2046 +  \left(\frac{\sigma_{ij}}{r} \right)^{n_{ij}}.
2047 + \end{equation*}
2048 + \end{itemize}
2049 +
2050 + \begin{lstlisting}[caption={[An example of a NonBondedInteractions block.] A
2051 + simple example of a NonBondedInteractions block. Distances ($\sigma,
2052 + r_0$) are given in \AA, while energies ($\epsilon, D0$) are in
2053 + kcal/mol.  The Morse potentials have an additional parameter $\beta_0$
2054 + which is in units of \AA$^{-1}$.},
2055 + label={sch:InversionTypes}]
2056 + begin NonBondedInteractions
2057 +
2058 + //Lennard-Jones
2059 + //Atom1 Atom2   LennardJones    sigma  epsilon
2060 + Au      CH3     LennardJones    3.54   0.2146
2061 + Au      CH2     LennardJones    3.54   0.1749
2062 + Au      CH      LennardJones    3.54   0.1749
2063 + Au      S       LennardJones    2.40   8.465
2064 +
2065 + //Shifted Morse
2066 + //Atom1 Atom2   ShiftedMorse    r0     D0       beta0
2067 + Au      O_SPCE  ShiftedMorse    3.70   0.0424   0.769
2068 +
2069 + //Repulsive Morse
2070 + //Atom1 Atom2   RepulsiveMorse  r0     D0       beta0
2071 + Au      H_SPCE  RepulsiveMorse  -1.00  0.00850  0.769
2072 +
2073 + //Repulsive Power
2074 + //Atom1 Atom2   RepulsivePower   sigma    epsilon    n
2075 + Au      ON      RepulsivePower   3.47005  0.186208   11
2076 + Au      NO      RepulsivePower   3.53955  0.168629   11
2077 + end NonBondedInteractions
2078 + \end{lstlisting}
2079 +
2080   \section{\label{section:electrostatics}Electrostatics}
2081  
2082 < To aid in performing simulations in more traditional force fields, we
2083 < have added routines to carry out electrostatic interactions using a
2084 < number of different electrostatic summation methods.  These methods
2085 < are extended from the damped and cutoff-neutralized Coulombic sum
2086 < originally proposed by Wolf, {\it et al.}\cite{Wolf99} One of these,
2087 < the damped shifted force method, shows a remarkable ability to
2088 < reproduce the energetic and dynamic characteristics exhibited by
2089 < simulations employing lattice summation techniques.  The basic idea is
2090 < to construct well-behaved real-space summation methods using two tricks:
2082 > Because nearly all force fields involve electrostatic interactions in
2083 > one form or another, OpenMD implements a number of different
2084 > electrostatic summation methods.  These methods are extended from the
2085 > damped and cutoff-neutralized Coulombic sum originally proposed by
2086 > Wolf, {\it et al.}\cite{Wolf99} One of these, the damped shifted force
2087 > method, shows a remarkable ability to reproduce the energetic and
2088 > dynamic characteristics exhibited by simulations employing lattice
2089 > summation techniques.  The basic idea is to construct well-behaved
2090 > real-space summation methods using two tricks:
2091   \begin{enumerate}
2092   \item shifting through the use of image charges, and
2093   \item damping the electrostatic interaction.
# Line 1468 | Line 2206 | the shifted potential (eq. (\ref{eq:SPPot})) becomes
2206   \end{equation}
2207   the shifted potential (eq. (\ref{eq:SPPot})) becomes
2208   \begin{equation}
2209 < V_{\textrm{DSP}}(r) = q_iq_j\left(\frac{\textrm{erfc}\left(\alpha r\right)}{r}-\
1472 < frac{\textrm{erfc}\left(\alpha R_\textrm{c}\right)}{R_\textrm{c}}\right) \quad r
2209 > V_{\textrm{DSP}}(r) = q_iq_j\left(\frac{\textrm{erfc}\left(\alpha r\right)}{r}-\frac{\textrm{erfc}\left(\alpha R_\textrm{c}\right)}{R_\textrm{c}}\right) \quad r
2210   \leqslant R_\textrm{c},
2211   \label{eq:DSPPot}
2212   \end{equation}
# Line 1513 | Line 2250 | this reason, the default electrostatic summation metho
2250   this reason, the default electrostatic summation method utilized by
2251   {\sc OpenMD} is the DSF (Eq. \ref{eq:DSFPot}) with a damping parameter
2252   ($\alpha$) that is set algorithmically from the cutoff radius.
2253 +
2254 +
2255 + \section{\label{section:cutoffGroups}Switching Functions}
2256 +
2257 + Calculating the the long-range interactions for $N$ atoms involves
2258 + $N(N-1)/2$ evaluations of atomic distances if it is done in a brute
2259 + force manner.  To reduce the number of distance evaluations between
2260 + pairs of atoms, {\sc OpenMD} allows the use of hard or switched
2261 + cutoffs with Verlet neighbor lists.\cite{Allen87} Neutral groups which
2262 + contain charges can exhibit pathological forces unless the cutoff is
2263 + applied to the neutral groups evenly instead of to the individual
2264 + atoms.\cite{leach01:mm} {\sc OpenMD} allows users to specify cutoff
2265 + groups which may contain an arbitrary number of atoms in the molecule.
2266 + Atoms in a cutoff group are treated as a single unit for the
2267 + evaluation of the switching function:
2268 + \begin{equation}
2269 + V_{\mathrm{long-range}} = \sum_{a} \sum_{b>a} s(r_{ab}) \sum_{i \in a} \sum_{j \in b} V_{ij}(r_{ij}),
2270 + \end{equation}
2271 + where $r_{ab}$ is the distance between the centers of mass of the two
2272 + cutoff groups ($a$ and $b$).
2273 +
2274 + The sums over $a$ and $b$ are over the cutoff groups that are present
2275 + in the simulation.  Atoms which are not explicitly defined as members
2276 + of a {\tt cutoffGroup} are treated as a group consisting of only one
2277 + atom.  The switching function, $s(r)$ is the standard cubic switching
2278 + function,
2279 + \begin{equation}
2280 + S(r) =
2281 +        \begin{cases}
2282 +        1 & \text{if $r \le r_{\text{sw}}$},\\
2283 +        \frac{(r_{\text{cut}} + 2r - 3r_{\text{sw}})(r_{\text{cut}} - r)^2}
2284 +        {(r_{\text{cut}} - r_{\text{sw}})^3}
2285 +        & \text{if $r_{\text{sw}} < r \le r_{\text{cut}}$}, \\
2286 +        0 & \text{if $r > r_{\text{cut}}$.}
2287 +        \end{cases}
2288 + \label{eq:dipoleSwitching}
2289 + \end{equation}
2290 + Here, $r_{\text{sw}}$ is the {\tt switchingRadius}, or the distance
2291 + beyond which interactions are reduced, and $r_{\text{cut}}$ is the
2292 + {\tt cutoffRadius}, or the distance at which interactions are
2293 + truncated.  
2294 +
2295 + Users of {\sc OpenMD} do not need to specify the {\tt cutoffRadius} or
2296 + {\tt switchingRadius}.  
2297 + If the {\tt cutoffRadius} was not explicitly set, OpenMD will attempt
2298 + to guess an appropriate choice.  If the system contains electrostatic
2299 + atoms, the default cutoff radius is 12 \AA.  In systems without
2300 + electrostatic (charge or multipolar) atoms, the atom types present in the simulation will be
2301 + polled for suggested cutoff values (e.g. $2.5 max(\left\{ \sigma
2302 +  \right\})$ for Lennard-Jones atoms.   The largest suggested value
2303 + that was found will be used.
2304  
2305 + By default, OpenMD uses shifted force potentials to force the
2306 + potential energy and forces to smoothly approach zero at the cutoff
2307 + radius.  If the user would like to use another cutoff method
2308 + they may do so by setting the {\tt cutoffMethod} parameter to:
2309 + \begin{itemize}
2310 + \item {\tt HARD}
2311 + \item {\tt SWITCHED}
2312 + \item {\tt SHIFTED\_FORCE} (default):
2313 + \item {\tt TAYLOR\_SHIFTED}
2314 + \item {\tt SHIFTED\_POTENTIAL}
2315 + \end{itemize}
2316 +
2317 + The {\tt switchingRadius} is set to a default value of 95\% of the
2318 + {\tt cutoffRadius}.  In the special case of a simulation containing
2319 + {\it only} Lennard-Jones atoms, the default switching radius takes the
2320 + same value as the cutoff radius, and {\sc OpenMD} will use a shifted
2321 + potential to remove discontinuities in the potential at the cutoff.
2322 + Both radii may be specified in the meta-data file.
2323 +
2324 +
2325   \section{\label{section:pbc}Periodic Boundary Conditions}
2326  
2327   \newcommand{\roundme}{\operatorname{round}}
# Line 2621 | Line 3429 | tensor.
3429  
3430   \section{Constant Pressure without periodic boundary conditions (The LangevinHull)}
3431  
3432 < The Langevin Hull uses an external bath at a fixed constant pressure
3432 > The Langevin Hull\cite{Vardeman2011} uses an external bath at a fixed constant pressure
3433   ($P$) and temperature ($T$) with an effective solvent viscosity
3434   ($\eta$).  This bath interacts only with the objects on the exterior
3435   hull of the system.  Defining the hull of the atoms in a simulation is
# Line 2933 | Line 3741 | Harmonic Forces are used by default
3741   \label{table:zconParams}
3742   \end{longtable}
3743  
3744 < \chapter{\label{section:restraints}Restraints}
3745 < Restraints are external potentials that are added to a system to keep
3746 < particular molecules or collections of particles close to some
3747 < reference structure.  A restraint can be a collective
3744 > % \chapter{\label{section:restraints}Restraints}
3745 > % Restraints are external potentials that are added to a system to
3746 > % keep particular molecules or collections of particles close to some
3747 > % reference structure.  A restraint can be a collective
3748  
3749   \chapter{\label{section:thermInt}Thermodynamic Integration}
3750  
# Line 3075 | Line 3883 | Einstein crystal
3883   Einstein crystal
3884   \label{table:thermIntParams}
3885   \end{longtable}
3886 +
3887 + \chapter{\label{section:rnemd}Reverse Non-Equilibrium Molecular Dynamics (RNEMD)}
3888 +
3889 + There are many ways to compute transport properties from molecular
3890 + dynamics simulations.  Equilibrium Molecular Dynamics (EMD)
3891 + simulations can be used by computing relevant time correlation
3892 + functions and assuming linear response theory holds.  For some transport properties (notably thermal conductivity), EMD approaches
3893 + are subject to noise and poor convergence of the relevant
3894 + correlation functions. Traditional Non-equilibrium Molecular Dynamics
3895 + (NEMD) methods impose a gradient (e.g. thermal or momentum) on a
3896 + simulation.  However, the resulting flux is often difficult to
3897 + measure. Furthermore, problems arise for NEMD simulations of
3898 + heterogeneous systems, such as phase-phase boundaries or interfaces,
3899 + where the type of gradient to enforce at the boundary between
3900 + materials is unclear.
3901 +
3902 + {\it Reverse} Non-Equilibrium Molecular Dynamics (RNEMD) methods adopt
3903 + a different approach in that an unphysical {\it flux} is imposed
3904 + between different regions or ``slabs'' of the simulation box.  The
3905 + response of the system is to develop a temperature or momentum {\it
3906 +  gradient} between the two regions. Since the amount of the applied
3907 + flux is known exactly, and the measurement of gradient is generally
3908 + less complicated, imposed-flux methods typically take shorter
3909 + simulation times to obtain converged results for transport properties.
3910 +
3911 + \begin{figure}
3912 + \includegraphics[width=\linewidth]{rnemdDemo}
3913 + \caption{The (VSS) RNEMD approach imposes unphysical transfer of both
3914 +  linear momentum and kinetic energy between a ``hot'' slab and a
3915 +  ``cold'' slab in the simulation box.  The system responds to this
3916 +  imposed flux by generating both momentum and temperature gradients.
3917 +  The slope of the gradients can then be used to compute transport
3918 +  properties (e.g. shear viscosity and thermal conductivity).}
3919 + \label{rnemdDemo}
3920 + \end{figure}
3921 +
3922 + \section{\label{section:algo}Three algorithms for carrying out RNEMD simulations}
3923 + \subsection{\label{subsection:swapping}The swapping algorithm}
3924 + The original ``swapping'' approaches by M\"{u}ller-Plathe {\it et
3925 +  al.}\cite{ISI:000080382700030,MullerPlathe:1997xw} can be understood
3926 + as a sequence of imaginary elastic collisions between particles in
3927 + opposite slabs.  In each collision, the entire momentum vectors of
3928 + both particles may be exchanged to generate a thermal
3929 + flux. Alternatively, a single component of the momentum vectors may be
3930 + exchanged to generate a shear flux.  This algorithm turns out to be
3931 + quite useful in many simulations. However, the M\"{u}ller-Plathe
3932 + swapping approach perturbs the system away from ideal
3933 + Maxwell-Boltzmann distributions, and this may leads to undesirable
3934 + side-effects when the applied flux becomes large.\cite{Maginn:2010}
3935 + This limits the applicability of the swapping algorithm, so in OpenMD,
3936 + we have implemented two additional algorithms for RNEMD in addition to the
3937 + original swapping approach.
3938 +
3939 + \subsection{\label{subsection:nivs}Non-Isotropic Velocity Scaling (NIVS)}
3940 + Instead of having momentum exchange between {\it individual particles}
3941 + in each slab, the NIVS algorithm applies velocity scaling to all of
3942 + the selected particles in both slabs.\cite{kuang:164101} A combination of linear
3943 + momentum, kinetic energy, and flux constraint equations governs the
3944 + amount of velocity scaling performed at each step. Interested readers
3945 + should consult ref. \citealp{kuang:164101} for further details on the
3946 + methodology.
3947 +
3948 + NIVS has been shown to be very effective at producing thermal
3949 + gradients and for computing thermal conductivities, particularly for
3950 + heterogeneous interfaces.  Although the NIVS algorithm can also be
3951 + applied to impose a directional momentum flux, thermal anisotropy was
3952 + observed in relatively high flux simulations, and the method is not
3953 + suitable for imposing a shear flux or for computing shear viscosities.
3954 +
3955 + \subsection{\label{subsection:vss}Velocity Shearing and Scaling (VSS)}
3956 + The third RNEMD algorithm implemented in OpenMD utilizes a series of
3957 + simultaneous velocity shearing and scaling exchanges between the two
3958 + slabs.\cite{2012MolPh.110..691K}  This method results in a set of simpler equations to satisfy
3959 + the conservation constraints while creating a desired flux between the
3960 + two slabs.
3961 +
3962 + The VSS approach is versatile in that it may be used to implement both
3963 + thermal and shear transport either separately or simultaneously.
3964 + Perturbations of velocities away from the ideal Maxwell-Boltzmann
3965 + distributions are minimal, and thermal anisotropy is kept to a
3966 + minimum.  This ability to generate simultaneous thermal and shear
3967 + fluxes has been utilized to map out the shear viscosity of SPC/E water
3968 + over a wide range of temperatures (90~K) just with a single simulation.
3969 + VSS-RNEMD also allows the directional momentum flux to have
3970 + arbitary directions, which could aid in the study of anisotropic solid
3971 + surfaces in contact with liquid environments.
3972  
3973 + \section{\label{section:usingRNEMD}Using OpenMD to perform a RNEMD simulation}
3974 + \subsection{\label{section:rnemdParams} What the user needs to specify}
3975 + To carry out a RNEMD simulation,
3976 + a user must specify a number of parameters in the MetaData (.md) file.
3977 + Because the RNEMD methods have a large number of parameters, these
3978 + must be enclosed in a {\it separate} {\tt RNEMD\{...\}} block.  The most important
3979 + parameters to specify are the {\tt useRNEMD}, {\tt fluxType} and flux
3980 + parameters. Most other parameters (summarized in table
3981 + \ref{table:rnemd}) have reasonable default values.  {\tt fluxType}
3982 + sets up the kind of exchange that will be carried out between the two
3983 + slabs (either Kinetic Energy ({\tt KE}) or momentum ({\tt Px, Py, Pz,
3984 +  Pvector}), or some combination of these).  The flux is specified
3985 + with the use of three possible parameters: {\tt kineticFlux} for
3986 + kinetic energy exchange, as well as {\tt momentumFlux} or {\tt
3987 +  momentumFluxVector} for simulations with directional exchange.
3988  
3989 + \subsection{\label{section:rnemdResults} Processing the results}
3990 + OpenMD will generate a {\tt .rnemd}
3991 + file with the same prefix as the original {\tt .md} file.  This file
3992 + contains a running average of properties of interest computed within a
3993 + set of bins that divide the simulation cell along the $z$-axis.  The
3994 + first column of the {\tt .rnemd} file is the $z$ coordinate of the
3995 + center of each bin, while following columns may contain the average
3996 + temperature, velocity, or density within each bin.  The output format
3997 + in the {\tt .rnemd} file can be altered with the {\tt outputFields},
3998 + {\tt outputBins}, and {\tt outputFileName} parameters.  A report at
3999 + the top of the {\tt .rnemd} file contains the current exchange totals
4000 + as well as the average flux applied during the simulation.  Using the
4001 + slope of the temperature or velocity gradient obtaine from the {\tt
4002 +  .rnemd} file along with the applied flux, the user can very simply
4003 + arrive at estimates of thermal conductivities ($\lambda$),
4004 + \begin{equation}
4005 + J_z = -\lambda \frac{\partial T}{\partial z},
4006 + \end{equation}
4007 + and shear viscosities ($\eta$),
4008 + \begin{equation}
4009 + j_z(p_x) = -\eta \frac{\partial \langle v_x \rangle}{\partial z}.
4010 + \end{equation}
4011 + Here, the quantities on the left hand side are the actual flux values
4012 + (in the header of the {\tt .rnemd} file), while the slopes are
4013 + obtained from linear fits to the gradients observed in the {\tt
4014 +  .rnemd} file.
4015 +
4016 + More complicated simulations (including interfaces) require a bit more
4017 + care.  Here the second derivative may be required to compute the
4018 + interfacial thermal conductance,
4019 + \begin{align}
4020 +  G^\prime &= \left(\nabla\lambda \cdot \mathbf{\hat{n}}\right)_{z_0} \\
4021 +  &= \frac{\partial}{\partial z}\left(-\frac{J_z}{
4022 +      \left(\frac{\partial T}{\partial z}\right)}\right)_{z_0} \\
4023 +  &= J_z\left(\frac{\partial^2 T}{\partial z^2}\right)_{z_0} \Big/
4024 +  \left(\frac{\partial T}{\partial z}\right)_{z_0}^2.
4025 +  \label{derivativeG}
4026 + \end{align}
4027 + where $z_0$ is the location of the interface between two materials and
4028 + $\mathbf{\hat{n}}$ is a unit vector normal to the interface.  We
4029 + suggest that users interested in interfacial conductance consult
4030 + reference \citealp{kuang:AuThl} for other approaches to computing $G$.
4031 + Users interested in {\it friction coefficients} at heterogeneous
4032 + interfaces may also find reference \citealp{2012MolPh.110..691K}
4033 + useful.
4034 +
4035 + \newpage
4036 +
4037 + \begin{longtable}[c]{JKLM}
4038 + \caption{Meta-data Keywords: Parameters for RNEMD simulations}\\
4039 + \multicolumn{4}{c}{The following keywords must be enclosed inside a {\tt RNEMD\{...\}} block.}
4040 + \\ \hline
4041 + {\bf keyword} & {\bf units} & {\bf use} & {\bf remarks}  \\ \hline
4042 + \endhead
4043 + \hline
4044 + \endfoot
4045 + {\tt useRNEMD} & logical & perform RNEMD? & default is ``false'' \\
4046 + {\tt objectSelection} & string & see section \ref{section:syntax}
4047 + for selection syntax & default is ``select all'' \\
4048 + {\tt method} & string & exchange method & one of the following:
4049 + {\tt Swap, NIVS,} or {\tt VSS}  (default is {\tt VSS}) \\
4050 + {\tt fluxType} & string & what is being exchanged between slabs? & one
4051 + of the following: {\tt KE, Px, Py, Pz, Pvector, KE+Px, KE+Py, KE+Pvector} \\
4052 + {\tt kineticFlux} & kcal mol$^{-1}$ \AA$^{-2}$ fs$^{-1}$ & specify the kinetic energy flux &  \\
4053 + {\tt momentumFlux} & amu \AA$^{-1}$ fs$^{-2}$ & specify the momentum flux & \\
4054 + {\tt momentumFluxVector} & amu \AA$^{-1}$ fs$^{-2}$ & specify the momentum flux when
4055 + {\tt Pvector} is part of the exchange & Vector3d input\\
4056 + {\tt exchangeTime} & fs & how often to perform the exchange & default is 100 fs\\
4057 +
4058 + {\tt slabWidth} & $\mbox{\AA}$ & width of the two exchange slabs & default is $\mathsf{H}_{zz} / 10.0$ \\
4059 + {\tt slabAcenter} & $\mbox{\AA}$ & center of the end slab & default is 0 \\
4060 + {\tt slabBcenter} & $\mbox{\AA}$ & center of the middle slab & default is $\mathsf{H}_{zz} / 2$ \\
4061 + {\tt outputFileName} & string & file name for output histograms & default is the same prefix as the
4062 + .md file, but with the {\tt .rnemd} extension \\
4063 + {\tt outputBins} & int & number of $z$-bins in the output histogram &
4064 + default is 20 \\
4065 + {\tt outputFields} & string & columns to print in the {\tt .rnemd}
4066 + file where each column is separated by a pipe ($\mid$) symbol. & Allowed column names are: {\sc z, temperature, velocity, density} \\
4067 + \label{table:rnemd}
4068 + \end{longtable}
4069 +
4070   \chapter{\label{section:minimizer}Energy Minimization}
4071  
4072 < As one of the basic procedures of molecular modeling, energy
3083 < minimization is used to identify local configurations that are stable
4072 > Energy minimization is used to identify local configurations that are stable
4073   points on the potential energy surface. There is a vast literature on
4074   energy minimization algorithms have been developed to search for the
4075   global energy minimum as well as to find local structures which are
# Line 3207 | Line 4196 | diagram of the class heirarchy:
4196   \begin{figure}
4197   \centering
4198   \includegraphics[width=3in]{heirarchy.pdf}
4199 < \caption[Class heirarchy for StuntDoubles in {\sc OpenMD}-4]{ \\ The
4200 < class heirarchy of StuntDoubles in {\sc OpenMD}-4. The selection
4199 > \caption[Class heirarchy for StuntDoubles in {\sc OpenMD}]{ \\ The
4200 > class heirarchy of StuntDoubles in {\sc OpenMD}. The selection
4201   syntax allows the user to select any of the objects that are descended
4202   from a StuntDouble.}
4203   \label{fig:heirarchy}
# Line 3388 | Line 4377 | VMD. The options available for Dump2XYZ are as follows
4377    -z & {\tt -{}-zconstraint}  &                replace the atom types of zconstraint molecules  (default=off) \\
4378    -r & {\tt -{}-rigidbody}  &                  add a pseudo COM atom to rigidbody  (default=off) \\
4379    -t & {\tt -{}-watertype} &                   replace the atom type of water model (default=on) \\
4380 <  -b & {\tt -{}-basetype}  &                   using base atom type  (default=off) \\
4380 >  -b & {\tt -{}-basetype}  &                   using base atom type
4381 >  (default=off) \\
4382 >  -v& {\tt -{}-velocities}             & Print velocities in xyz file  (default=off)\\
4383 >  -f& {\tt -{}-forces}                 & Print forces xyz file  (default=off)\\
4384 >  -u& {\tt -{}-vectors}                & Print vectors (dipoles, etc) in xyz file  
4385 >                                  (default=off)\\
4386 >  -c& {\tt -{}-charges}                & Print charges in xyz file  (default=off)\\
4387 >  -e& {\tt -{}-efield}                 & Print electric field vector in xyz file  
4388 >                                  (default=off)\\
4389       & {\tt -{}-repeatX=INT}  &                 The number of images to repeat in the x direction  (default=`0') \\
4390       & {\tt -{}-repeatY=INT} &                 The number of images to repeat in the y direction  (default=`0') \\
4391       &  {\tt -{}-repeatZ=INT}  &                The number of images to repeat in the z direction  (default=`0') \\
# Line 3480 | Line 4477 | The options available for {\tt StaticProps} are as fol
4477      & {\tt -{}-sele1=selection script}   & select the first StuntDouble set \\
4478      & {\tt -{}-sele2=selection script}   & select the second StuntDouble set \\
4479      & {\tt -{}-sele3=selection script}   & select the third StuntDouble set \\
4480 <    & {\tt -{}-refsele=selection script} & select reference (can only be used with {\tt -{}-gxyz}) \\
4480 >    & {\tt -{}-refsele=selection script} & select reference (can only
4481 >    be used with {\tt -{}-gxyz}) \\
4482 >    & {\tt -{}-comsele=selection script}
4483 >                               & select stunt doubles for center-of-mass
4484 >                                  reference point\\
4485 >    & {\tt -{}-seleoffset=INT}        & global index offset for a second object (used
4486 >                                  to define a vector between sites in molecule)\\
4487 >
4488      & {\tt -{}-molname=STRING}           & molecule name \\
4489      & {\tt -{}-begin=INT}                & begin internal index \\
4490      & {\tt -{}-end=INT}                  & end internal index \\
4491 +    & {\tt -{}-radius=DOUBLE}            & nanoparticle radius\\
4492   \hline
4493   \multicolumn{3}{|l|}{One option from the following group of options is required:} \\
4494   \hline
4495 <    &  {\tt -{}-gofr}                    &  $g(r)$ \\
4496 <    &  {\tt -{}-r\_theta}                 &  $g(r, \cos(\theta))$ \\
4497 <    &  {\tt -{}-r\_omega}                 &  $g(r, \cos(\omega))$ \\
4498 <    &  {\tt -{}-theta\_omega}             &  $g(\cos(\theta), \cos(\omega))$ \\
4495 >    & {\tt -{}-bo}          & bond order parameter ({\tt -{}-rcut} must be specified) \\
4496 >    & {\tt -{}-bor}         & bond order parameter as a function of
4497 >    radius  ({\tt -{}-rcut} must be specified) \\
4498 >    & {\tt -{}-bad}         & $N(\theta)$ bond angle density within ({\tt -{}-rcut} must be specified) \\
4499 >    & {\tt -{}-count}       & count of molecules matching selection
4500 >    criteria (and associated statistics) \\
4501 >  -g&  {\tt -{}-gofr}                    &  $g(r)$ \\
4502 >    &  {\tt -{}-gofz}                    &  $g(z)$ \\
4503 >    &  {\tt -{}-r\_theta}                &  $g(r, \cos(\theta))$ \\
4504 >    &  {\tt -{}-r\_omega}                &  $g(r, \cos(\omega))$ \\
4505 >    &  {\tt -{}-r\_z}                    &  $g(r, z)$ \\
4506 >    &  {\tt -{}-theta\_omega}            &  $g(\cos(\theta), \cos(\omega))$ \\
4507      &  {\tt -{}-gxyz}                    &  $g(x, y, z)$ \\
4508 <    &  {\tt -{}-p2}                      &  $P_2$ order parameter ({\tt -{}-sele1} and {\tt -{}-sele2} must be specified) \\
4508 >    &  {\tt -{}-twodgofr}                & 2D $g(r)$ (Slab width {\tt -{}-dz} must be specified)\\
4509 >  -p&  {\tt -{}-p2}                      &  $P_2$ order parameter  ({\tt -{}-sele1} must be specified, {\tt -{}-sele2} is optional) \\
4510 >    &  {\tt -{}-rp2}                     &  Ripple order parameter ({\tt -{}-sele1} and {\tt -{}-sele2} must be specified) \\
4511      &  {\tt -{}-scd}                     &  $S_{CD}$ order parameter(either {\tt -{}-sele1}, {\tt -{}-sele2}, {\tt -{}-sele3} are specified or {\tt -{}-molname}, {\tt -{}-begin}, {\tt -{}-end} are specified) \\
4512 <    &  {\tt -{}-density}                 &  density plot ({\tt -{}-sele1} must be specified) \\
4513 <    &  {\tt -{}-slab\_density}           &  slab density ({\tt -{}-sele1} must be specified)
4512 >  -d&  {\tt -{}-density}                 &  density plot \\
4513 >    &  {\tt -{}-slab\_density}           &  slab density \\
4514 >    &  {\tt -{}-p\_angle}                & $p(\cos(\theta))$ ($\theta$
4515 >    is the angle between molecular axis and radial vector from origin\\
4516 >    &  {\tt -{}-hxy}                     & Calculates the undulation  spectrum, $h(x,y)$, of an interface \\
4517 >    &  {\tt -{}-rho\_r}                  & $\rho(r)$\\
4518 >    &  {\tt -{}-angle\_r}                &  $\theta(r)$ (spatially resolves the
4519 >    angle between the molecular axis and the radial vector from the
4520 >    origin)\\
4521 >    &  {\tt -{}-hullvol}                 & hull volume of nanoparticle\\
4522 >    &  {\tt -{}-rodlength}               & length of nanorod\\
4523 >  -Q&  {\tt -{}-tet\_param}              & tetrahedrality order parameter ($Q$)\\
4524 >    &  {\tt -{}-tet\_param\_z}           & spatially-resolved tetrahedrality order
4525 >                                   parameter $Q(z)$\\
4526 >    &  {\tt -{}-rnemdz}                  & slab-resolved RNEMD statistics (temperature,
4527 >                                  density, velocity)\\
4528 >    &  {\tt -{}-rnemdr}                  & shell-resolved RNEMD statistics (temperature,
4529 >                                  density, angular velocity)
4530   \end{longtable}
4531  
4532   \subsection{\label{section:DynamicProps}DynamicProps}
# Line 3536 | Line 4567 | The options available for DynamicProps are as follows:
4567    -o& {\tt -{}-output=filename}        & output file name \\
4568      & {\tt -{}-sele1=selection script} & select first StuntDouble set \\
4569      & {\tt -{}-sele2=selection script} & select second StuntDouble set (if sele2 is not set, use script from sele1) \\
4570 +    & {\tt -{}-order=INT}              & Lengendre Polynomial Order\\
4571 +  -z& {\tt -{}-nzbins=INT}             & Number of $z$ bins (default=`100`)\\
4572 +  -m& {\tt -{}-memory=memory specification}
4573 +                                &Available memory  
4574 +                                  (default=`2G`)\\
4575   \hline
4576   \multicolumn{3}{|l|}{One option from the following group of options is required:} \\
4577   \hline
4578 <  -r& {\tt -{}-rcorr}                  & compute mean square displacement \\
4579 <  -v& {\tt -{}-vcorr}                  & compute velocity correlation function \\
4580 <  -d& {\tt -{}-dcorr}                  & compute dipole correlation function
4578 >  -s& {\tt -{}-selecorr}               & selection correlation function \\
4579 >  -r& {\tt -{}-rcorr}                  & compute mean squared displacement \\
4580 >  -v& {\tt -{}-vcorr}                  & velocity autocorrelation function \\
4581 >  -d& {\tt -{}-dcorr}                  & dipole correlation function \\
4582 >  -l& {\tt -{}-lcorr}                  & Lengendre correlation function \\
4583 >    & {\tt -{}-lcorrZ}                 & Lengendre correlation function binned by $z$ \\
4584 >    & {\tt -{}-cohZ}                   & Lengendre correlation function for OH bond vectors binned by $z$\\
4585 >  -M& {\tt -{}-sdcorr}                 & System dipole correlation function\\
4586 >    & {\tt -{}-r\_rcorr}               & Radial mean squared displacement\\
4587 >    & {\tt -{}-thetacorr}              & Angular mean squared displacement\\
4588 >    & {\tt -{}-drcorr}                 & Directional mean squared displacement for particles with unit vectors\\
4589 >    & {\tt -{}-helfandEcorr}           & Helfand moment for thermal conductvity\\
4590 >  -p& {\tt -{}-momentum}               & Helfand momentum for viscosity\\
4591 >    & {\tt -{}-stresscorr}             & Stress tensor correlation function
4592   \end{longtable}
4593  
4594   \chapter{\label{section:PreparingInput} Preparing Input Configurations}
# Line 3608 | Line 4655 | expect the the input specifier on the command line.
4655   to {\tt atom2md}, but they use a specific input format and do not
4656   expect the the input specifier on the command line.
4657  
4658 +
4659   \section{\label{section:SimpleBuilder}SimpleBuilder}
4660  
4661   {\tt SimpleBuilder} creates simple lattice structures.  It requires an
# Line 3634 | Line 4682 | The options available for SimpleBuilder are as follows
4682      &  {\tt -{}-nz=INT}            &  number of unit cells in z
4683   \end{longtable}
4684  
4685 + \section{\label{section:icosahedralBuilder}icosahedralBuilder}
4686 +
4687 + {\tt icosahedralBuilder} creates single-component geometric solids
4688 + that can be useful in simulating nanostructures.  Like the other
4689 + builders, it requires an initial, but skeletal {\sc OpenMD} file to
4690 + specify the component that is to be placed on the lattice.  The total
4691 + number of placed molecules will be shown at the top of the
4692 + configuration file that is generated, and that number may not match
4693 + the original meta-data file, so a new meta-data file is also generated
4694 + which matches the lattice structure.
4695 +
4696 + The options available for icosahedralBuilder are as follows:
4697 + \begin{longtable}[c]{|EFG|}
4698 + \caption{icosahedralBuilder Command-line Options}
4699 + \\ \hline
4700 + {\bf option} & {\bf verbose option} & {\bf behavior} \\ \hline
4701 + \endhead
4702 + \hline
4703 + \endfoot
4704 +  -h& {\tt -{}-help}               & Print help and exit\\
4705 +  -V& {\tt -{}-version}            & Print version and exit\\
4706 +  -o& {\tt -{}-output=STRING}      & Output file name\\
4707 +  -n& {\tt -{}-shells=INT}         & Nanoparticle shells\\
4708 +  -d& {\tt -{}-latticeConstant=DOUBLE} & Lattice spacing in Angstroms for cubic lattice.\\
4709 +  -c& {\tt -{}-columnAtoms=INT}        & Number of atoms along central
4710 +  column (Decahedron only)\\
4711 +  -t& {\tt -{}-twinAtoms=INT}          & Number of atoms along twin
4712 +  boundary (Decahedron only) \\
4713 +  -p& {\tt -{}-truncatedPlanes=INT}   & Number of truncated planes (Curling-stone Decahedron only)\\
4714 + \hline
4715 + \multicolumn{3}{|l|}{One option from the following group of options is required:} \\
4716 + \hline
4717 +   & {\tt -{}-ico}    & Create an Icosahedral cluster \\
4718 +   & {\tt -{}-deca}   & Create a regualar Decahedral cluster\\
4719 +   & {\tt -{}-ino}    & Create an Ino Decahedral cluster\\
4720 +   & {\tt -{}-marks}  & Create a Marks Decahedral cluster\\
4721 +   & {\tt -{}-stone}  & Create a Curling-stone Decahedral cluster
4722 + \end{longtable}
4723 +
4724 +
4725   \section{\label{section:Hydro}Hydro}
4726   {\tt Hydro} generates resistance tensor ({\tt .diff}) files which are
4727   required when using the Langevin integrator using complex rigid
# Line 3667 | Line 4755 | hydrodynamic calculations will not be performed (defau
4755   \end{longtable}
4756  
4757  
4758 +
4759 +
4760 +
4761   \chapter{\label{section:parallelization} Parallel Simulation Implementation}
4762  
4763   Although processor power is continually improving, it is still
# Line 3750 | Line 4841 | DMR-0079647.
4841   DMR-0079647.
4842  
4843  
4844 < \bibliographystyle{jcc}
4844 > \bibliographystyle{aip}
4845   \bibliography{openmdDoc}
4846  
4847   \end{document}

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines