ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/openmdDocs/openmdDoc.tex
(Generate patch)

Comparing trunk/openmdDocs/openmdDoc.tex (file contents):
Revision 3709 by gezelter, Wed Nov 24 20:44:51 2010 UTC vs.
Revision 3794 by gezelter, Tue Aug 21 13:32:12 2012 UTC

# Line 17 | Line 17
17   \textwidth 6.5in
18   \brokenpenalty=10000
19   \renewcommand{\baselinestretch}{1.2}
20 + \usepackage[square, comma, sort&compress]{natbib}
21 + \bibpunct{[}{]}{,}{n}{}{;}
22  
23 +
24   %\renewcommand\citemid{\ } % no comma in optional reference note
25   \lstset{language=C,frame=TB,basicstyle=\tiny,basicstyle=\ttfamily, %
26          xleftmargin=0.25in, xrightmargin=0.25in,captionpos=b, %
# Line 38 | Line 41
41   \newcolumntype{H}{p{0.75in}}
42   \newcolumntype{I}{p{5in}}
43  
44 + \newcolumntype{J}{p{1.5in}}
45 + \newcolumntype{K}{p{1.2in}}
46 + \newcolumntype{L}{p{1.5in}}
47 + \newcolumntype{M}{p{1.55in}}
48  
42 \title{{\sc OpenMD}: Molecular Dynamics in the Open}
49  
50 < \author{Kelsey M. Stocker, Shenyu Kuang, Charles F. Vardeman II, \\
51 <  Teng Lin, Christopher J. Fennell,  Xiuquan Sun, \\
50 > \title{{\sc OpenMD-2}: Molecular Dynamics in the Open}
51 >
52 > \author{Shenyu Kuang, Joseph Michalka, Kelsey Stocker, James Marr, \\
53 >  Teng Lin, Charles F. Vardeman II, Christopher J. Fennell, Xiuquan Sun, \\
54    Chunlei Li, Kyle Daily, Yang Zheng, Matthew A. Meineke, and \\
55    J. Daniel Gezelter \\
56    Department of Chemistry and Biochemistry\\
# Line 491 | Line 499 | fs}^{-1}$), and body-fixed moments of inertia ($\mbox{
499   \endhead
500   \hline
501   \endfoot
502 < {\tt forceField} & string & Sets the force field. & Possible force
503 < fields are DUFF, WATER, LJ, EAM, SC, and CLAY. \\
502 > {\tt forceField} & string & Sets the base name for the force field file &
503 > OpenMD appends a {\tt .frc} to the end of this to look for a force
504 > field file.\\
505   {\tt component} & & Defines the molecular components of the system &
506   Every {\tt $<$MetaData$>$} block must have a component statement. \\
507   {\tt minimizer} & string & Chooses a minimizer & Possible minimizers
# Line 2621 | Line 2630 | tensor.
2630  
2631   \section{Constant Pressure without periodic boundary conditions (The LangevinHull)}
2632  
2633 < The Langevin Hull uses an external bath at a fixed constant pressure
2633 > The Langevin Hull\cite{Vardeman2011} uses an external bath at a fixed constant pressure
2634   ($P$) and temperature ($T$) with an effective solvent viscosity
2635   ($\eta$).  This bath interacts only with the objects on the exterior
2636   hull of the system.  Defining the hull of the atoms in a simulation is
# Line 2933 | Line 2942 | Harmonic Forces are used by default
2942   \label{table:zconParams}
2943   \end{longtable}
2944  
2945 < \chapter{\label{section:restraints}Restraints}
2946 < Restraints are external potentials that are added to a system to keep
2947 < particular molecules or collections of particles close to some
2948 < reference structure.  A restraint can be a collective
2945 > % \chapter{\label{section:restraints}Restraints}
2946 > % Restraints are external potentials that are added to a system to
2947 > % keep particular molecules or collections of particles close to some
2948 > % reference structure.  A restraint can be a collective
2949  
2950   \chapter{\label{section:thermInt}Thermodynamic Integration}
2951  
# Line 3075 | Line 3084 | Einstein crystal
3084   Einstein crystal
3085   \label{table:thermIntParams}
3086   \end{longtable}
3087 +
3088 + \chapter{\label{section:rnemd}Reverse Non-Equilibrium Molecular Dynamics (RNEMD)}
3089 +
3090 + There are many ways to compute transport properties from molecular
3091 + dynamics simulations.  Equilibrium Molecular Dynamics (EMD)
3092 + simulations can be used by computing relevant time correlation
3093 + functions and assuming linear response theory holds.  For some transport properties (notably thermal conductivity), EMD approaches
3094 + are subject to noise and poor convergence of the relevant
3095 + correlation functions. Traditional Non-equilibrium Molecular Dynamics
3096 + (NEMD) methods impose a gradient (e.g. thermal or momentum) on a
3097 + simulation.  However, the resulting flux is often difficult to
3098 + measure. Furthermore, problems arise for NEMD simulations of
3099 + heterogeneous systems, such as phase-phase boundaries or interfaces,
3100 + where the type of gradient to enforce at the boundary between
3101 + materials is unclear.
3102 +
3103 + {\it Reverse} Non-Equilibrium Molecular Dynamics (RNEMD) methods adopt
3104 + a different approach in that an unphysical {\it flux} is imposed
3105 + between different regions or ``slabs'' of the simulation box.  The
3106 + response of the system is to develop a temperature or momentum {\it
3107 +  gradient} between the two regions. Since the amount of the applied
3108 + flux is known exactly, and the measurement of gradient is generally
3109 + less complicated, imposed-flux methods typically take shorter
3110 + simulation times to obtain converged results for transport properties.
3111 +
3112 + \begin{figure}
3113 + \includegraphics[width=\linewidth]{rnemdDemo}
3114 + \caption{The (VSS) RNEMD approach imposes unphysical transfer of both
3115 +  linear momentum and kinetic energy between a ``hot'' slab and a
3116 +  ``cold'' slab in the simulation box.  The system responds to this
3117 +  imposed flux by generating both momentum and temperature gradients.
3118 +  The slope of the gradients can then be used to compute transport
3119 +  properties (e.g. shear viscosity and thermal conductivity).}
3120 + \label{rnemdDemo}
3121 + \end{figure}
3122 +
3123 + \section{\label{section:algo}Three algorithms for carrying out RNEMD simulations}
3124 + \subsection{\label{subsection:swapping}The swapping algorithm}
3125 + The original ``swapping'' approaches by M\"{u}ller-Plathe {\it et
3126 +  al.}\cite{ISI:000080382700030,MullerPlathe:1997xw} can be understood
3127 + as a sequence of imaginary elastic collisions between particles in
3128 + opposite slabs.  In each collision, the entire momentum vectors of
3129 + both particles may be exchanged to generate a thermal
3130 + flux. Alternatively, a single component of the momentum vectors may be
3131 + exchanged to generate a shear flux.  This algorithm turns out to be
3132 + quite useful in many simulations. However, the M\"{u}ller-Plathe
3133 + swapping approach perturbs the system away from ideal
3134 + Maxwell-Boltzmann distributions, and this may leads to undesirable
3135 + side-effects when the applied flux becomes large.\cite{Maginn:2010}
3136 + This limits the applicability of the swapping algorithm, so in OpenMD,
3137 + we have implemented two additional algorithms for RNEMD in addition to the
3138 + original swapping approach.
3139 +
3140 + \subsection{\label{subsection:nivs}Non-Isotropic Velocity Scaling (NIVS)}
3141 + Instead of having momentum exchange between {\it individual particles}
3142 + in each slab, the NIVS algorithm applies velocity scaling to all of
3143 + the selected particles in both slabs.\cite{kuang:164101} A combination of linear
3144 + momentum, kinetic energy, and flux constraint equations governs the
3145 + amount of velocity scaling performed at each step. Interested readers
3146 + should consult ref. \citealp{kuang:164101} for further details on the
3147 + methodology.
3148 +
3149 + NIVS has been shown to be very effective at producing thermal
3150 + gradients and for computing thermal conductivities, particularly for
3151 + heterogeneous interfaces.  Although the NIVS algorithm can also be
3152 + applied to impose a directional momentum flux, thermal anisotropy was
3153 + observed in relatively high flux simulations, and the method is not
3154 + suitable for imposing a shear flux or for computing shear viscosities.
3155 +
3156 + \subsection{\label{subsection:vss}Velocity Shearing and Scaling (VSS)}
3157 + The third RNEMD algorithm implemented in OpenMD utilizes a series of
3158 + simultaneous velocity shearing and scaling exchanges between the two
3159 + slabs.\cite{2012MolPh.110..691K}  This method results in a set of simpler equations to satisfy
3160 + the conservation constraints while creating a desired flux between the
3161 + two slabs.
3162 +
3163 + The VSS approach is versatile in that it may be used to implement both
3164 + thermal and shear transport either separately or simultaneously.
3165 + Perturbations of velocities away from the ideal Maxwell-Boltzmann
3166 + distributions are minimal, and thermal anisotropy is kept to a
3167 + minimum.  This ability to generate simultaneous thermal and shear
3168 + fluxes has been utilized to map out the shear viscosity of SPC/E water
3169 + over a wide range of temperatures (90~K) just with a single simulation.
3170 + VSS-RNEMD also allows the directional momentum flux to have
3171 + arbitary directions, which could aid in the study of anisotropic solid
3172 + surfaces in contact with liquid environments.
3173  
3174 + \section{\label{section:usingRNEMD}Using OpenMD to perform a RNEMD simulation}
3175 + \subsection{\label{section:rnemdParams} What the user needs to specify}
3176 + To carry out a RNEMD simulation,
3177 + a user must specify a number of parameters in the MetaData (.md) file.
3178 + Because the RNEMD methods have a large number of parameters, these
3179 + must be enclosed in a {\it separate} {\tt RNEMD\{...\}} block.  The most important
3180 + parameters to specify are the {\tt useRNEMD}, {\tt fluxType} and flux
3181 + parameters. Most other parameters (summarized in table
3182 + \ref{table:rnemd}) have reasonable default values.  {\tt fluxType}
3183 + sets up the kind of exchange that will be carried out between the two
3184 + slabs (either Kinetic Energy ({\tt KE}) or momentum ({\tt Px, Py, Pz,
3185 +  Pvector}), or some combination of these).  The flux is specified
3186 + with the use of three possible parameters: {\tt kineticFlux} for
3187 + kinetic energy exchange, as well as {\tt momentumFlux} or {\tt
3188 +  momentumFluxVector} for simulations with directional exchange.
3189  
3190 + \subsection{\label{section:rnemdResults} Processing the results}
3191 + OpenMD will generate a {\tt .rnemd}
3192 + file with the same prefix as the original {\tt .md} file.  This file
3193 + contains a running average of properties of interest computed within a
3194 + set of bins that divide the simulation cell along the $z$-axis.  The
3195 + first column of the {\tt .rnemd} file is the $z$ coordinate of the
3196 + center of each bin, while following columns may contain the average
3197 + temperature, velocity, or density within each bin.  The output format
3198 + in the {\tt .rnemd} file can be altered with the {\tt outputFields},
3199 + {\tt outputBins}, and {\tt outputFileName} parameters.  A report at
3200 + the top of the {\tt .rnemd} file contains the current exchange totals
3201 + as well as the average flux applied during the simulation.  Using the
3202 + slope of the temperature or velocity gradient obtaine from the {\tt
3203 +  .rnemd} file along with the applied flux, the user can very simply
3204 + arrive at estimates of thermal conductivities ($\lambda$),
3205 + \begin{equation}
3206 + J_z = -\lambda \frac{\partial T}{\partial z},
3207 + \end{equation}
3208 + and shear viscosities ($\eta$),
3209 + \begin{equation}
3210 + j_z(p_x) = -\eta \frac{\partial \langle v_x \rangle}{\partial z}.
3211 + \end{equation}
3212 + Here, the quantities on the left hand side are the actual flux values
3213 + (in the header of the {\tt .rnemd} file), while the slopes are
3214 + obtained from linear fits to the gradients observed in the {\tt
3215 +  .rnemd} file.
3216 +
3217 + More complicated simulations (including interfaces) require a bit more
3218 + care.  Here the second derivative may be required to compute the
3219 + interfacial thermal conductance,
3220 + \begin{align}
3221 +  G^\prime &= \left(\nabla\lambda \cdot \mathbf{\hat{n}}\right)_{z_0} \\
3222 +  &= \frac{\partial}{\partial z}\left(-\frac{J_z}{
3223 +      \left(\frac{\partial T}{\partial z}\right)}\right)_{z_0} \\
3224 +  &= J_z\left(\frac{\partial^2 T}{\partial z^2}\right)_{z_0} \Big/
3225 +  \left(\frac{\partial T}{\partial z}\right)_{z_0}^2.
3226 +  \label{derivativeG}
3227 + \end{align}
3228 + where $z_0$ is the location of the interface between two materials and
3229 + $\mathbf{\hat{n}}$ is a unit vector normal to the interface.  We
3230 + suggest that users interested in interfacial conductance consult
3231 + reference \citealp{kuang:AuThl} for other approaches to computing $G$.
3232 + Users interested in {\it friction coefficients} at heterogeneous
3233 + interfaces may also find reference \citealp{2012MolPh.110..691K}
3234 + useful.
3235 +
3236 + \newpage
3237 +
3238 + \begin{longtable}[c]{JKLM}
3239 + \caption{Meta-data Keywords: Parameters for RNEMD simulations}\\
3240 + \multicolumn{4}{c}{The following keywords must be enclosed inside a {\tt RNEMD\{...\}} block.}
3241 + \\ \hline
3242 + {\bf keyword} & {\bf units} & {\bf use} & {\bf remarks}  \\ \hline
3243 + \endhead
3244 + \hline
3245 + \endfoot
3246 + {\tt useRNEMD} & logical & perform RNEMD? & default is ``false'' \\
3247 + {\tt objectSelection} & string & see section \ref{section:syntax}
3248 + for selection syntax & default is ``select all'' \\
3249 + {\tt method} & string & exchange method & one of the following:
3250 + {\tt Swap, NIVS,} or {\tt VSS}  (default is {\tt VSS}) \\
3251 + {\tt fluxType} & string & what is being exchanged between slabs? & one
3252 + of the following: {\tt KE, Px, Py, Pz, Pvector, KE+Px, KE+Py, KE+Pvector} \\
3253 + {\tt kineticFlux} & kcal mol$^{-1}$ \AA$^{-2}$ fs$^{-1}$ & specify the kinetic energy flux &  \\
3254 + {\tt momentumFlux} & amu \AA$^{-1}$ fs$^{-2}$ & specify the momentum flux & \\
3255 + {\tt momentumFluxVector} & amu \AA$^{-1}$ fs$^{-2}$ & specify the momentum flux when
3256 + {\tt Pvector} is part of the exchange & Vector3d input\\
3257 + {\tt exchangeTime} & fs & how often to perform the exchange & default is 100 fs\\
3258 +
3259 + {\tt slabWidth} & $\mbox{\AA}$ & width of the two exchange slabs & default is $\mathsf{H}_{zz} / 10.0$ \\
3260 + {\tt slabAcenter} & $\mbox{\AA}$ & center of the end slab & default is 0 \\
3261 + {\tt slabBcenter} & $\mbox{\AA}$ & center of the middle slab & default is $\mathsf{H}_{zz} / 2$ \\
3262 + {\tt outputFileName} & string & file name for output histograms & default is the same prefix as the
3263 + .md file, but with the {\tt .rnemd} extension \\
3264 + {\tt outputBins} & int & number of $z$-bins in the output histogram &
3265 + default is 20 \\
3266 + {\tt outputFields} & string & columns to print in the {\tt .rnemd}
3267 + file where each column is separated by a pipe ($\mid$) symbol. & Allowed column names are: {\sc z, temperature, velocity, density} \\
3268 + \label{table:rnemd}
3269 + \end{longtable}
3270 +
3271   \chapter{\label{section:minimizer}Energy Minimization}
3272  
3273 < As one of the basic procedures of molecular modeling, energy
3083 < minimization is used to identify local configurations that are stable
3273 > Energy minimization is used to identify local configurations that are stable
3274   points on the potential energy surface. There is a vast literature on
3275   energy minimization algorithms have been developed to search for the
3276   global energy minimum as well as to find local structures which are
# Line 3750 | Line 3940 | DMR-0079647.
3940   DMR-0079647.
3941  
3942  
3943 < \bibliographystyle{jcc}
3943 > \bibliographystyle{aip}
3944   \bibliography{openmdDoc}
3945  
3946   \end{document}

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines