ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/openmdDocs/openmdDoc.tex
(Generate patch)

Comparing trunk/openmdDocs/openmdDoc.tex (file contents):
Revision 3607 by gezelter, Wed Jun 16 15:38:45 2010 UTC vs.
Revision 4104 by gezelter, Mon Apr 28 21:06:04 2014 UTC

# Line 9 | Line 9
9   \usepackage{longtable}
10   \pagestyle{plain}
11   \pagenumbering{arabic}
12 + \usepackage{floatrow}
13   \oddsidemargin 0.0cm
14   \evensidemargin 0.0cm
15   \topmargin -21pt
# Line 17 | Line 18
18   \textwidth 6.5in
19   \brokenpenalty=10000
20   \renewcommand{\baselinestretch}{1.2}
21 + \usepackage[square, comma, sort&compress]{natbib}
22 + \bibpunct{[}{]}{,}{n}{}{;}
23  
24 + \DeclareFloatFont{tiny}{\scriptsize}% "scriptsize" is defined by floatrow, "tiny" not
25 + \floatsetup[table]{font=tiny}
26 +
27 +
28   %\renewcommand\citemid{\ } % no comma in optional reference note
29 < \lstset{language=C,frame=TB,basicstyle=\tiny,basicstyle=\ttfamily, %
29 > \lstset{language=C,frame=TB,basicstyle=\footnotesize\ttfamily, %
30          xleftmargin=0.25in, xrightmargin=0.25in,captionpos=b, %
31          abovecaptionskip=0.5cm, belowcaptionskip=0.5cm, escapeinside={~}{~}}
32   \renewcommand{\lstlistingname}{Scheme}
# Line 38 | Line 45
45   \newcolumntype{H}{p{0.75in}}
46   \newcolumntype{I}{p{5in}}
47  
48 + \newcolumntype{J}{p{1.5in}}
49 + \newcolumntype{K}{p{1.2in}}
50 + \newcolumntype{L}{p{1.5in}}
51 + \newcolumntype{M}{p{1.55in}}
52  
42 \title{{\sc OpenMD}: Molecular Dynamics in the Open}
53  
54 < \author{Shenyu Kuang, Chunlei Li, Charles F. Vardeman II, \\
55 < Teng Lin, Christopher J. Fennell,  Xiuquan Sun, \\
56 < Kyle Daily, Yang Zheng, Matthew A. Meineke, and J. Daniel Gezelter\\
57 < Department of Chemistry and Biochemistry\\
58 < University of Notre Dame\\
59 < Notre Dame, Indiana 46556}
54 > \title{{\sc OpenMD-2.2}: Molecular Dynamics in the Open}
55 >
56 > \author{Joseph Michalka, James Marr, Kelsey Stocker, Madan Lamichhane,
57 >  Patrick Louden, \\
58 >  Teng Lin, Charles F. Vardeman II, Christopher J. Fennell, Shenyu
59 >  Kuang, Xiuquan Sun, \\
60 >  Chunlei Li, Kyle Daily, Yang Zheng, Matthew A. Meineke, and \\
61 >  J. Daniel Gezelter \\
62 >  Department of Chemistry and Biochemistry\\
63 >  University of Notre Dame\\
64 >  Notre Dame, Indiana 46556}
65  
66   \maketitle
67  
# Line 64 | Line 79 | that is easy to learn.
79   that is easy to learn.
80  
81   \tableofcontents
82 < %\listoffigures
83 < %\listoftables
82 > \listoffigures
83 > \listoftables
84  
85   \mainmatter
86  
# Line 132 | Line 147 | leave an interaction region.
147   leave an interaction region.
148  
149   {\tt Atoms} may also be grouped in more traditional ways into {\tt
150 < bonds}, {\tt bends}, and {\tt torsions}.  These groupings allow the
151 < correct choice of interaction parameters for short-range interactions
152 < to be chosen from the definitions in the {\tt forceField}.
150 >  bonds}, {\tt bends}, {\tt torsions}, and {\tt inversions}.  These
151 > groupings allow the correct choice of interaction parameters for
152 > short-range interactions to be chosen from the definitions in the {\tt
153 >  forceField}.
154  
155   All of these groups of {\tt atoms} are brought together in the {\tt
156   molecule}, which is the fundamental structure for setting up and {\sc
# Line 490 | Line 506 | fs}^{-1}$), and body-fixed moments of inertia ($\mbox{
506   \endhead
507   \hline
508   \endfoot
509 < {\tt forceField} & string & Sets the force field. & Possible force
510 < fields are DUFF, WATER, LJ, EAM, SC, and CLAY. \\
509 > {\tt forceField} & string & Sets the base name for the force field file &
510 > OpenMD appends a {\tt .frc} to the end of this to look for a force
511 > field file.\\
512   {\tt component} & & Defines the molecular components of the system &
513   Every {\tt $<$MetaData$>$} block must have a component statement. \\
514   {\tt minimizer} & string & Chooses a minimizer & Possible minimizers
515   are SD and CG. Either {\tt ensemble} or {\tt minimizer} must be specified. \\
516   {\tt ensemble} & string & Sets the ensemble. & Possible ensembles are
517 < NVE, NVT, NPTi, NPAT, NPTf, NPTxyz, and LD.  Either {\tt ensemble}
517 > NVE, NVT, NPTi, NPAT, NPTf, NPTxyz, LD and LangevinHull.  Either {\tt ensemble}
518   or {\tt minimizer} must be specified. \\
519   {\tt dt} & fs & Sets the time step. & Selection of {\tt dt} should be
520   small enough to sample the fastest motion of the simulation. ({\tt
# Line 561 | Line 578 | column names are: {\sc time, total\_energy, potential\
578   default is the first eight of these columns in order.)  \\
579   & & \multicolumn{2}{p{3.5in}}{Allowed
580   column names are: {\sc time, total\_energy, potential\_energy, kinetic\_energy,
581 < temperature, pressure, volume, conserved\_quantity,
581 > temperature, pressure, volume, conserved\_quantity, hullvolume, gyrvolume,
582   translational\_kinetic, rotational\_kinetic,  long\_range\_potential,
583   short\_range\_potential, vanderwaals\_potential,
584 < electrostatic\_potential, bond\_potential, bend\_potential,
585 < dihedral\_potential, improper\_potential, vraw, vharm,
586 < pressure\_tensor\_x, pressure\_tensor\_y, pressure\_tensor\_z}} \\
584 > electrostatic\_potential, metallic\_potential,
585 > hydrogen\_bonding\_potential, bond\_potential, bend\_potential,
586 > dihedral\_potential, inversion\_potential, raw\_potential, restraint\_potential,
587 > pressure\_tensor, system\_dipole, heatflux, electronic\_temperature}} \\
588   {\tt printPressureTensor} & logical & sets whether {\sc OpenMD} will print
589   out the pressure tensor & can be useful for calculations of the bulk
590   modulus \\
# Line 707 | Line 725 | molecule{
725    <MetaData>
726   molecule{
727    name = "I2";
728 <  atom[0]{
729 <    type = "I";
730 <  }
713 <  atom[1]{
714 <    type = "I";
715 <  }
716 <  bond{
717 <    members( 0, 1);
718 <  }
728 >  atom[0]{ type = "I"; }
729 >  atom[1]{ type = "I"; }
730 >  bond{ members( 0, 1); }
731   }
732   molecule{
733    name = "HCl"
734 <  atom[0]{
735 <    type = "H";
736 <  }
725 <  atom[1]{
726 <    type = "Cl";
727 <  }
728 <  bond{
729 <    members( 0, 1);
730 <  }
734 >  atom[0]{ type = "H";}
735 >  atom[1]{ type = "Cl";}
736 >  bond{ members( 0, 1); }
737   }
738   component{
739    type = "HCl";
# Line 773 | Line 779 | statistics file is denoted with the \texttt{.stat} fil
779   allowing the user to gauge the stability of the integrator. The
780   statistics file is denoted with the \texttt{.stat} file extension.
781  
782 < \chapter{\label{section:empiricalEnergy}The Empirical Energy
777 < Functions}
782 > \chapter{\label{chapter:forceFields}Force Fields}
783  
784 < Like many simulation packages, {\sc OpenMD} splits the potential energy
785 < into the short-ranged (bonded) portion and a long-range (non-bonded)
786 < potential,
784 > Like many molecular simulation packages, {\sc OpenMD} splits the
785 > potential energy into the short-ranged (bonded) portion and a
786 > long-range (non-bonded) potential,
787   \begin{equation}
788   V = V_{\mathrm{short-range}} + V_{\mathrm{long-range}}.
789   \end{equation}
790 < The short-ranged portion includes the explicit bonds, bends, and
791 < torsions which have been defined in the meta-data file for the
792 < molecules which are present in the simulation.  The functional forms and
793 < parameters for these interactions are defined by the force field which
794 < is chosen.
790 > The short-ranged portion includes the bonds, bends, torsions, and
791 > inversions which have been defined in the meta-data file for the
792 > molecules.  The functional forms and parameters for these interactions
793 > are defined by the force field which is selected in the MetaData
794 > section.
795  
796 < Calculating the long-range (non-bonded) potential involves a sum over
797 < all pairs of atoms (except for those atoms which are involved in a
793 < bond, bend, or torsion with each other).  If done poorly, calculating
794 < the the long-range interactions for $N$ atoms would involve $N(N-1)/2$
795 < evaluations of atomic distances.  To reduce the number of distance
796 < evaluations between pairs of atoms, {\sc OpenMD} uses a switched cutoff
797 < with Verlet neighbor lists.\cite{Allen87} It is well known that
798 < neutral groups which contain charges will exhibit pathological forces
799 < unless the cutoff is applied to the neutral groups evenly instead of
800 < to the individual atoms.\cite{leach01:mm} {\sc OpenMD} allows users to
801 < specify cutoff groups which may contain an arbitrary number of atoms
802 < in the molecule.  Atoms in a cutoff group are treated as a single unit
803 < for the evaluation of the switching function:
804 < \begin{equation}
805 < V_{\mathrm{long-range}} = \sum_{a} \sum_{b>a} s(r_{ab}) \sum_{i \in a} \sum_{j \in b} V_{ij}(r_{ij}),
806 < \end{equation}
807 < where $r_{ab}$ is the distance between the centers of mass of the two
808 < cutoff groups ($a$ and $b$).
796 > \section{\label{section:divisionOfLabor}Separation into Internal and
797 >  Cross interactions}
798  
799 < The sums over $a$ and $b$ are over the cutoff groups that are present
800 < in the simulation.  Atoms which are not explicitly defined as members
812 < of a {\tt cutoffGroup} are treated as a group consisting of only one
813 < atom.  The switching function, $s(r)$ is the standard cubic switching
814 < function,
799 > The classical potential energy function for a system composed of $N$
800 > molecules is traditionally written
801   \begin{equation}
802 < S(r) =
803 <        \begin{cases}
804 <        1 & \text{if $r \le r_{\text{sw}}$},\\
819 <        \frac{(r_{\text{cut}} + 2r - 3r_{\text{sw}})(r_{\text{cut}} - r)^2}
820 <        {(r_{\text{cut}} - r_{\text{sw}})^3}
821 <        & \text{if $r_{\text{sw}} < r \le r_{\text{cut}}$}, \\
822 <        0 & \text{if $r > r_{\text{cut}}$.}
823 <        \end{cases}
824 < \label{eq:dipoleSwitching}
802 > V = \sum^{N}_{I=1} V^{I}_{\text{Internal}}
803 >        + \sum^{N-1}_{I=1} \sum_{J>I} V^{IJ}_{\text{Cross}},
804 > \label{eq:totalPotential}
805   \end{equation}
806 < Here, $r_{\text{sw}}$ is the {\tt switchingRadius}, or the distance
807 < beyond which interactions are reduced, and $r_{\text{cut}}$ is the
808 < {\tt cutoffRadius}, or the distance at which interactions are
809 < truncated.
806 > where $V^{I}_{\text{Internal}}$ contains all of the terms internal to
807 > molecule $I$ (e.g. bonding, bending, torsional, and inversion terms)
808 > and $V^{IJ}_{\text{Cross}}$ contains all intermolecular interactions
809 > between molecules $I$ and $J$.  For large molecules, the internal
810 > potential may also include some non-bonded terms like electrostatic or
811 > van der Waals interactions.
812  
813 < Users of {\sc OpenMD} do not need to specify the {\tt cutoffRadius} or
814 < {\tt switchingRadius}.  In simulations containing only Lennard-Jones
815 < atoms, the cutoff radius has a default value of $2.5\sigma_{ii}$,
816 < where $\sigma_{ii}$ is the largest Lennard-Jones length parameter
817 < present in the simulation.  In simulations containing charged or
836 < dipolar atoms, the default cutoff radius is $15 \mbox{\AA}$.  
813 > The types of atoms being simulated, as well as the specific functional
814 > forms and parameters of the intra-molecular functions and the
815 > long-range potentials are defined by the force field. In the following
816 > sections we discuss the stucture of an OpenMD force field file and the
817 > specification of blocks that may be present within these files.
818  
819 < The {\tt switchingRadius} is set to a default value of 95\% of the
820 < {\tt cutoffRadius}.  In the special case of a simulation containing
821 < {\it only} Lennard-Jones atoms, the default switching radius takes the
822 < same value as the cutoff radius, and {\sc OpenMD} will use a shifted
823 < potential to remove discontinuities in the potential at the cutoff.
824 < Both radii may be specified in the meta-data file.
819 > \section{\label{section:frcFile}Force Field Files}
820 >
821 > Force field files have a number of ``Blocks'' to delineate different
822 > types of information.  The blocks contain AtomType data, which provide
823 > properties belonging to a single AtomType, as well as interaction
824 > information which provides information about bonded or non-bonded
825 > interactions that cannot be deduced from AtomType information alone.
826 > A simple example of a forceField file is shown in scheme
827 > \ref{sch:frcExample}.
828  
829 < Force fields can be added to {\sc OpenMD}, although it comes with a few
830 < simple examples (Lennard-Jones, {\sc duff}, {\sc water}, and {\sc
831 < eam}) which are explained in the following sections.
829 > \begin{lstlisting}[float,caption={[An example of a complete OpenMD
830 > force field file for straight-chain united-atom alkanes.] An example
831 > showing a complete OpenMD force field for straight-chain united-atom
832 > alkanes.}, label={sch:frcExample}]
833 > begin Options
834 >  Name = "alkane"
835 > end Options
836  
837 < \section{\label{sec:LJPot}The Lennard Jones Force Field}
837 > begin BaseAtomTypes  
838 > //name          mass  
839 > C               12.0107
840 > end BaseAtomTypes
841  
842 < The most basic force field implemented in {\sc OpenMD} is the
843 < Lennard-Jones force field, which mimics the van der Waals interaction
844 < at long distances and uses an empirical repulsion at short
845 < distances. The Lennard-Jones potential is given by:
842 > begin AtomTypes
843 > //name  base    mass
844 > CH4     C       16.05          
845 > CH3     C       15.04          
846 > CH2     C       14.03          
847 > end AtomTypes
848 >
849 > begin LennardJonesAtomTypes
850 > //name          epsilon         sigma
851 > CH4             0.2941          3.73
852 > CH3             0.1947          3.75
853 > CH2             0.09140         3.95
854 > end LennardJonesAtomTypes
855 >
856 > begin BondTypes
857 > //AT1       AT2 Type                    r0              k
858 > CH3         CH3 Harmonic                1.526           260
859 > CH3         CH2 Harmonic                1.526           260
860 > CH2         CH2 Harmonic                1.526           260
861 > end BondTypes
862 >
863 > begin BendTypes
864 > //AT1   AT2     AT3     Type            theta0   k
865 > CH3     CH2     CH3     Harmonic        114.0    124.19
866 > CH3     CH2     CH2     Harmonic        114.0    124.19
867 > CH2     CH2     CH2     Harmonic        114.0    124.19
868 > end BendTypes
869 >
870 > begin TorsionTypes
871 > //AT1 AT2  AT3  AT4  Type    
872 > CH3   CH2  CH2  CH3  Trappe  0.0  0.70544  -0.13549  1.5723
873 > CH3   CH2  CH2  CH2  Trappe  0.0  0.70544  -0.13549  1.5723  
874 > CH2   CH2  CH2  CH2  Trappe  0.0  0.70544  -0.13549  1.5723  
875 > end TorsionTypes
876 > \end{lstlisting}
877 >
878 > \section{\label{section:ffOptions}The Options block}
879 >
880 > The Options block defines properties governing how the force field
881 > interactions are carried out.  This block is delineated with the text
882 > tags {\tt begin Options} and {\tt end Options}.  Most options don't
883 > need to be set as they come with fairly sensible default values, but
884 > the various keywords and their possible values are given in Scheme
885 > \ref{sch:optionsBlock}.
886 >
887 > \begin{lstlisting}[caption={[A force field Options block showing default values
888 > for many force field options.] A force field Options block showing default values
889 > for many force field options.  Most of these options do not need to be
890 > specified if the default values are working.},
891 > label={sch:optionsBlock}]
892 > begin Options
893 > Name                      = "alkane"       // any string
894 > vdWtype                   = "Lennard-Jones"
895 > DistanceMixingRule        = "arithmetic"   // can also be "geometric" or "cubic"
896 > DistanceType              = "sigma"        // can also be "Rmin"
897 > EnergyMixingRule          = "geometric"    // can also be "arithmetic" or "hhg"
898 > EnergyUnitScaling         = 1.0
899 > MetallicEnergyUnitScaling = 1.0
900 > DistanceUnitScaling       = 1.0
901 > AngleUnitScaling          = 1.0
902 > TorsionAngleConvention    = "180_is_trans" // can also be "0_is_trans"
903 > vdW-12-scale              = 0.0
904 > vdW-13-scale              = 0.0
905 > vdW-14-scale              = 0.0
906 > electrostatic-12-scale    = 0.0
907 > electrostatic-13-scale    = 0.0
908 > electrostatic-14-scale    = 0.0
909 > GayBerneMu                = 2.0
910 > GayBerneNu                = 1.0
911 > EAMMixingMethod           = "Johnson"      // can also be "Daw"
912 > end Options
913 > \end{lstlisting}
914 >
915 > \section{\label{section:ffBase}The BaseAtomTypes block}
916 >
917 > An AtomType the primary data structure that OpenMD uses to store
918 > static data about an atom.  Things that belong to AtomType are
919 > universal properties (i.e. does this atom have a fixed charge?  What
920 > is its mass?)  Dynamic properties of an atom are not intended to be
921 > properties of an atom type.  A BaseAtomType can be used to build
922 > extended sets of related atom types that all fall back to one
923 > particular type.  For example, one might want a series of atomTypes
924 > that inherit from more basic types:
925 > \begin{displaymath}
926 > \mathtt{ALA-CA} \rightarrow \mathtt{CT} \rightarrow \mathtt{CSP3} \rightarrow \mathtt{C}
927 > \end{displaymath}
928 > where for each step to the right, the atomType falls back to more
929 > primitive data.  That is, the mass could be a property of the {\tt C}
930 > type, while Lennard-Jones parameters could be properties of the {\tt
931 >  CSP3} type.  {\tt CT} could have charge information and its own set
932 > of Lennard-Jones parameter that override the CSP3 parameters.  And the
933 > {\tt ALA-CA} type might have specific torsion or charge information
934 > that override the lower level types.  A BaseAtomType contains only
935 > information a primitive name and the mass of this atom type.
936 > BaseAtomTypes can also be useful in creating files that can be easily
937 > viewed in visualization programs.  The {\tt Dump2XYZ} utility has the
938 > ability to print out the names of the base atom types for displaying
939 > simulations in Jmol or VMD.
940 >
941 > \begin{lstlisting}[caption={[A simple example of a BaseAtomTypes
942 > block.] A simple example of a BaseAtomTypes block.},
943 > label={sch:baseAtomTypesBlock}]
944 > begin BaseAtomTypes
945 > //Name  mass (amu)
946 > H       1.0079
947 > O       15.9994
948 > Si      28.0855
949 > Al      26.981538
950 > Mg      24.3050
951 > Ca      40.078
952 > Fe      55.845
953 > Li      6.941
954 > Na      22.98977
955 > K       39.0983
956 > Cs      132.90545
957 > Ca      40.078
958 > Ba      137.327
959 > Cl      35.453
960 > end BaseAtomTypes
961 > \end{lstlisting}
962 >
963 > \section{\label{section:ffAtom}The AtomTypes block}
964 >
965 > AtomTypes inherit most properties from BaseAtomTypes, but can override
966 > their lower-level properties as well.  Scheme \ref{sch:atomTypesBlock}
967 > shows an example where multiple types of oxygen atoms can inherit mass
968 > from the oxygen base type.
969 >
970 > \begin{lstlisting}[caption={[An example of a AtomTypes block.] A
971 > simple example of an AtomTypes block which
972 > shows how multiple types can inherit from the same base type.},
973 > label={sch:atomTypesBlock}]
974 > begin AtomTypes    
975 > //Name  baseatomtype
976 > h*      H
977 > ho      H
978 > o*      O
979 > oh      O
980 > ob      O
981 > obos    O
982 > obts    O
983 > obss    O
984 > ohs     O
985 > st      Si
986 > ao      Al
987 > at      Al
988 > mgo     Mg
989 > mgh     Mg
990 > cao     Ca
991 > cah     Ca
992 > feo     Fe
993 > lio     Li
994 > end AtomTypes
995 > \end{lstlisting}
996 >
997 > \section{\label{section:ffDirectionalAtom}The DirectionalAtomTypes
998 >  block}
999 > DirectionalAtoms have orientational degrees of freedom as well as
1000 > translation, so moving these atoms requires information about the
1001 > moments of inertias in the same way that translational motion requires
1002 > mass.  For DirectionalAtoms, OpenMD treats the mass distribution with
1003 > higher priority than electrostatic distributions; the moment of
1004 > inertia tensor, $\overleftrightarrow{\mathsf I}$, should be
1005 > diagonalized to obtain body-fixed axes, and the three diagonal moments
1006 > should correspond to rotational motion \textit{around} each of these
1007 > body-fixed axes.  Charge distributions may then result in dipole
1008 > vectors that are oriented along a linear combination of the body-axes,
1009 > and in quadrupole tensors that are not necessarily diagonal in the
1010 > body frame.
1011 >
1012 > \begin{lstlisting}[caption={[An example of a DirectionalAtomTypes block.] A
1013 > simple example of a DirectionalAtomTypes block.},
1014 > label={sch:datomTypesBlock}]
1015 > begin DirectionalAtomTypes
1016 > //Name          I_xx    I_yy    I_zz    (All moments in (amu*Ang^2)
1017 > SSD             1.7696  0.6145  1.1550  
1018 > GBC6H6          88.781  88.781  177.561
1019 > GBCH3OH         4.056   20.258  20.999
1020 > GBH2O           1.777   0.581   1.196
1021 > CO2             43.06   43.06   0.0    // single-site model for CO2
1022 > end DirectionalAtomTypes                    
1023 >
1024 > \end{lstlisting}
1025 >
1026 > For a DirectionalAtom that represents a linear object, it is
1027 > appropriate for one of the moments of inertia to be zero.  In this
1028 > case, OpenMD identifies that DirectionalAtom as having only 5 degrees
1029 > of freedom (three translations and two rotations), and will alter
1030 > calculation of temperatures to reflect this.
1031 >
1032 > \section{\label{section::ffAtomProperties}AtomType properties}
1033 > \subsection{\label{section:ffLJ}The LennardJonesAtomTypes block}
1034 > One of the most basic interatomic interactions implemented in {\sc
1035 >  OpenMD} is the Lennard-Jones potential, which mimics the van der
1036 > Waals interaction at long distances and uses an empirical repulsion at
1037 > short distances. The Lennard-Jones potential is given by:
1038   \begin{equation}
1039   V_{\text{LJ}}(r_{ij}) =
1040          4\epsilon_{ij} \biggl[
# Line 862 | Line 1045 | $\sigma_{ij}$ scales the length of the interaction, an
1045   \end{equation}
1046   where $r_{ij}$ is the distance between particles $i$ and $j$,
1047   $\sigma_{ij}$ scales the length of the interaction, and
1048 < $\epsilon_{ij}$ scales the well depth of the potential. Scheme
866 < \ref{sch:LJFF} gives an example meta-data file that
867 < sets up a system of 108 Ar particles to be simulated using the
868 < Lennard-Jones force field.
1048 > $\epsilon_{ij}$ scales the well depth of the potential.
1049  
870 \begin{lstlisting}[float,caption={[Invocation of the Lennard-Jones
871 force field] A sample startup file for a small Lennard-Jones
872 simulation.},label={sch:LJFF}]
873 <OpenMD>
874  <MetaData>
875 #include "argon.md"
876
877 component{
878  type = "Ar";
879  nMol = 108;
880 }
881
882 forceField = "LJ";
883  </MetaData>
884  <Snapshot>     // not shown in this scheme
885  </Snapshot>
886 </OpenMD>
887 \end{lstlisting}
888
1050   Interactions between dissimilar particles requires the generation of
1051   cross term parameters for $\sigma$ and $\epsilon$. These parameters
1052 < are determined using the Lorentz-Berthelot mixing
1052 > are usually determined using the Lorentz-Berthelot mixing
1053   rules:\cite{Allen87}
1054   \begin{equation}
1055   \sigma_{ij} = \frac{1}{2}[\sigma_{ii} + \sigma_{jj}],
# Line 900 | Line 1061 | and
1061   \label{eq:epsilonMix}
1062   \end{equation}
1063  
1064 < \section{\label{section:DUFF}Dipolar Unified-Atom Force Field}
1064 > The values of $\sigma_{ii}$ and $\epsilon_{ii}$ are properties of atom
1065 > type $i$, and must be specified in a section of the force field file
1066 > called the {\tt LennardJonesAtomTypes} block (see listing
1067 > \ref{sch:LJatomTypesBlock}).  Separate Lennard-Jones interactions
1068 > which are not determined by the mixing rules can also be specified in
1069 > the {\tt NonbondedInteractionTypes} block (see section
1070 > \ref{section:ffNBinteraction}).
1071  
1072 < The dipolar unified-atom force field ({\sc duff}) was developed to
1073 < simulate lipid bilayers. These types of simulations require a model
1074 < capable of forming bilayers, while still being sufficiently
1075 < computationally efficient to allow large systems ($\sim$100's of
1076 < phospholipids, $\sim$1000's of waters) to be simulated for long times
1077 < ($\sim$10's of nanoseconds). With this goal in mind, {\sc duff} has no
1078 < point charges. Charge-neutral distributions are replaced with dipoles,
1079 < while most atoms and groups of atoms are reduced to Lennard-Jones
1080 < interaction sites. This simplification reduces the length scale of
1081 < long range interactions from $\frac{1}{r}$ to $\frac{1}{r^3}$,
1082 < removing the need for the computationally expensive Ewald
1083 < sum. Instead, Verlet neighbor-lists and cutoff radii are used for the
1084 < dipolar interactions, and, if desired, a reaction field may be added
1085 < to mimic longer range interactions.
1086 <
1087 < As an example, lipid head-groups in {\sc duff} are represented as
1088 < point dipole interaction sites.  Placing a dipole at the head group's
922 < center of mass mimics the charge separation found in common
923 < phospholipid head groups such as phosphatidylcholine.\cite{Cevc87}
924 < Additionally, a large Lennard-Jones site is located at the
925 < pseudoatom's center of mass. The model is illustrated by the red atom
926 < in Fig.~\ref{fig:lipidModel}. The water model we use to
927 < complement the dipoles of the lipids is a
928 < reparameterization\cite{fennell04} of the soft sticky dipole (SSD)
929 < model of Ichiye
930 < \emph{et al.}\cite{liu96:new_model}
931 <
932 < \begin{figure}
933 < \centering
934 < \includegraphics[width=\linewidth]{lipidModel.pdf}
935 < \caption[A representation of a lipid model in {\sc duff}]{A
936 < representation of the lipid model. $\phi$ is the torsion angle,
937 < $\theta$ is the bend angle, and $\mu$ is the dipole moment of the head
938 < group.}
939 < \label{fig:lipidModel}
940 < \end{figure}
941 <
942 < A set of scalable parameters has been used to model the alkyl groups
943 < with Lennard-Jones sites. For this, parameters from the TraPPE force
944 < field of Siepmann \emph{et al.}\cite{Siepmann1998} have been
945 < utilized. TraPPE is a unified-atom representation of n-alkanes which
946 < is parametrized against phase equilibria using Gibbs ensemble Monte
947 < Carlo simulation techniques.\cite{Siepmann1998} One of the advantages
948 < of TraPPE is that it generalizes the types of atoms in an alkyl chain
949 < to keep the number of pseudoatoms to a minimum; thus, the parameters
950 < for a unified atom such as $\text{CH}_2$ do not change depending on
951 < what species are bonded to it.
952 <
953 < As is required by TraPPE, {\sc duff} also constrains all bonds to be
954 < of fixed length. Typically, bond vibrations are the fastest motions in
955 < a molecular dynamic simulation.  With these vibrations present, small
956 < time steps between force evaluations must be used to ensure adequate
957 < energy conservation in the bond degrees of freedom. By constraining
958 < the bond lengths, larger time steps may be used when integrating the
959 < equations of motion. A simulation using {\sc duff} is illustrated in
960 < Scheme \ref{sch:DUFF}.
961 <
962 < \begin{lstlisting}[float,caption={[Invocation of {\sc duff}]A portion
963 < of a startup file showing a simulation utilizing {\sc
964 < duff}},label={sch:DUFF}]  
965 < <OpenMD>
966 <  <MetaData>
967 < #include "water.md"
968 < #include "lipid.md"
969 <
970 < component{
971 <  type = "simpleLipid_16";
972 <  nMol = 60;
973 < }
974 <
975 < component{
976 <  type = "SSD_water";
977 <  nMol = 1936;
978 < }
979 <
980 < forceField = "DUFF";
981 <  </MetaData>
982 <  <Snapshot>     // not shown in this scheme
983 <  </Snapshot>
984 < </OpenMD>
1072 > \begin{lstlisting}[caption={[An example of a LennardJonesAtomTypes block.] A
1073 > simple example of a LennardJonesAtomTypee block.   Units for
1074 > $\epsilon$ are kcal / mol and for $\sigma$ are \AA\ .},
1075 > label={sch:LJatomTypesBlock}]
1076 > begin LennardJonesAtomTypes
1077 > //Name          epsilon             sigma      
1078 > O_TIP4P         0.1550          3.15365
1079 > O_TIP4P-Ew      0.16275         3.16435
1080 > O_TIP5P         0.16            3.12  
1081 > O_TIP5P-E       0.178           3.097  
1082 > O_SPCE          0.15532         3.16549
1083 > O_SPC           0.15532         3.16549
1084 > CH4             0.279           3.73
1085 > CH3             0.185           3.75
1086 > CH2             0.0866          3.95
1087 > CH              0.0189          4.68
1088 > end LennardJonesAtomTypes
1089   \end{lstlisting}
1090  
1091 < \subsection{\label{section:energyFunctions}{\sc duff} Energy Functions}
1091 > \subsection{\label{section:ffCharge}The ChargeAtomTypes block}
1092  
1093 < The total potential energy function in {\sc duff} is
1093 > In molecular simulations, proper accumulation of the electrostatic
1094 > interactions is essential and is one of the most
1095 > computationally-demanding tasks.  Most common molecular mechanics
1096 > force fields represent atomic sites with full or partial charges
1097 > protected by Lennard-Jones (short range) interactions.  Partial charge
1098 > values, $q_i$ are empirical representations of the distribution of
1099 > electronic charge in a molecule.  This means that nearly every pair
1100 > interaction involves a calculation of charge-charge forces.  Coupled
1101 > with relatively long-ranged $r^{-1}$ decay, the monopole interactions
1102 > quickly become the most expensive part of molecular simulations.  The
1103 > interactions between point charges can be handled via a number of
1104 > different algorithms, but Coulomb's law is the fundamental physical
1105 > principle governing these interactions,
1106   \begin{equation}
1107 < V = \sum^{N}_{I=1} V^{I}_{\text{Internal}}
1108 <        + \sum^{N-1}_{I=1} \sum_{J>I} V^{IJ}_{\text{Cross}},
993 < \label{eq:totalPotential}
1107 >  V_{\text{charge}}(r_{ij}) = \sum_{ij}\frac{q_iq_je^2}{4 \pi \epsilon_0
1108 >    r_{ij}},
1109   \end{equation}
1110 < where $V^{I}_{\text{Internal}}$ is the internal potential of molecule $I$:
1111 < \begin{equation}
1112 < V^{I}_{\text{Internal}} =
998 <        \sum_{\theta_{ijk} \in I} V_{\text{bend}}(\theta_{ijk})
999 <        + \sum_{\phi_{ijkl} \in I} V_{\text{torsion}}(\phi_{ijkl})
1000 <        + \sum_{i \in I} \sum_{(j>i+4) \in I}
1001 <        \biggl[ V_{\text{LJ}}(r_{ij}) +  V_{\text{dipole}}
1002 <        (\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},\boldsymbol{\Omega}_{j})
1003 <        \biggr].
1004 < \label{eq:internalPotential}
1005 < \end{equation}
1006 < Here $V_{\text{bend}}$ is the bend potential for all 1, 3 bonded pairs
1007 < within the molecule $I$, and $V_{\text{torsion}}$ is the torsion
1008 < potential for all 1, 4 bonded pairs.  The pairwise portions of the
1009 < non-bonded interactions are excluded for atom pairs that are involved
1010 < in the smae bond, bend, or torsion. All other atom pairs within a
1011 < molecule are subject to the LJ pair potential.
1110 > where $q$ represents the charge on particle $i$ or $j$, and $e$ is the
1111 > charge of an electron in Coulombs.  $\epsilon_0$ is the permittivity
1112 > of free space.
1113  
1114 < The bend potential of a molecule is represented by the following function:
1115 < \begin{equation}
1116 < V_{\text{bend}}(\theta_{ijk}) = k_{\theta}( \theta_{ijk} - \theta_0
1117 < )^2, \label{eq:bendPot}
1118 < \end{equation}
1119 < where $\theta_{ijk}$ is the angle defined by atoms $i$, $j$, and $k$
1120 < (see Fig.~\ref{fig:lipidModel}), $\theta_0$ is the equilibrium
1121 < bond angle, and $k_{\theta}$ is the force constant which determines the
1122 < strength of the harmonic bend. The parameters for $k_{\theta}$ and
1123 < $\theta_0$ are borrowed from those in TraPPE.\cite{Siepmann1998}
1114 > \begin{lstlisting}[caption={[An example of a ChargeAtomTypes block.] A
1115 > simple example of a ChargeAtomTypes block.   Units for
1116 > charge are in multiples of electron charge.},
1117 > label={sch:ChargeAtomTypesBlock}]
1118 > begin ChargeAtomTypes
1119 > // Name         charge
1120 > O_TIP3P        -0.834
1121 > O_SPCE         -0.8476
1122 > H_TIP3P         0.417
1123 > H_TIP4P         0.520
1124 > H_SPCE          0.4238
1125 > EP_TIP4P       -1.040
1126 > Na+             1.0
1127 > Cl-            -1.0
1128 > end ChargeAtomTypes
1129 > \end{lstlisting}
1130  
1131 < The torsion potential and parameters are also borrowed from TraPPE. It is
1132 < of the form:
1131 > \subsection{\label{section:ffMultipole}The MultipoleAtomTypes
1132 >  block}
1133 > For complex charge distributions that are centered on single sites, it
1134 > is convenient to write the total electrostatic potential in terms of
1135 > multipole moments,
1136   \begin{equation}
1137 < V_{\text{torsion}}(\phi) = c_1[1 + \cos \phi]
1028 <        + c_2[1 + \cos(2\phi)]
1029 <        + c_3[1 + \cos(3\phi)],
1030 < \label{eq:origTorsionPot}
1137 > U_{\bf{ab}}(r)=\hat{M}_{\bf a} \hat{M}_{\bf b} \frac{1}{r}  \label{kernel}.
1138   \end{equation}
1139 < where:
1139 > where the multipole operator on site $\bf a$,
1140   \begin{equation}
1141 < \cos\phi = (\hat{\mathbf{r}}_{ij} \times \hat{\mathbf{r}}_{jk}) \cdot
1142 <        (\hat{\mathbf{r}}_{jk} \times \hat{\mathbf{r}}_{kl}).
1143 < \label{eq:torsPhi}
1141 > \hat{M}_{\bf a} = C_{\bf a} - D_{{\bf a}\alpha} \frac{\partial}{\partial r_{\alpha}}
1142 > +  Q_{{\bf a}\alpha\beta}
1143 > \frac{\partial^2}{\partial r_{\alpha} \partial r_{\beta}} + \dots
1144   \end{equation}
1145 < Here, $\hat{\mathbf{r}}_{\alpha\beta}$ are the set of unit bond
1146 < vectors between atoms $i$, $j$, $k$, and $l$. For computational
1147 < efficiency, the torsion potential has been recast after the method of
1148 < {\sc charmm},\cite{Brooks83} in which the angle series is converted to
1149 < a power series of the form:
1150 < \begin{equation}
1151 < V_{\text{torsion}}(\phi) =  
1152 <        k_3 \cos^3 \phi + k_2 \cos^2 \phi + k_1 \cos \phi + k_0,
1153 < \label{eq:torsionPot}
1154 < \end{equation}
1155 < where:
1156 < \begin{align*}
1157 < k_0 &= c_1 + c_3, \\
1158 < k_1 &= c_1 - 3c_3, \\
1052 < k_2 &= 2 c_2, \\
1053 < k_3 &= 4c_3.
1054 < \end{align*}
1055 < By recasting the potential as a power series, repeated trigonometric
1056 < evaluations are avoided during the calculation of the potential
1057 < energy.
1145 > Here, the point charge, dipole, and quadrupole for site $\bf a$ are
1146 > given by $C_{\bf a}$, $D_{{\bf a}\alpha}$, and $Q_{{\bf
1147 >    a}\alpha\beta}$, respectively.  These are the {\it primitive}
1148 > multipoles.  If the site is representing a distribution of charges,
1149 > these can be expressed as,
1150 > \begin{align}
1151 > C_{\bf a} =&\sum_{k \, \text{in \bf a}} q_k , \label{eq:charge} \\
1152 > D_{{\bf a}\alpha} =&\sum_{k \, \text{in \bf a}} q_k r_{k\alpha}, \label{eq:dipole}\\
1153 > Q_{{\bf a}\alpha\beta} =& \frac{1}{2} \sum_{k \, \text{in \bf a}} q_k
1154 > r_{k\alpha}  r_{k\beta} . \label{eq:quadrupole}
1155 > \end{align}
1156 > Note that the definition of the primitive quadrupole here differs from
1157 > the standard traceless form, and contains an additional Taylor-series
1158 > based factor of $1/2$.  
1159  
1160 <
1161 < The cross potential between molecules $I$ and $J$,
1061 < $V^{IJ}_{\text{Cross}}$, is as follows:
1160 > The details of the multipolar interactions will be given later, but
1161 > many readers are familiar with the dipole-dipole potential:
1162   \begin{equation}
1063 V^{IJ}_{\text{Cross}} =
1064        \sum_{i \in I} \sum_{j \in J}
1065        \biggl[ V_{\text{LJ}}(r_{ij}) +  V_{\text{dipole}}
1066        (\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},\boldsymbol{\Omega}_{j})
1067        + V_{\text{sticky}}
1068        (\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},\boldsymbol{\Omega}_{j})
1069        \biggr],
1070 \label{eq:crossPotentail}
1071 \end{equation}
1072 where $V_{\text{LJ}}$ is the Lennard Jones potential,
1073 $V_{\text{dipole}}$ is the dipole dipole potential, and
1074 $V_{\text{sticky}}$ is the sticky potential defined by the SSD model
1075 (Sec.~\ref{section:SSD}). Note that not all atom types include all
1076 interactions.
1077
1078 The dipole-dipole potential has the following form:
1079 \begin{equation}
1163   V_{\text{dipole}}(\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},
1164 <        \boldsymbol{\Omega}_{j}) = \frac{|\mu_i||\mu_j|}{4\pi\epsilon_{0}r_{ij}^{3}} \biggl[
1164 >        \boldsymbol{\Omega}_{j}) = \frac{|{\bf D}_i||{\bf D}_j|}{4\pi\epsilon_{0}r_{ij}^{3}} \biggl[
1165          \boldsymbol{\hat{u}}_{i} \cdot \boldsymbol{\hat{u}}_{j}
1166          -
1167          3(\boldsymbol{\hat{u}}_i \cdot \hat{\mathbf{r}}_{ij}) %
# Line 1088 | Line 1171 | are the orientational degrees of freedom for atoms $i$
1171   Here $\mathbf{r}_{ij}$ is the vector starting at atom $i$ pointing
1172   towards $j$, and $\boldsymbol{\Omega}_i$ and $\boldsymbol{\Omega}_j$
1173   are the orientational degrees of freedom for atoms $i$ and $j$
1174 < respectively. The magnitude of the dipole moment of atom $i$ is
1175 < $|\mu_i|$, $\boldsymbol{\hat{u}}_i$ is the standard unit orientation
1174 > respectively. The magnitude of the dipole moment of atom $i$ is $|{\bf
1175 >  D}_i|$, $\boldsymbol{\hat{u}}_i$ is the standard unit orientation
1176   vector of $\boldsymbol{\Omega}_i$, and $\boldsymbol{\hat{r}}_{ij}$ is
1177   the unit vector pointing along $\mathbf{r}_{ij}$
1178   ($\boldsymbol{\hat{r}}_{ij}=\mathbf{r}_{ij}/|\mathbf{r}_{ij}|$).
1179  
1097 \subsection{\label{section:SSD}The {\sc duff} Water Models: SSD/E
1098 and SSD/RF}
1180  
1181 < In the interest of computational efficiency, the default solvent used
1182 < by {\sc OpenMD} is the extended Soft Sticky Dipole (SSD/E) water
1183 < model.\cite{fennell04} The original SSD was developed by Ichiye
1184 < \emph{et al.}\cite{liu96:new_model} as a modified form of the hard-sphere
1181 > \begin{lstlisting}[caption={[An example of a MultipoleAtomTypes block.] A
1182 > simple example of a MultipoleAtomTypes block.   Dipoles are given in
1183 > units of Debyes, and Quadrupole moments are given in units of Debye
1184 > \AA~(or $10^{-26} \mathrm{~esu~cm}^2$)},
1185 > label={sch:MultipoleAtomTypesBlock}]
1186 > begin MultipoleAtomTypes
1187 > // Euler angles are given in zxz convention in units of degrees.
1188 > //
1189 > // point dipoles:
1190 > // name d phi theta psi dipole_moment
1191 > DIP     d 0.0 0.0   0.0     1.91   // dipole points along z-body axis
1192 > //
1193 > // point quadrupoles:
1194 > // name q phi theta psi Qxx Qyy Qzz
1195 > CO2     q 0.0 0.0   0.0 0.0 0.0 -0.430592  //quadrupole tensor has zz element
1196 > //
1197 > // Atoms with both dipole and quadrupole moments:
1198 > // name dq phi theta psi dipole_moment  Qxx    Qyy     Qzz
1199 > SSD     dq 0.0 0.0   0.0     2.35      -1.682  1.762   -0.08
1200 > end MultipoleAtomTypes
1201 > \end{lstlisting}
1202 >
1203 > Specifying a MultipoleAtomType requires declaring how the
1204 > electrostatic frame for the site is rotated relative to the body-fixed
1205 > axes for that atom. The Euler angles $(\phi, \theta, \psi)$ for this
1206 > rotation must be given, and then the dipole, quadrupole, or all of
1207 > these moments are specified in the electrostatic frame.  In OpenMD,
1208 > the Euler angles are specified in the $zxz$ convention and are entered
1209 > in units of degrees.  Dipole moments are entered in units of Debye,
1210 > and Quadrupole moments in units of Debye \AA.
1211 >
1212 > \subsection{\label{section:ffGB}The FluctuatingChargeAtomTypes  block}
1213 > %\subsubsection{\label{section:ffPol}The PolarizableAtomTypes block}
1214 >
1215 > \subsection{\label{section:ffGB}The GayBerneAtomTypes block}
1216 >
1217 > The Gay-Berne potential has been widely used in the liquid crystal
1218 > community to describe anisotropic phase
1219 > behavior.~\cite{Gay:1981yu,Berne:1972pb,Kushick:1976xy,Luckhurst:1990fy,Cleaver:1996rt}
1220 > The form of the Gay-Berne potential implemented in OpenMD was
1221 > generalized by Cleaver {\it et al.} and is appropriate for dissimilar
1222 > uniaxial ellipsoids.\cite{Cleaver:1996rt} The potential is constructed
1223 > in the familiar form of the Lennard-Jones function using
1224 > orientation-dependent $\sigma$ and $\epsilon$ parameters,
1225 > \begin{equation*}
1226 > V_{ij}({{\bf \hat u}_i}, {{\bf \hat u}_j}, {{\bf \hat
1227 > r}_{ij}}) = 4\epsilon ({{\bf \hat u}_i}, {{\bf \hat u}_j},
1228 > {{\bf \hat r}_{ij}})\left[\left(\frac{\sigma_0}{r_{ij}-\sigma({{\bf \hat u
1229 > }_i},
1230 > {{\bf \hat u}_j}, {{\bf \hat r}_{ij}})+\sigma_0}\right)^{12}
1231 > -\left(\frac{\sigma_0}{r_{ij}-\sigma({{\bf \hat u}_i}, {{\bf \hat u}_j},
1232 > {{\bf \hat r}_{ij}})+\sigma_0}\right)^6\right]
1233 > \label{eq:gb}
1234 > \end{equation*}
1235 >
1236 > The range $(\sigma({\bf \hat{u}}_{i},{\bf \hat{u}}_{j},{\bf
1237 > \hat{r}}_{ij}))$, and strength $(\epsilon({\bf \hat{u}}_{i},{\bf
1238 > \hat{u}}_{j},{\bf \hat{r}}_{ij}))$ parameters
1239 > are dependent on the relative orientations of the two ellipsoids (${\bf
1240 > \hat{u}}_{i},{\bf \hat{u}}_{j}$) as well as the direction of the
1241 > inter-ellipsoid separation (${\bf \hat{r}}_{ij}$).  The shape and
1242 > attractiveness of each ellipsoid is governed by a relatively small set
1243 > of parameters:
1244 > \begin{itemize}
1245 > \item  $d$:  range parameter for the side-by-side (S) and cross (X) configurations
1246 > \item  $l$:  range parameter for the end-to-end (E) configuration
1247 > \item  $\epsilon_X$:  well-depth parameter for the cross (X) configuration
1248 > \item  $\epsilon_S$:  well-depth parameter for the side-by-side (S) configuration
1249 > \item  $\epsilon_E$:  well depth parameter for the end-to-end (E) configuration
1250 > \item  $dw$: The ``softness'' of the potential
1251 > \end{itemize}
1252 > Additionally, there are two universal paramters to govern the overall
1253 > importance of the purely orientational ($\nu$) and the mixed
1254 > orientational / translational ($\mu$) parts of strength of the
1255 > interactions.  These parameters have default or ``canonical'' values,
1256 > but may be changed as a force field option:
1257 > \begin{itemize}
1258 >  \item $\nu$: purely orientational part : defaults to 1
1259 >  \item $\mu$: mixed orientational / translational part : defaults to
1260 >    2
1261 > \end{itemize}
1262 > Further details of the potential are given
1263 > elsewhere,\cite{Luckhurst:1990fy,Golubkov06,SunX._jp0762020} and an
1264 > excellent overview of the computational methods that can be used to
1265 > efficiently compute forces and torques for this potential can be found
1266 > in Ref. \citealp{Golubkov06}
1267 >
1268 > \begin{lstlisting}[caption={[An example of a GayBerneAtomTypes block.] A
1269 > simple example of a GayBerneAtomTypes block.  Distances ($d$ and $l$)
1270 > are given in \AA\ and energies ($\epsilon_X, \epsilon_S, \epsilon_E$)
1271 > are in units of kcal/mol. $dw$ is unitless.},
1272 > label={sch:GayBerneAtomTypes}]
1273 > begin GayBerneAtomTypes
1274 > //Name          d       l       eps_X           eps_S           eps_E     dw
1275 > GBlinear        2.8104  9.993   0.774729        0.774729        0.116839  1.0
1276 > GBC6H6          4.65    2.03    0.540           0.540           1.9818    0.6
1277 > GBCH3OH         2.55    3.18    0.542           0.542           0.55826   1.0
1278 > end GayBerneAtomTypes                  
1279 > \end{lstlisting}
1280 >
1281 > \subsection{\label{section:ffSticky}The StickyAtomTypes block}
1282 >
1283 > One of the solvents that can be simulated by {\sc OpenMD} is the
1284 > extended Soft Sticky Dipole (SSD/E) water model.\cite{fennell04} The
1285 > original SSD was developed by Ichiye \emph{et
1286 >  al.}\cite{liu96:new_model} as a modified form of the hard-sphere
1287   water model proposed by Bratko, Blum, and
1288   Luzar.\cite{Bratko85,Bratko95} It consists of a single point dipole
1289   with a Lennard-Jones core and a sticky potential that directs the
# Line 1152 | Line 1335 | description of the functional parts and variables in t
1335   enhances the tetrahedral geometry for hydrogen bonded structures),
1336   while $w^\prime$ is a purely empirical function.  A more detailed
1337   description of the functional parts and variables in this potential
1338 < can be found in the original SSD
1339 < articles.\cite{liu96:new_model,liu96:monte_carlo,chandra99:ssd_md,Ichiye03}
1340 <
1341 < \begin{figure}
1342 < \centering
1343 < \includegraphics[width=\linewidth]{waterAngle.pdf}
1344 < \caption[Coordinate definition for the SSD/E water model]{Coordinates
1345 < for the interaction between two SSD/E water molecules.  $\theta_{ij}$
1346 < is the angle that $r_{ij}$ makes with the $\hat{z}$ vector in the
1347 < body-fixed frame for molecule $i$.  The $\hat{z}$ vector bisects the
1348 < HOH angle in each water molecule. }
1349 < \label{fig:ssd}
1338 > can be found in the original SSD
1339 > articles.\cite{liu96:new_model,liu96:monte_carlo,chandra99:ssd_md,Ichiye03}
1340 >
1341 > \begin{figure}
1342 > \centering
1343 > \includegraphics[width=\linewidth]{waterAngle.pdf}
1344 > \caption[Coordinate definition for the SSD/E water model]{Coordinates
1345 > for the interaction between two SSD/E water molecules.  $\theta_{ij}$
1346 > is the angle that $r_{ij}$ makes with the $\hat{z}$ vector in the
1347 > body-fixed frame for molecule $i$.  The $\hat{z}$ vector bisects the
1348 > HOH angle in each water molecule. }
1349 > \label{fig:ssd}
1350 > \end{figure}
1351 >
1352 > Since SSD/E is a single-point {\it dipolar} model, the force
1353 > calculations are simplified significantly relative to the standard
1354 > {\it charged} multi-point models. In the original Monte Carlo
1355 > simulations using this model, Ichiye {\it et al.} reported that using
1356 > SSD decreased computer time by a factor of 6-7 compared to other
1357 > models.\cite{liu96:new_model} What is most impressive is that these
1358 > savings did not come at the expense of accurate depiction of the
1359 > liquid state properties.  Indeed, SSD/E maintains reasonable agreement
1360 > with the Head-Gordon diffraction data for the structural features of
1361 > liquid water.\cite{hura00,liu96:new_model} Additionally, the dynamical
1362 > properties exhibited by SSD/E agree with experiment better than those
1363 > of more computationally expensive models (like TIP3P and
1364 > SPC/E).\cite{chandra99:ssd_md} The combination of speed and accurate
1365 > depiction of solvent properties makes SSD/E a very attractive model
1366 > for the simulation of large scale biochemical simulations.
1367 >
1368 > Recent constant pressure simulations revealed issues in the original
1369 > SSD model that led to lower than expected densities at all target
1370 > pressures,\cite{Ichiye03,fennell04} so variants on the sticky
1371 > potential can be specified by using one of a number of substitute atom
1372 > types (see listing \ref{sch:StickyAtomTypes}).  A table of the
1373 > parameter values and the drawbacks and benefits of the different
1374 > density corrected SSD models can be found in
1375 > reference~\citealp{fennell04}.
1376 >
1377 > \begin{lstlisting}[caption={[An example of a StickyAtomTypes block.] A
1378 > simple example of a StickyAtomTypes block.  Distances ($r_l$, $r_u$,
1379 > $r_{l}'$ and $r_{u}'$) are given in \AA\ and energies ($v_0, v_{0}'$)
1380 > are in units of kcal/mol. $w_0$ is unitless.},
1381 > label={sch:StickyAtomTypes}]
1382 > begin StickyAtomTypes
1383 > //name  w0      v0 (kcal/mol)   v0p     rl (Ang)  ru    rlp     rup
1384 > SSD_E   0.07715 3.90            3.90    2.40      3.80  2.75    3.35
1385 > SSD_RF  0.07715 3.90            3.90    2.40      3.80  2.75    3.35
1386 > SSD     0.07715 3.7284          3.7284  2.75      3.35  2.75    4.0
1387 > SSD1    0.07715 3.6613          3.6613  2.75      3.35  2.75    4.0
1388 > end StickyAtomTypes
1389 > \end{lstlisting}
1390 >
1391 > \section{\label{section::ffMetals}Metallic Atom Types}
1392 >
1393 > {\sc OpenMD} implements a number of related potentials that describe
1394 > bonding in transition metals. These potentials have an attractive
1395 > interaction which models ``Embedding'' a positively charged
1396 > pseudo-atom core in the electron density due to the free valance
1397 > ``sea'' of electrons created by the surrounding atoms in the system.
1398 > A pairwise part of the potential (which is primarily repulsive)
1399 > describes the interaction of the positively charged metal core ions
1400 > with one another.  These potentials have the form:
1401 > \begin{equation}
1402 > V  =  \sum_{i} F_{i}\left[\rho_{i}\right] + \sum_{i} \sum_{j \neq i}
1403 > \phi_{ij}({\bf r}_{ij})
1404 > \end{equation}
1405 > where $F_{i} $ is an embedding functional that approximates the energy
1406 > required to embed a positively-charged core ion $i$ into a linear
1407 > superposition of spherically averaged atomic electron densities given
1408 > by $\rho_{i}$,
1409 > \begin{equation}
1410 > \rho_{i}   =  \sum_{j \neq i} f_{j}({\bf r}_{ij}),
1411 > \end{equation}
1412 > Since the density at site $i$ ($\rho_i$) must be computed before the
1413 > embedding functional can be evaluated, {\sc eam} and the related
1414 > transition metal potentials require two loops through the atom pairs
1415 > to compute the inter-atomic forces.
1416 >
1417 > The pairwise portion of the potential, $\phi_{ij}$, is usually a
1418 > repulsive interaction between atoms $i$ and $j$.
1419 >
1420 > \subsection{\label{section:ffEAM}The EAMAtomTypes block}
1421 > The Embedded Atom Method ({\sc eam}) is one of the most widely-used
1422 > potentials for transition
1423 > metals.~\cite{Finnis84,Ercolessi88,Chen90,Qi99,Ercolessi02,Daw84,FBD86,johnson89,Lu97}
1424 > It has been widely adopted in the materials science community and a
1425 > good review of {\sc eam} and other formulations of metallic potentials
1426 > was given by Voter.\cite{Voter:95}
1427 >
1428 > In the original formulation of {\sc eam}\cite{Daw84}, the pair
1429 > potential, $\phi_{ij}$ was an entirely repulsive term; however later
1430 > refinements to {\sc eam} allowed for more general forms for
1431 > $\phi$.\cite{Daw89} The effective cutoff distance, $r_{{\text cut}}$
1432 > is the distance at which the values of $f(r)$ and $\phi(r)$ drop to
1433 > zero for all atoms present in the simulation.  In practice, this
1434 > distance is fairly small, limiting the summations in the {\sc eam}
1435 > equation to the few dozen atoms surrounding atom $i$ for both the
1436 > density $\rho$ and pairwise $\phi$ interactions.
1437 >
1438 > In computing forces for alloys, OpenMD uses mixing rules outlined by
1439 > Johnson~\cite{johnson89} to compute the heterogenous pair potential,
1440 > \begin{equation}
1441 > \label{eq:johnson}
1442 > \phi_{ab}(r)=\frac{1}{2}\left(
1443 > \frac{f_{b}(r)}{f_{a}(r)}\phi_{aa}(r)+
1444 > \frac{f_{a}(r)}{f_{b}(r)}\phi_{bb}(r)
1445 > \right).
1446 > \end{equation}
1447 > No mixing rule is needed for the densities, since the density at site
1448 > $i$ is simply the linear sum of density contributions of all the other
1449 > atoms.
1450 >
1451 > The {\sc eam} force field illustrates an additional feature of {\sc
1452 > OpenMD}.  Foiles, Baskes and Daw fit {\sc eam} potentials for Cu, Ag,
1453 > Au, Ni, Pd, Pt and alloys of these metals.\cite{FBD86} These fits are
1454 > included in {\sc OpenMD} as the {\tt u3} variant of the {\sc eam} force
1455 > field.  Voter and Chen reparamaterized a set of {\sc eam} functions
1456 > which do a better job of predicting melting points.\cite{Voter:87}
1457 > These functions are included in {\sc OpenMD} as the {\tt VC} variant of
1458 > the {\sc eam} force field.  An additional set of functions (the
1459 > ``Universal 6'' functions) are included in {\sc OpenMD} as the {\tt u6}
1460 > variant of {\sc eam}.  For example, to specify the Voter-Chen variant
1461 > of the {\sc eam} force field, the user would add the {\tt
1462 > forceFieldVariant = "VC";} line to the meta-data file.
1463 >
1464 > The potential files used by the {\sc eam} force field are in the
1465 > standard {\tt funcfl} format, which is the format utilized by a number
1466 > of other codes (e.g. ParaDyn~\cite{Paradyn}, {\sc dynamo 86}).  It
1467 > should be noted that the energy units in these files are in eV, not
1468 > $\mbox{kcal mol}^{-1}$ as in the rest of the {\sc OpenMD} force field
1469 > files.  
1470 >
1471 > \begin{lstlisting}[caption={[An example of a EAMAtomTypes block.] A
1472 > simple example of a EAMAtomTypes block. Here the only data provided is
1473 > the name of a {\tt funcfl} file which contains the raw data for spline
1474 > interpolations for the density, functional, and pair potential.},
1475 > label={sch:EAMAtomTypes}]
1476 > begin EAMAtomTypes
1477 > Au      Au.u3.funcfl
1478 > Ag      Ag.u3.funcfl
1479 > Cu      Cu.u3.funcfl
1480 > Ni      Ni.u3.funcfl
1481 > Pd      Pd.u3.funcfl
1482 > Pt      Pt.u3.funcfl
1483 > end EAMAtomTypes
1484 > \end{lstlisting}
1485 >
1486 > \subsection{\label{section:ffSC}The SuttonChenAtomTypes block}
1487 >
1488 > The Sutton-Chen ({\sc sc})~\cite{Chen90} potential has been used to
1489 > study a wide range of phenomena in metals.  Although it has the same
1490 > basic form as the {\sc eam} potential, the Sutton-Chen model requires
1491 > a simpler set of parameters,
1492 > \begin{equation}
1493 > \label{eq:SCP1}
1494 > U_{tot}=\sum _{i}\left[ \frac{1}{2}\sum _{j\neq
1495 > i}\epsilon_{ij}V^{pair}_{ij}(r_{ij})-c_{i}\epsilon_{ii}\sqrt{\rho_{i}}\right] ,
1496 > \end{equation}
1497 > where $V^{pair}_{ij}$ and $\rho_{i}$ are given by
1498 > \begin{equation}
1499 > \label{eq:SCP2}
1500 > V^{pair}_{ij}(r)=\left(
1501 > \frac{\alpha_{ij}}{r_{ij}}\right)^{n_{ij}} \hspace{1in} \rho_{i}=\sum_{j\neq i}\left(
1502 > \frac{\alpha_{ij}}{r_{ij}}\right) ^{m_{ij}}
1503 > \end{equation}
1504 >
1505 > $V^{pair}_{ij}$ is a repulsive pairwise potential that accounts for
1506 > interactions of the pseudo-atom cores.  The $\sqrt{\rho_i}$ term in
1507 > Eq. (\ref{eq:SCP1}) is an attractive many-body potential that models
1508 > the interactions between the valence electrons and the cores of the
1509 > pseudo-atoms.  $\epsilon_{ij}$, $\epsilon_{ii}$, $c_i$ and
1510 > $\alpha_{ij}$ are parameters used to tune the potential for different
1511 > transition metals.
1512 >
1513 > The {\sc sc} potential form has also been parameterized by Qi {\it et
1514 > al.}\cite{Qi99} These parameters were obtained via empirical and {\it
1515 > ab initio} calculations to match structural features of the FCC
1516 > crystal.  Interested readers are encouraged to consult reference
1517 > \citealp{Qi99} for further details.
1518 >
1519 > \begin{lstlisting}[caption={[An example of a SCAtomTypes block.] A
1520 > simple example of a SCAtomTypes block.  Distances ($\alpha$)
1521 > are given in \AA\ and energies ($\epsilon$) are (by convention) given in
1522 > units of eV.  These units must be specified in the {\tt Options} block
1523 > using the keyword {\tt MetallicEnergyUnitScaling}.  Without this {\tt
1524 > Options} keyword, the default units for $\epsilon$ are kcal/mol.  The
1525 > other parameters, $m$, $n$, and $c$ are unitless.},
1526 > label={sch:SCAtomTypes}]
1527 > begin SCAtomTypes
1528 > // Name  epsilon(eV)      c      m       n      alpha(angstroms)
1529 > Ni      0.0073767       84.745  5.0     10.0    3.5157
1530 > Cu      0.0057921       84.843  5.0     10.0    3.6030
1531 > Rh      0.0024612       305.499 5.0     13.0    3.7984
1532 > Pd      0.0032864       148.205 6.0     12.0    3.8813
1533 > Ag      0.0039450       96.524  6.0     11.0    4.0691
1534 > Ir      0.0037674       224.815 6.0     13.0    3.8344  
1535 > Pt      0.0097894       71.336  7.0     11.0    3.9163
1536 > Au      0.0078052       53.581  8.0     11.0    4.0651
1537 > Au2     0.0078052       53.581  8.0     11.0    4.0651
1538 > end SCAtomTypes
1539 > \end{lstlisting}
1540 >
1541 > \section{\label{section::ffShortRange}Short Range Interactions}
1542 > The internal structure of a molecule is usually specified in terms of
1543 > a set of ``bonded'' terms in the potential energy function for
1544 > molecule $I$,
1545 > \begin{align*}
1546 > V^{I}_{\text{Internal}} =  &
1547 > \sum_{r_{ij} \in I} V_{\text{bond}}(r_{ij})
1548 > + \sum_{\theta_{ijk} \in I} V_{\text{bend}}(\theta_{ijk})
1549 > + \sum_{\phi_{ijkl} \in I} V_{\text{torsion}}(\phi_{ijkl})
1550 > + \sum_{\omega_{ijkl} \in I} V_{\text{inversion}}(\omega_{ijkl}) \\
1551 > & + \sum_{i \in I} \sum_{(j>i+4) \in I}
1552 > \biggl[ V_{\text{dispersion}}(r_{ij}) +  V_{\text{electrostatic}}
1553 > (\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},\boldsymbol{\Omega}_{j})
1554 > \biggr].
1555 > \label{eq:internalPotential}
1556 > \end{align*}
1557 > Here $V_{\text{bond}}, V_{\text{bend}},
1558 > V_{\text{torsion}},\mathrm{~and~} V_{\text{inversion}}$ represent the
1559 > bond, bend, torsion, and inversion potentials for all
1560 > topologically-connected sets of atoms within the molecule.  Bonds are
1561 > the primary way of specifying how the atoms are connected together to
1562 > form the molecule (i.e. they define the molecular topology).  The
1563 > other short-range interactions may be specified explicitly in the
1564 > molecule definition, or they may be deduced from bonding information.
1565 > For example, bends can be implicitly deduced from two bonds which
1566 > share an atom.  Torsions can be deduced from two bends that share a
1567 > bond.  Inversion potentials are utilized primarily to enforce
1568 > planarity around $sp^2$-hybridized sites, and these are specified with
1569 > central atoms and satellites (or an atom with bonds to exactly three
1570 > satellites). Non-bonded interactions are usually excluded for atom
1571 > pairs that are involved in the same bond, bend, or torsion, but all
1572 > other atom pairs are included in the standard non-bonded interactions.
1573 >
1574 > Bond lengths, angles, and torsions (dihedrals) are ``natural''
1575 > coordinates to treat molecular motion, as it is usually in these
1576 > coordinates that most chemists understand the behavior of molecules.
1577 > The bond lengths and angles are often considered ``hard'' degrees of
1578 > freedom.  That is, we can't deform them very much without a
1579 > significant energetic penalty.  On the other hand, dihedral angles or
1580 > torsions are ``soft'' and typically undergo significant deformation
1581 > under normal conditions.
1582 >
1583 > \subsection{\label{section:ffBond}The BondTypes block}
1584 >
1585 > Bonds are the primary way to specify how the atoms are connected
1586 > together to form the molecule.  In general, bonds exert strong
1587 > restoring forces to keep the molecule compact.  The bond energy
1588 > functions are relatively simple functions of the distance between two
1589 > atomic sites,
1590 > \begin{equation}
1591 > b = \left| \vec{r}_{ij} \right| = \sqrt{(x_j - x_i)^2 + (y_j - y_i)^2
1592 >  + (z_j - z_i)^2}.
1593 > \end{equation}
1594 > All BondTypes must specify two AtomType names ($i$ and $j$) that
1595 > describe when that bond should be applied, as well as an equilibrium
1596 > bond length, $b_{ij}^0$, in units of \AA. The most common forms for
1597 > bonding potentials are {\tt Harmonic} bonds,
1598 > \begin{equation}
1599 > V_{\text{bond}}(b) = \frac{k_{ij}}{2} \left(b -
1600 >  b_{ij}^0 \right)^2
1601 > \end{equation}
1602 > and {\tt Morse} bonds,
1603 > \begin{equation}
1604 > V_{\text{bond}}(b) = D_{ij} \left[ 1 - e^{-\beta_{ij} (b - b_{ij}^0)} \right]^2
1605 > \end{equation}
1606 >
1607 > \begin{figure}[h]
1608 > \centering
1609 > \includegraphics[width=2.5in]{bond.pdf}
1610 > \caption[Bond coordinates]{The coordinate describing a
1611 > a bond between atoms $i$ and $j$ is $|r_{ij}|$, the length of the
1612 > $\vec{r}_{ij}$ vector. }
1613 > \label{fig:bond}
1614 > \end{figure}
1615 >
1616 > OpenMD can also simulate some less common types of bond potentials,
1617 > including {\tt Fixed} bonds (which are constrained to be at a
1618 > specified bond length),
1619 > \begin{equation}
1620 > V_{\text{bond}}(b) = 0.
1621 > \end{equation}
1622 > {\tt Cubic} bonds include terms to model anharmonicity,
1623 > \begin{equation}
1624 > V_{\text{bond}}(b) =  K_3 (b -  b_{ij}^0)^3 + K_2 (b - b_{ij}^0)^2 + K_1 (b -  b_{ij}^0) + K_0,
1625 > \end{equation}
1626 > and {\tt Quartic} bonds, include another term in the Taylor
1627 > expansion around $b_{ij}^0$,
1628 > \begin{equation}
1629 > V_{\text{bond}}(b) = K_4 (b -  b_{ij}^0)^4 +  K_3 (b -  b_{ij}^0)^3 +
1630 > K_2 (b - b_{ij}^0)^2 + K_1 (b -  b_{ij}^0) + K_0,
1631 > \end{equation}
1632 > can also be simulated.  Note that the factor of $1/2$ that is included
1633 > in the {\tt Harmonic} bond type force constant is {\it not} present in
1634 > either the {\tt Cubic} or {\tt Quartic} bond types.
1635 >
1636 > {\tt Polynomial} bonds which can have any number of terms,
1637 > \begin{equation}
1638 > V_{\text{bond}}(b) = \sum_n K_n (b -  b_{ij}^0)^n.
1639 > \end{equation}
1640 > can also be specified by giving a sequence of integer ($n$) and force
1641 > constant ($K_n$) pairs.
1642 >
1643 > The order of terms in the BondTypes block is:
1644 > \begin{itemize}
1645 > \item {\tt AtomType} 1
1646 > \item {\tt AtomType} 2
1647 > \item {\tt BondType} (one of {\tt Harmonic}, {\tt Morse}, {\tt Fixed}, {\tt
1648 >        Cubic}, {\tt Quartic}, or {\tt Polynomial})
1649 > \item $b_{ij}^0$, the equilibrium bond length in \AA
1650 > \item any other parameters required by the {\tt BondType}
1651 > \end{itemize}
1652 >
1653 > \begin{lstlisting}[caption={[An example of a BondTypes block.] A
1654 > simple example of a BondTypes block.  Distances ($b_0$)
1655 > are given in \AA\ and force constants are given in
1656 > units so that when multiplied by the correct power of distance they
1657 > return energies in kcal/mol.  For example $k$ for a Harmonic bond is
1658 > in units of kcal/mol/\AA$^2$.},
1659 > label={sch:BondTypes}]
1660 > begin BondTypes
1661 > //Atom1 Atom2   Harmonic        b0        k (kcal/mol/A^2)
1662 > CH2     CH2     Harmonic        1.526     260
1663 > //Atom1 Atom2   Morse           b0        D       beta (A^-1)
1664 > CN      NC      Morse           1.157437  212.95  2.5802
1665 > //Atom1 Atom2   Fixed           b0
1666 > CT      HC      Fixed           1.09
1667 > //Atom1 Atom2   Cubic           b0        K3      K2      K1      K0
1668 > //Atom1 Atom2   Quartic         b0        K4      K3      K2      K1      K0
1669 > //Atom1 Atom2   Polynomial      b0        n       Kn      [m      Km]
1670 > end BondTypes
1671 > \end{lstlisting}
1672 >
1673 > There are advantages and disadvantages of all of the different types
1674 > of bonds, but specific simulation tasks may call for specific
1675 > behaviors.
1676 >
1677 > \subsection{\label{section:ffBend}The BendTypes block}
1678 > The equilibrium geometries and energy functions for bending motions in
1679 > a molecule are strongly dependent on the bonding environment of the
1680 > central atomic site.  For example, different types of hybridized
1681 > carbon centers require different bending angles and force constants to
1682 > describe the local geometry.
1683 >
1684 > The bending potential energy functions used in most force fields are
1685 > often simple functions of the angle between two bonds,
1686 > \begin{equation}
1687 > \theta_{ijk} = \cos^{-1} \left(\frac{\vec{r}_{ji} \cdot
1688 >    \vec{r}_{jk}}{\left| \vec{r}_{ji} \right| \left| \vec{r}_{jk}
1689 >    \right|} \right)
1690 > \end{equation}
1691 > Here atom $j$ is the central atom that is bonded to two partners $i$
1692 > and $k$.
1693 >
1694 > \begin{figure}[h]
1695 > \centering
1696 > \includegraphics[width=3.5in]{bend.pdf}
1697 > \caption[Bend angle coordinates]{The coordinate describing a bend
1698 >  between atoms $i$, $j$, and $k$ is the angle $\theta_{ijk} =
1699 >  \cos^{-1} \left(\hat{r}_{ji} \cdot \hat{r}_{jk}\right)$ where $\hat{r}_{ji}$ is
1700 >  the unit vector between atoms $j$ and $i$. }
1701 > \label{fig:bend}
1702 > \end{figure}
1703 >
1704 >
1705 > All BendTypes must specify three AtomType names ($i$, $j$ and $k$)
1706 > that describe when that bend potential should be applied, as well as
1707 > an equilibrium bending angle, $\theta_{ijk}^0$, in units of
1708 > degrees. The most common forms for bending potentials are {\tt
1709 >  Harmonic} bends,
1710 > \begin{equation}
1711 > V_{\text{bend}}(\theta_{ijk}) = \frac{k_{ijk}}{2}( \theta_{ijk} - \theta_{ijk}^0
1712 > )^2, \label{eq:bendPot}
1713 > \end{equation}
1714 > where $k_{ijk}$ is the force constant which determines the strength of
1715 > the harmonic bend. {\tt UreyBradley} bends utilize an additional 1-3
1716 > bond-type interaction in addition to the harmonic bending potential:
1717 > \begin{equation}
1718 >  V_{\text{bend}}(\vec{r}_i , \vec{r}_j, \vec{r}_k)
1719 >  =\frac{k_{ijk}}{2}( \theta_{ijk} - \theta_{ijk}^0)^2
1720 >  + \frac{k_{ub}}{2}( r_{ik} - s_0 )^2. \label{eq:ubBend}
1721 > \end{equation}
1722 >
1723 > A {\tt Cosine} bend is a variant on the harmonic bend which utilizes
1724 > the cosine of the angle instead of the angle itself,
1725 > \begin{equation}
1726 > V_{\text{bend}}(\theta_{ijk}) = \frac{k_{ijk}}{2}( \cos\theta_{ijk} -
1727 > \cos \theta_{ijk}^0 )^2. \label{eq:cosBend}
1728 > \end{equation}
1729 >
1730 > OpenMD can also simulate some less common types of bend potentials,
1731 > including {\tt Cubic} bends, which include terms to model anharmonicity,
1732 > \begin{equation}
1733 > V_{\text{bend}}(\theta_{ijk}) =  K_3 (\theta_{ijk} -  \theta_{ijk}^0)^3 + K_2 (\theta_{ijk} -  \theta_{ijk}^0)^2 + K_1 (\theta_{ijk} -  \theta_{ijk}^0) + K_0,
1734 > \end{equation}
1735 > and {\tt Quartic} bends, which include another term in the Taylor
1736 > expansion around $\theta_{ijk}^0$,
1737 > \begin{equation}
1738 >  V_{\text{bend}}(\theta_{ijk}) = K_4 (\theta_{ijk} -  \theta_{ijk}^0)^4 +  K_3 (\theta_{ijk} -  \theta_{ijk}^0)^3 +
1739 >  K_2 (\theta_{ijk} -  \theta_{ijk}^0)^2 + K_1 (\theta_{ijk} -
1740 >  \theta_{ijk}^0) + K_0,
1741 > \end{equation}
1742 > can also be simulated.  Note that the factor of $1/2$ that is included
1743 > in the {\tt Harmonic} bend type force constant is {\it not} present in
1744 > either the {\tt Cubic} or {\tt Quartic} bend types.
1745 >
1746 > {\tt Polynomial} bends which can have any number of terms,
1747 > \begin{equation}
1748 > V_{\text{bend}}(\theta_{ijk}) = \sum_n K_n (\theta_{ijk} -  \theta_{ijk}^0)^n.
1749 > \end{equation}
1750 > can also be specified by giving a sequence of integer ($n$) and force
1751 > constant ($K_n$) pairs.
1752 >
1753 > The order of terms in the BendTypes block is:
1754 > \begin{itemize}
1755 > \item {\tt AtomType} 1
1756 > \item {\tt AtomType} 2 (this is the central atom)
1757 > \item {\tt AtomType} 3
1758 > \item {\tt BendType} (one of {\tt Harmonic}, {\tt UreyBradley}, {\tt
1759 >    Cosine}, {\tt Cubic}, {\tt Quartic}, or {\tt Polynomial})
1760 > \item $\theta_{ijk}^0$, the equilibrium bending angle in degrees.
1761 > \item any other parameters required by the {\tt BendType}
1762 > \end{itemize}
1763 >
1764 > \begin{lstlisting}[caption={[An example of a BendTypes block.] A
1765 > simple example of a BendTypes block.  By convention, equilibrium angles
1766 > ($\theta_0$) are given in degrees but force constants are given in
1767 > units so that when multiplied by the correct power of angle (in
1768 > radians) they return energies in kcal/mol.  For example $k$ for a
1769 > Harmonic bend is in units of kcal/mol/radians$^2$.},
1770 > label={sch:BendTypes}]
1771 > begin BendTypes
1772 > //Atom1 Atom2   Atom3   Harmonic      theta0(deg) Ktheta(kcal/mol/radians^2)
1773 > CT      CT      CT      Harmonic      109.5        80.000000
1774 > CH2     CH      CH2     Harmonic      112.0       117.68
1775 > CH3     CH2     SH      Harmonic       96.0        67.220
1776 > //UreyBradley
1777 > //Atom1 Atom2   Atom3   UreyBradley   theta0      Ktheta  s0  Kub
1778 > //Cosine
1779 > //Atom1 Atom2   Atom3   Cosine        theta0      Ktheta(kcal/mol)
1780 > //Cubic
1781 > //Atom1 Atom2   Atom3   Cubic         theta0      K3      K2  K1   K0
1782 > //Quartic
1783 > //Atom1 Atom2   Atom3   Quartic       theta0      K4      K3  K2   K1   K0
1784 > //Polynomial
1785 > //Atom1 Atom2   Atom3   Polynomial    theta0      n       Kn  [m   Km]
1786 > end BendTypes
1787 > \end{lstlisting}
1788 >
1789 > Note that the parameters for a particular bend type are the same for
1790 > any bending triplet of the same atomic types (in the same or reversed
1791 > order).  Changing the AtomType in the Atom2 position will change the
1792 > matched bend types in the force field.
1793 >
1794 > \subsection{\label{section:ffTorsion}The TorsionTypes block}
1795 > The torsion potential for rotation of groups around a central bond can
1796 > often be represented with various cosine functions.  For two
1797 > tetrahedral ($sp^3$) carbons connected by a single bond, the torsion
1798 > potential might be
1799 > \begin{equation*}
1800 > V_{\text{torsion}} = \frac{v}{2} \left[ 1 + \cos( 3 \phi ) \right]
1801 > \end{equation*}
1802 > where $v$ is the barrier for going from {\em staggered} $\rightarrow$
1803 > {\em eclipsed} conformations, while for $sp^2$ carbons connected by a
1804 > double bond, the potential might be
1805 > \begin{equation*}
1806 > V_{\text{torsion}} = \frac{w}{2} \left[ 1 - \cos( 2 \phi ) \right]
1807 > \end{equation*}
1808 > where $w$ is the barrier for going from  {\em cis} $\rightarrow$ {\em
1809 >  trans} conformations.
1810 >
1811 > A general torsion potentials can be represented as a cosine series of
1812 > the form:
1813 > \begin{equation}
1814 > V_{\text{torsion}}(\phi_{ijkl}) = c_1[1 + \cos \phi_{ijkl}]
1815 >        + c_2[1 - \cos(2\phi_{ijkl})]
1816 >        + c_3[1 + \cos(3\phi_{ijkl})],
1817 > \label{eq:origTorsionPot}
1818 > \end{equation}
1819 > where the angle $\phi_{ijkl}$ is defined
1820 > \begin{equation}
1821 > \cos\phi_{ijkl} = (\hat{\mathbf{r}}_{ij} \times \hat{\mathbf{r}}_{jk}) \cdot
1822 >        (\hat{\mathbf{r}}_{jk} \times \hat{\mathbf{r}}_{kl}).
1823 > \label{eq:torsPhi}
1824 > \end{equation}
1825 > Here, $\hat{\mathbf{r}}_{\alpha\beta}$ are the set of unit bond
1826 > vectors between atoms $i$, $j$, $k$, and $l$.  Note that some force
1827 > fields define the zero of the $\phi_{ijkl}$ angle when atoms $i$ and
1828 > $l$ are in the {\em trans} configuration, while most define the zero
1829 > angle for when $i$ and $l$ are in the fully eclipsed orientation.  The
1830 > behavior of the torsion parser can be altered with the {\tt
1831 >  TorsionAngleConvention} keyword in the Options block.  The default
1832 > behavior is {\tt "180\_is\_trans"} while the opposite behavior can be
1833 > invoked by setting this keyword to {\tt "0\_is\_trans"}.
1834 >
1835 > \begin{figure}[h]
1836 > \centering
1837 > \includegraphics[width=4.5in]{torsion.pdf}
1838 > \caption[Torsion or dihedral angle coordinates]{The coordinate
1839 >  describing a torsion between atoms $i$, $j$, $k$, and $l$ is the
1840 >  dihedral angle $\phi_{ijkl}$ which measures the relative rotation of
1841 >  the two terminal atoms around the axis defined by the middle bond. }
1842 > \label{fig:torsion}
1843   \end{figure}
1844  
1845 <
1846 < Since SSD/E is a single-point {\it dipolar} model, the force
1847 < calculations are simplified significantly relative to the standard
1172 < {\it charged} multi-point models. In the original Monte Carlo
1173 < simulations using this model, Ichiye {\it et al.} reported that using
1174 < SSD decreased computer time by a factor of 6-7 compared to other
1175 < models.\cite{liu96:new_model} What is most impressive is that these
1176 < savings did not come at the expense of accurate depiction of the
1177 < liquid state properties.  Indeed, SSD/E maintains reasonable agreement
1178 < with the Head-Gordon diffraction data for the structural features of
1179 < liquid water.\cite{hura00,liu96:new_model} Additionally, the dynamical
1180 < properties exhibited by SSD/E agree with experiment better than those
1181 < of more computationally expensive models (like TIP3P and
1182 < SPC/E).\cite{chandra99:ssd_md} The combination of speed and accurate
1183 < depiction of solvent properties makes SSD/E a very attractive model
1184 < for the simulation of large scale biochemical simulations.
1185 <
1186 < Recent constant pressure simulations revealed issues in the original
1187 < SSD model that led to lower than expected densities at all target
1188 < pressures.\cite{Ichiye03,fennell04} The default model in {\sc OpenMD}
1189 < is therefore SSD/E, a density corrected derivative of SSD that
1190 < exhibits improved liquid structure and transport behavior. If the use
1191 < of a reaction field long-range interaction correction is desired, it
1192 < is recommended that the parameters be modified to those of the SSD/RF
1193 < model (an SSD variant parameterized for reaction field). These solvent
1194 < parameters are listed and can be easily modified in the {\sc duff}
1195 < force field file ({\tt DUFF.frc}).  A table of the parameter values
1196 < and the drawbacks and benefits of the different density corrected SSD
1197 < models can be found in reference~\cite{fennell04}.
1198 <
1199 < \section{\label{section:WATER}The {\sc water} Force Field}
1200 <
1201 < In addition to the {\sc duff} force field's solvent description, a
1202 < separate {\sc water} force field has been included for simulating most
1203 < of the common rigid-body water models. This force field includes the
1204 < simple and point-dipolar models (SSD, SSD1, SSD/E, SSD/RF, and DPD
1205 < water), as well as the common charge-based models (SPC, SPC/E, TIP3P,
1206 < TIP4P, and
1207 < TIP5P).\cite{liu96:new_model,Ichiye03,fennell04,Marrink01,Berendsen81,Berendsen87,Jorgensen83,Mahoney00}
1208 < In order to handle these models, charge-charge interactions were
1209 < included in the force-loop:
1845 > For computational efficiency, OpenMD recasts torsion potential in the
1846 > method of {\sc charmm},\cite{Brooks83} in which the angle series is
1847 > converted to a power series of the form:
1848   \begin{equation}
1849 < V_{\text{charge}}(r_{ij}) = \sum_{ij}\frac{q_iq_je^2}{r_{ij}},
1849 >  V_{\text{torsion}}(\phi_{ijkl}) =  
1850 >  k_3 \cos^3 \phi_{ijkl} + k_2 \cos^2 \phi_{ijkl} + k_1 \cos \phi_{ijkl} + k_0,
1851 > \label{eq:torsionPot}
1852   \end{equation}
1853 < where $q$ represents the charge on particle $i$ or $j$, and $e$ is the
1854 < charge of an electron in Coulombs. The charge-charge interaction
1855 < support is rudimentary in the current version of {\sc OpenMD}.  As with
1856 < the other pair interactions, charges can be simulated with a pure
1857 < cutoff or a reaction field.  The various methods for performing the
1858 < Ewald summation have not yet been included.  The {\sc water} force
1859 < field can be easily expanded through modification of the {\sc water}
1860 < force field file ({\tt WATER.frc}). By adding atom types and inserting
1861 < the appropriate parameters, it is possible to extend the force field
1862 < to handle rigid molecules other than water.
1853 > where:
1854 > \begin{align*}
1855 > k_0 &= c_1 + 2 c_2 + c_3, \\
1856 > k_1 &= c_1 - 3c_3, \\
1857 > k_2 &= - 2 c_2, \\
1858 > k_3 &= 4 c_3.
1859 > \end{align*}
1860 > By recasting the potential as a power series, repeated trigonometric
1861 > evaluations are avoided during the calculation of the potential
1862 > energy.
1863  
1864 < \section{\label{section:eam}Embedded Atom Method}
1864 > Using this framework, OpenMD implements a variety of different
1865 > potential energy functions for torsions:
1866 > \begin{itemize}
1867 > \item {\tt Cubic}:
1868 > \begin{equation*}
1869 >  V_{\text{torsion}}(\phi) =  
1870 >  k_3 \cos^3 \phi + k_2 \cos^2 \phi + k_1 \cos \phi + k_0,
1871 > \end{equation*}
1872 > \item {\tt Quartic}:
1873 > \begin{equation*}
1874 >  V_{\text{torsion}}(\phi) =  k_4 \cos^4 \phi +
1875 >  k_3 \cos^3 \phi + k_2 \cos^2 \phi + k_1 \cos \phi + k_0,
1876 > \end{equation*}
1877 > \item {\tt Polynomial}:
1878 > \begin{equation*}
1879 > V_{\text{torsion}}(\phi) =  \sum_n k_n \cos^n \phi ,
1880 > \end{equation*}
1881 > \item {\tt Charmm}:
1882 > \begin{equation*}
1883 > V_{\text{torsion}}(\phi) = \sum_n K_n \left( 1 + cos(n
1884 >  \phi - \delta_n) \right),
1885 > \end{equation*}
1886 > \item {\tt Opls}:
1887 > \begin{equation*}
1888 >  V_{\text{torsion}}(\phi) =  \frac{1}{2} \left(v_1 (1 + \cos \phi) \right)
1889 >    + v_2 (1 - \cos 2 \phi) +  v_3 (1 + \cos 3 \phi),
1890 > \end{equation*}
1891 > \item {\tt Trappe}:\cite{Siepmann1998}
1892 > \begin{equation*}
1893 >  V_{\text{torsion}}(\phi) =  c_0 + c_1 (1 + \cos \phi) + c_2 (1 - \cos 2 \phi)  +
1894 >  c_3 (1 + \cos 3 \phi),
1895 > \end{equation*}
1896 > \item {\tt Harmonic}:
1897 > \begin{equation*}
1898 > V_{\text{torsion}}(\phi) =  \frac{d_0}{2} \left(\phi - \phi^0\right).
1899 > \end{equation*}
1900 > \end{itemize}
1901  
1902 < {\sc OpenMD} implements a potential that describes bonding in
1903 < transition metal
1904 < systems.~\cite{Finnis84,Ercolessi88,Chen90,Qi99,Ercolessi02} This
1905 < potential has an attractive interaction which models ``Embedding'' a
1906 < positively charged pseudo-atom core in the electron density due to the
1907 < free valance ``sea'' of electrons created by the surrounding atoms in
1908 < the system.  A pairwise part of the potential (which is primarily
1909 < repulsive) describes the interaction of the positively charged metal
1910 < core ions with one another.  The Embedded Atom Method ({\sc
1235 < eam})~\cite{Daw84,FBD86,johnson89,Lu97} has been widely adopted in the
1236 < materials science community and has been included in {\sc OpenMD}. A
1237 < good review of {\sc eam} and other formulations of metallic potentials
1238 < was given by Voter.\cite{Voter:95}
1902 > Most torsion types don't require specific angle information in the
1903 > parameters since they are typically expressed in cosine polynomials.
1904 > {\tt Charmm} and {\tt Harmonic} torsions are a bit different.  {\tt
1905 >  Charmm} torsion types require a set of phase angles, $\delta_n$ that
1906 > are expressed in degrees, and associated periodicity numbers, $n$.
1907 > {\tt Harmonic} torsions have an equilibrium torsion angle, $\phi_0$
1908 > that is measured in degrees, while $d_0$ has units of
1909 > kcal/mol/degrees$^2$.  All other torsion parameters are measured in
1910 > units of kcal/mol.
1911  
1912 < The {\sc eam} potential has the form:
1913 < \begin{equation}
1914 < V  =  \sum_{i} F_{i}\left[\rho_{i}\right] + \sum_{i} \sum_{j \neq i}
1915 < \phi_{ij}({\bf r}_{ij})
1916 < \end{equation}
1917 < where $F_{i} $ is an embedding functional that approximates the energy
1918 < required to embed a positively-charged core ion $i$ into a linear
1919 < superposition of spherically averaged atomic electron densities given
1920 < by $\rho_{i}$,
1921 < \begin{equation}
1922 < \rho_{i}   =  \sum_{j \neq i} f_{j}({\bf r}_{ij}),
1923 < \end{equation}
1924 < Since the density at site $i$ ($\rho_i$) must be computed before the
1925 < embedding functional can be evaluated, {\sc eam} and the related
1926 < transition metal potentials require two loops through the atom pairs
1927 < to compute the inter-atomic forces.
1912 > \begin{lstlisting}[caption={[An example of a TorsionTypes block.] A
1913 > simple example of a TorsionTypes block.  Energy constants are given in
1914 > kcal / mol, and when required by the form, $\delta$ angles are given
1915 > in degrees.},
1916 > label={sch:TorsionTypes}]
1917 > begin TorsionTypes
1918 > //Cubic
1919 > //Atom1 Atom2   Atom3   Atom4   Cubic   k3       k2        k1      k0  
1920 > CH2     CH2     CH2     CH2     Cubic   5.9602   -0.2568   -3.802  2.1586
1921 > CH2     CH      CH      CH2     Cubic   3.3254   -0.4215   -1.686  1.1661
1922 > //Trappe
1923 > //Atom1 Atom2   Atom3   Atom4   Trappe  c0       c1        c2      c3
1924 > CH3     CH2     CH2     SH      Trappe  0.10507  -0.10342  0.03668 0.60874    
1925 > //Charmm
1926 > //Atom1 Atom2   Atom3   Atom4   Charmm  Kchi     n    delta  [Kchi n delta]
1927 > CT      CT      CT      C       Charmm  0.156    3    0.00
1928 > OH      CT      CT      OH      Charmm  0.144    3    0.00    1.175 2  0
1929 > HC      CT      CM      CM      Charmm  1.150    1    0.00    0.38  3 180
1930 > //Quartic
1931 > //Atom1 Atom2   Atom3   Atom4   Quartic          k4    k3    k2    k1    k0
1932 > //Polynomial
1933 > //Atom1 Atom2   Atom3   Atom4   Polynomial  n Kn     [m  Km]
1934 > S       CH2     CH2     C       Polynomial  0 2.218   1  2.905  2 -3.136  3 -0.7313  4 6.272  5 -7.528
1935 > end TorsionTypes
1936 > \end{lstlisting}
1937  
1938 < The pairwise portion of the potential, $\phi_{ij}$, is a primarily
1939 < repulsive interaction between atoms $i$ and $j$. In the original
1940 < formulation of {\sc eam}\cite{Daw84}, $\phi_{ij}$ was an entirely
1260 < repulsive term; however later refinements to {\sc eam} allowed for
1261 < more general forms for $\phi$.\cite{Daw89} The effective cutoff
1262 < distance, $r_{{\text cut}}$ is the distance at which the values of
1263 < $f(r)$ and $\phi(r)$ drop to zero for all atoms present in the
1264 < simulation.  In practice, this distance is fairly small, limiting the
1265 < summations in the {\sc eam} equation to the few dozen atoms
1266 < surrounding atom $i$ for both the density $\rho$ and pairwise $\phi$
1267 < interactions.
1938 > Note that the parameters for a particular torsion type are the same
1939 > for any torsional quartet of the same atomic types (in the same or
1940 > reversed order).
1941  
1942 < In computing forces for alloys, mixing rules as outlined by
1270 < Johnson~\cite{johnson89} are used to compute the heterogenous pair
1271 < potential,
1272 < \begin{equation}
1273 < \label{eq:johnson}
1274 < \phi_{ab}(r)=\frac{1}{2}\left(
1275 < \frac{f_{b}(r)}{f_{a}(r)}\phi_{aa}(r)+
1276 < \frac{f_{a}(r)}{f_{b}(r)}\phi_{bb}(r)
1277 < \right).
1278 < \end{equation}
1279 < No mixing rule is needed for the densities, since the density at site
1280 < $i$ is simply the linear sum of density contributions of all the other
1281 < atoms.
1942 > \subsection{\label{section:ffInversion}The InversionTypes block}
1943  
1944 < The {\sc eam} force field illustrates an additional feature of {\sc
1945 < OpenMD}.  Foiles, Baskes and Daw fit {\sc eam} potentials for Cu, Ag,
1946 < Au, Ni, Pd, Pt and alloys of these metals.\cite{FBD86} These fits are
1947 < included in {\sc OpenMD} as the {\tt u3} variant of the {\sc eam} force
1287 < field.  Voter and Chen reparamaterized a set of {\sc eam} functions
1288 < which do a better job of predicting melting points.\cite{Voter:87}
1289 < These functions are included in {\sc OpenMD} as the {\tt VC} variant of
1290 < the {\sc eam} force field.  An additional set of functions (the
1291 < ``Universal 6'' functions) are included in {\sc OpenMD} as the {\tt u6}
1292 < variant of {\sc eam}.  For example, to specify the Voter-Chen variant
1293 < of the {\sc eam} force field, the user would add the {\tt
1294 < forceFieldVariant = "VC";} line to the meta-data file.
1944 > Inversion potentials are often added to force fields to enforce
1945 > planarity around $sp^2$-hybridized carbons or to correct vibrational
1946 > frequencies for umbrella-like vibrational modes for central atoms
1947 > bonded to exactly three satellite groups.
1948  
1949 < The potential files used by the {\sc eam} force field are in the
1950 < standard {\tt funcfl} format, which is the format utilized by a number
1951 < of other codes (e.g. ParaDyn~\cite{Paradyn}, {\sc dynamo 86}).  It
1952 < should be noted that the energy units in these files are in eV, not
1953 < $\mbox{kcal mol}^{-1}$ as in the rest of the {\sc OpenMD} force field
1954 < files.  
1949 > In OpenMD's version of an inversion, the central atom is entered {\it
1950 >  first} in each line in the {\tt InversionTypes} block. Note that
1951 > this is quite different than how other codes treat Improper torsional
1952 > potentials to mimic inversion behavior.  In some other widely-used
1953 > simulation packages, the central atom is treated as atom 3 in a
1954 > standard torsion form:
1955 > \begin{itemize}
1956 >  \item OpenMD:  I - (J - K - L)  (e.g. I is $sp^2$ hybridized carbon)
1957 >  \item AMBER:   I - J - K - L   (e.g. K is $sp^2$ hybridized carbon)
1958 > \end{itemize}
1959  
1960 < \section{\label{section:sc}The Sutton-Chen Force Field}
1304 <
1305 < The Sutton-Chen ({\sc sc})~\cite{Chen90} potential has been used to
1306 < study a wide range of phenomena in metals.  Although it is similar in
1307 < form to the {\sc eam} potential, the Sutton-Chen model takes on a
1308 < simpler form,
1960 > The inversion angle itself is defined as:
1961   \begin{equation}
1962 < \label{eq:SCP1}
1963 < U_{tot}=\sum _{i}\left[ \frac{1}{2}\sum _{j\neq
1964 < i}D_{ij}V^{pair}_{ij}(r_{ij})-c_{i}D_{ii}\sqrt{\rho_{i}}\right] ,
1313 < \end{equation}
1314 < where $V^{pair}_{ij}$ and $\rho_{i}$ are given by
1315 < \begin{equation}
1316 < \label{eq:SCP2}
1317 < V^{pair}_{ij}(r)=\left(
1318 < \frac{\alpha_{ij}}{r_{ij}}\right)^{n_{ij}}, \rho_{i}=\sum_{j\neq i}\left(
1319 < \frac{\alpha_{ij}}{r_{ij}}\right) ^{m_{ij}}
1962 > \cos\omega_{i-jkl} = \left(\hat{\mathbf{r}}_{il} \times
1963 >  \hat{\mathbf{r}}_{ij}\right)\cdot\left( \hat{\mathbf{r}}_{il} \times
1964 >  \hat{\mathbf{r}}_{ik}\right)
1965   \end{equation}
1966 + Here, $\hat{\mathbf{r}}_{\alpha\beta}$ are the set of unit bond
1967 + vectors between the central atoms $i$, and the satellite atoms $j$,
1968 + $k$, and $l$.  Note that other definitions of inversion angles are
1969 + possible, so users are encouraged to be particularly careful when
1970 + converting other force field files for use with OpenMD.
1971  
1972 < $V^{pair}_{ij}$ is a repulsive pairwise potential that accounts for
1973 < interactions of the pseudo-atom cores.  The $\sqrt{\rho_i}$ term in
1974 < Eq. (\ref{eq:SCP1}) is an attractive many-body potential that models
1975 < the interactions between the valence electrons and the cores of the
1976 < pseudo-atoms.  $D_{ij}$, $D_{ii}$, $c_i$ and $\alpha_{ij}$ are
1977 < parameters used to tune the potential for different transition
1978 < metals.
1972 > There are many common ways to create planarity or umbrella behavior in
1973 > a potential energy function, and OpenMD implements a number of the
1974 > more common functions:
1975 > \begin{itemize}
1976 > \item {\tt ImproperCosine}:
1977 > \begin{equation*}
1978 > V_{\text{torsion}}(\omega) = \sum_n \frac{K_n}{2} \left( 1 + cos(n
1979 >  \omega - \delta_n) \right),
1980 > \end{equation*}
1981 > \item {\tt AmberImproper}:
1982 > \begin{equation*}
1983 >  V_{\text{torsion}}(\omega) =  \frac{v}{2} (1 - \cos\left(2 \left(\omega - \omega_0\right)\right),
1984 > \end{equation*}
1985 > \item {\tt Harmonic}:
1986 > \begin{equation*}
1987 > V_{\text{torsion}}(\omega) =  \frac{d}{2} \left(\omega - \omega_0\right).
1988 > \end{equation*}
1989 > \end{itemize}
1990 > \begin{lstlisting}[caption={[An example of an InversionTypes block.] A
1991 > simple example of a InversionTypes block.  Angles ($\delta_n$ and
1992 > $\omega_0$) angles are given in degrees, while energy parameters ($v,
1993 > K_n$) are given in kcal / mol.   The Harmonic Inversion type has a
1994 > force constant that must be given in kcal/mol/degrees$^2$.},
1995 > label={sch:InversionTypes}]
1996 > begin InversionTypes
1997 > //Harmonic
1998 > //Atom1 Atom2   Atom3   Atom4   Harmonic  d(kcal/mol/deg^2)  omega0
1999 > RCHar3  X       X       X       Harmonic  1.21876e-2         180.0
2000 > //AmberImproper
2001 > //Atom1 Atom2   Atom3   Atom4   AmberImproper   v(kcal/mol)
2002 > C       CT      N       O       AmberImproper   10.500000
2003 > CA      CA      CA      CT      AmberImproper   1.100000
2004 > //ImproperCosine
2005 > //Atom1 Atom2   Atom3   Atom4   ImproperCosine  Kn  n  delta_n  [Kn n delta_n]
2006 > end InversionTypes
2007 > \end{lstlisting}
2008  
2009 < The {\sc sc} potential form has also been parameterized by Qi {\it et
1331 < al.}\cite{Qi99} These parameters were obtained via empirical and {\it
1332 < ab initio} calculations to match structural features of the FCC
1333 < crystal.  To specify the original Sutton-Chen variant of the {\sc sc}
1334 < force field, the user would add the {\tt forceFieldVariant = "SC";}
1335 < line to the meta-data file, while specification of the Qi {\it et al.}
1336 < quantum-adapted variant of the {\sc sc} potential, the user would add
1337 < the {\tt forceFieldVariant = "QSC";} line to the meta-data file.
2009 > \section{\label{section::ffLongRange}Long Range Interactions}
2010  
2011 < \section{\label{section:clay}The CLAY force field}
2011 > Calculating the long-range (non-bonded) potential involves a sum over
2012 > all pairs of atoms (except for those atoms which are involved in a
2013 > bond, bend, or torsion with each other).  Many of these interactions
2014 > can be inferred from the AtomTypes,
2015  
2016 < The {\sc clay} force field is based on an ionic (nonbonded)
2017 < description of the metal-oxygen interactions associated with hydrated
1343 < phases. All atoms are represented as point charges and are allowed
1344 < complete translational freedom. Metal-oxygen interactions are based on
1345 < a simple Lennard-Jones potential combined with electrostatics. The
1346 < empirical parameters were optimized by Cygan {\it et
1347 < al.}\cite{Cygan04} on the basis of known mineral structures, and
1348 < partial atomic charges were derived from periodic DFT quantum chemical
1349 < calculations of simple oxide, hydroxide, and oxyhydroxide model
1350 < compounds with well-defined structures.
2016 > \subsection{\label{section:ffNBinteraction}The NonBondedInteractions
2017 >  block}
2018  
2019 + The user might want like to specify explicit or special interactions
2020 + that override the default non-bodned interactions that are inferred
2021 + from the AtomTypes.  To do this, OpenMD implements a
2022 + NonBondedInteractions block to allow the user to specify the following
2023 + (pair-wise) non-bonded interactions:
2024  
2025 + \begin{itemize}
2026 + \item {\tt LennardJones}:
2027 + \begin{equation*}
2028 + V_{\text{NB}}(r) = 4 \epsilon_{ij} \left(
2029 +  \left(\frac{\sigma_{ij}}{r} \right)^{12} -
2030 +  \left(\frac{\sigma_{ij}}{r} \right)^{6} \right),
2031 + \end{equation*}
2032 + \item {\tt ShiftedMorse}:
2033 + \begin{equation*}
2034 + V_{\text{NB}}(r) = D_{ij} \left( e^{-2 \beta_{ij} (r -
2035 +     r^0)} - 2 e^{- \beta_{ij} (r -
2036 +     r^0)} \right),
2037 + \end{equation*}
2038 + \item {\tt RepulsiveMorse}:
2039 + \begin{equation*}
2040 + V_{\text{NB}}(r) = D_{ij} \left( e^{-2 \beta_{ij} (r -
2041 +     r^0)} \right),
2042 + \end{equation*}
2043 + \item {\tt RepulsivePower}:
2044 + \begin{equation*}
2045 +  V_{\text{NB}}(r) = \epsilon_{ij}
2046 +  \left(\frac{\sigma_{ij}}{r} \right)^{n_{ij}}.
2047 + \end{equation*}
2048 + \end{itemize}
2049 +
2050 + \begin{lstlisting}[caption={[An example of a NonBondedInteractions block.] A
2051 + simple example of a NonBondedInteractions block. Distances ($\sigma,
2052 + r_0$) are given in \AA, while energies ($\epsilon, D0$) are in
2053 + kcal/mol.  The Morse potentials have an additional parameter $\beta_0$
2054 + which is in units of \AA$^{-1}$.},
2055 + label={sch:InversionTypes}]
2056 + begin NonBondedInteractions
2057 +
2058 + //Lennard-Jones
2059 + //Atom1 Atom2   LennardJones    sigma  epsilon
2060 + Au      CH3     LennardJones    3.54   0.2146
2061 + Au      CH2     LennardJones    3.54   0.1749
2062 + Au      CH      LennardJones    3.54   0.1749
2063 + Au      S       LennardJones    2.40   8.465
2064 +
2065 + //Shifted Morse
2066 + //Atom1 Atom2   ShiftedMorse    r0     D0       beta0
2067 + Au      O_SPCE  ShiftedMorse    3.70   0.0424   0.769
2068 +
2069 + //Repulsive Morse
2070 + //Atom1 Atom2   RepulsiveMorse  r0     D0       beta0
2071 + Au      H_SPCE  RepulsiveMorse  -1.00  0.00850  0.769
2072 +
2073 + //Repulsive Power
2074 + //Atom1 Atom2   RepulsivePower   sigma    epsilon    n
2075 + Au      ON      RepulsivePower   3.47005  0.186208   11
2076 + Au      NO      RepulsivePower   3.53955  0.168629   11
2077 + end NonBondedInteractions
2078 + \end{lstlisting}
2079 +
2080   \section{\label{section:electrostatics}Electrostatics}
2081  
2082 < To aid in performing simulations in more traditional force fields, we
2083 < have added routines to carry out electrostatic interactions using a
2084 < number of different electrostatic summation methods.  These methods
2085 < are extended from the damped and cutoff-neutralized Coulombic sum
2086 < originally proposed by Wolf, {\it et al.}\cite{Wolf99} One of these,
2087 < the damped shifted force method, shows a remarkable ability to
2088 < reproduce the energetic and dynamic characteristics exhibited by
2089 < simulations employing lattice summation techniques.  The basic idea is
2090 < to construct well-behaved real-space summation methods using two tricks:
2082 > Because nearly all force fields involve electrostatic interactions in
2083 > one form or another, OpenMD implements a number of different
2084 > electrostatic summation methods.  These methods are extended from the
2085 > damped and cutoff-neutralized Coulombic sum originally proposed by
2086 > Wolf, {\it et al.}\cite{Wolf99} One of these, the damped shifted force
2087 > method, shows a remarkable ability to reproduce the energetic and
2088 > dynamic characteristics exhibited by simulations employing lattice
2089 > summation techniques.  The basic idea is to construct well-behaved
2090 > real-space summation methods using two tricks:
2091   \begin{enumerate}
2092   \item shifting through the use of image charges, and
2093   \item damping the electrostatic interaction.
# Line 1479 | Line 2206 | the shifted potential (eq. (\ref{eq:SPPot})) becomes
2206   \end{equation}
2207   the shifted potential (eq. (\ref{eq:SPPot})) becomes
2208   \begin{equation}
2209 < V_{\textrm{DSP}}(r) = q_iq_j\left(\frac{\textrm{erfc}\left(\alpha r\right)}{r}-\
1483 < frac{\textrm{erfc}\left(\alpha R_\textrm{c}\right)}{R_\textrm{c}}\right) \quad r
2209 > V_{\textrm{DSP}}(r) = q_iq_j\left(\frac{\textrm{erfc}\left(\alpha r\right)}{r}-\frac{\textrm{erfc}\left(\alpha R_\textrm{c}\right)}{R_\textrm{c}}\right) \quad r
2210   \leqslant R_\textrm{c},
2211   \label{eq:DSPPot}
2212   \end{equation}
# Line 1524 | Line 2250 | this reason, the default electrostatic summation metho
2250   this reason, the default electrostatic summation method utilized by
2251   {\sc OpenMD} is the DSF (Eq. \ref{eq:DSFPot}) with a damping parameter
2252   ($\alpha$) that is set algorithmically from the cutoff radius.
2253 +
2254 +
2255 + \section{\label{section:cutoffGroups}Switching Functions}
2256 +
2257 + Calculating the the long-range interactions for $N$ atoms involves
2258 + $N(N-1)/2$ evaluations of atomic distances if it is done in a brute
2259 + force manner.  To reduce the number of distance evaluations between
2260 + pairs of atoms, {\sc OpenMD} allows the use of hard or switched
2261 + cutoffs with Verlet neighbor lists.\cite{Allen87} Neutral groups which
2262 + contain charges can exhibit pathological forces unless the cutoff is
2263 + applied to the neutral groups evenly instead of to the individual
2264 + atoms.\cite{leach01:mm} {\sc OpenMD} allows users to specify cutoff
2265 + groups which may contain an arbitrary number of atoms in the molecule.
2266 + Atoms in a cutoff group are treated as a single unit for the
2267 + evaluation of the switching function:
2268 + \begin{equation}
2269 + V_{\mathrm{long-range}} = \sum_{a} \sum_{b>a} s(r_{ab}) \sum_{i \in a} \sum_{j \in b} V_{ij}(r_{ij}),
2270 + \end{equation}
2271 + where $r_{ab}$ is the distance between the centers of mass of the two
2272 + cutoff groups ($a$ and $b$).
2273 +
2274 + The sums over $a$ and $b$ are over the cutoff groups that are present
2275 + in the simulation.  Atoms which are not explicitly defined as members
2276 + of a {\tt cutoffGroup} are treated as a group consisting of only one
2277 + atom.  The switching function, $s(r)$ is the standard cubic switching
2278 + function,
2279 + \begin{equation}
2280 + S(r) =
2281 +        \begin{cases}
2282 +        1 & \text{if $r \le r_{\text{sw}}$},\\
2283 +        \frac{(r_{\text{cut}} + 2r - 3r_{\text{sw}})(r_{\text{cut}} - r)^2}
2284 +        {(r_{\text{cut}} - r_{\text{sw}})^3}
2285 +        & \text{if $r_{\text{sw}} < r \le r_{\text{cut}}$}, \\
2286 +        0 & \text{if $r > r_{\text{cut}}$.}
2287 +        \end{cases}
2288 + \label{eq:dipoleSwitching}
2289 + \end{equation}
2290 + Here, $r_{\text{sw}}$ is the {\tt switchingRadius}, or the distance
2291 + beyond which interactions are reduced, and $r_{\text{cut}}$ is the
2292 + {\tt cutoffRadius}, or the distance at which interactions are
2293 + truncated.  
2294 +
2295 + Users of {\sc OpenMD} do not need to specify the {\tt cutoffRadius} or
2296 + {\tt switchingRadius}.  
2297 + If the {\tt cutoffRadius} was not explicitly set, OpenMD will attempt
2298 + to guess an appropriate choice.  If the system contains electrostatic
2299 + atoms, the default cutoff radius is 12 \AA.  In systems without
2300 + electrostatic (charge or multipolar) atoms, the atom types present in the simulation will be
2301 + polled for suggested cutoff values (e.g. $2.5 max(\left\{ \sigma
2302 +  \right\})$ for Lennard-Jones atoms.   The largest suggested value
2303 + that was found will be used.
2304 +
2305 + By default, OpenMD uses shifted force potentials to force the
2306 + potential energy and forces to smoothly approach zero at the cutoff
2307 + radius.  If the user would like to use another cutoff method
2308 + they may do so by setting the {\tt cutoffMethod} parameter to:
2309 + \begin{itemize}
2310 + \item {\tt HARD}
2311 + \item {\tt SWITCHED}
2312 + \item {\tt SHIFTED\_FORCE} (default):
2313 + \item {\tt TAYLOR\_SHIFTED}
2314 + \item {\tt SHIFTED\_POTENTIAL}
2315 + \end{itemize}
2316  
2317 + The {\tt switchingRadius} is set to a default value of 95\% of the
2318 + {\tt cutoffRadius}.  In the special case of a simulation containing
2319 + {\it only} Lennard-Jones atoms, the default switching radius takes the
2320 + same value as the cutoff radius, and {\sc OpenMD} will use a shifted
2321 + potential to remove discontinuities in the potential at the cutoff.
2322 + Both radii may be specified in the meta-data file.
2323 +
2324 +
2325   \section{\label{section:pbc}Periodic Boundary Conditions}
2326  
2327   \newcommand{\roundme}{\operatorname{round}}
# Line 1906 | Line 2703 | LD & Langevin Dynamics & {\tt ensemble = LD;} \\
2703   &  (with separate barostats on each box dimension) & \\
2704   LD & Langevin Dynamics & {\tt ensemble = LD;} \\
2705   &  (approximates the effects of an implicit solvent) & \\
2706 + LangevinHull & Non-periodic Langevin Dynamics  & {\tt ensemble = LangevinHull;} \\
2707 + & (Langevin Dynamics for molecules on convex hull;\\
2708 + & Newtonian for interior molecules) & \\
2709   \end{tabular}
2710   \end{center}
2711  
# Line 2391 | Line 3191 | ${\bf V} =
3191   in the body-fixed frame) and ${\bf V}$ is a generalized velocity,
3192   ${\bf V} =
3193   \left\{{\bf v},{\bf \omega}\right\}$. The right side of
3194 < Eq.~\ref{LDGeneralizedForm} consists of three generalized forces: a
3194 > Eq. \ref{LDGeneralizedForm} consists of three generalized forces: a
3195   system force (${\bf F}_{s}$), a frictional or dissipative force (${\bf
3196   F}_{f}$) and a stochastic force (${\bf F}_{r}$). While the evolution
3197   of the system in Newtonian mechanics is typically done in the lab
# Line 2613 | Line 3413 | program that is included in the {\sc OpenMD} distribut
3413   \endhead
3414   \hline
3415   \endfoot
3416 < {\tt viscosity} & centipoise & Sets the value of viscosity of the implicit
3416 > {\tt viscosity} & poise & Sets the value of viscosity of the implicit
3417   solvent  \\
3418   {\tt targetTemp} & K & Sets the target temperature of the system.
3419   This parameter must be specified to use Langevin dynamics. \\
3420   {\tt HydroPropFile} & string & Specifies the name of the resistance
3421   tensor (usually a {\tt .diff} file) which is precalculated by {\tt
3422 < Hydro}. This keyworkd is not necessary if the simulation contains only
3422 > Hydro}. This keyword is not necessary if the simulation contains only
3423   simple bodies (spheres and ellipsoids). \\
3424   {\tt beadSize} & $\mbox{\AA}$ & Sets the diameter of the beads to use
3425   when the {\tt RoughShell} model is used to approximate the resistance
# Line 2627 | Line 3427 | tensor.
3427   \label{table:ldParameters}
3428   \end{longtable}
3429  
3430 + \section{Constant Pressure without periodic boundary conditions (The LangevinHull)}
3431 +
3432 + The Langevin Hull\cite{Vardeman2011} uses an external bath at a fixed constant pressure
3433 + ($P$) and temperature ($T$) with an effective solvent viscosity
3434 + ($\eta$).  This bath interacts only with the objects on the exterior
3435 + hull of the system.  Defining the hull of the atoms in a simulation is
3436 + done in a manner similar to the approach of Kohanoff, Caro and
3437 + Finnis.\cite{Kohanoff:2005qm} That is, any instantaneous configuration
3438 + of the atoms in the system is considered as a point cloud in three
3439 + dimensional space.  Delaunay triangulation is used to find all facets
3440 + between coplanar
3441 + neighbors.\cite{delaunay,springerlink:10.1007/BF00977785} In highly
3442 + symmetric point clouds, facets can contain many atoms, but in all but
3443 + the most symmetric of cases, the facets are simple triangles in
3444 + 3-space which contain exactly three atoms.
3445 +
3446 + The convex hull is the set of facets that have {\it no concave
3447 +  corners} at an atomic site.\cite{Barber96,EDELSBRUNNER:1994oq} This
3448 + eliminates all facets on the interior of the point cloud, leaving only
3449 + those exposed to the bath. Sites on the convex hull are dynamic; as
3450 + molecules re-enter the cluster, all interactions between atoms on that
3451 + molecule and the external bath are removed.  Since the edge is
3452 + determined dynamically as the simulation progresses, no {\it a priori}
3453 + geometry is defined. The pressure and temperature bath interacts only
3454 + with the atoms on the edge and not with atoms interior to the
3455 + simulation.
3456 +
3457 + Atomic sites in the interior of the simulation move under standard
3458 + Newtonian dynamics,
3459 + \begin{equation}
3460 + m_i \dot{\mathbf v}_i(t)=-{\mathbf \nabla}_i U,
3461 + \label{eq:Newton}
3462 + \end{equation}
3463 + where $m_i$ is the mass of site $i$, ${\mathbf v}_i(t)$ is the
3464 + instantaneous velocity of site $i$ at time $t$, and $U$ is the total
3465 + potential energy.  For atoms on the exterior of the cluster
3466 + (i.e. those that occupy one of the vertices of the convex hull), the
3467 + equation of motion is modified with an external force, ${\mathbf
3468 +  F}_i^{\mathrm ext}$:
3469 + \begin{equation}
3470 + m_i \dot{\mathbf v}_i(t)=-{\mathbf \nabla}_i U + {\mathbf F}_i^{\mathrm ext}.
3471 + \end{equation}
3472 +
3473 + The external bath interacts indirectly with the atomic sites through
3474 + the intermediary of the hull facets.  Since each vertex (or atom)
3475 + provides one corner of a triangular facet, the force on the facets are
3476 + divided equally to each vertex.  However, each vertex can participate
3477 + in multiple facets, so the resultant force is a sum over all facets
3478 + $f$ containing vertex $i$:
3479 + \begin{equation}
3480 + {\mathbf F}_{i}^{\mathrm ext} = \sum_{\begin{array}{c}\mathrm{facets\
3481 +    } f \\ \mathrm{containing\ } i\end{array}} \frac{1}{3}\  {\mathbf
3482 +  F}_f^{\mathrm ext}
3483 + \end{equation}
3484 +
3485 + The external pressure bath applies a force to the facets of the convex
3486 + hull in direct proportion to the area of the facet, while the thermal
3487 + coupling depends on the solvent temperature, viscosity and the size
3488 + and shape of each facet. The thermal interactions are expressed as a
3489 + standard Langevin description of the forces,
3490 + \begin{equation}
3491 + \begin{array}{rclclcl}
3492 + {\mathbf F}_f^{\text{ext}} & = &  \text{external pressure} & + & \text{drag force} & + & \text{random force} \\
3493 + & = &  -\hat{n}_f P A_f  & - & \Xi_f(t) {\mathbf v}_f(t)  & + & {\mathbf R}_f(t)
3494 + \end{array}
3495 + \end{equation}
3496 + Here, $A_f$ and $\hat{n}_f$ are the area and (outward-facing) normal
3497 + vectors for facet $f$, respectively.  ${\mathbf v}_f(t)$ is the
3498 + velocity of the facet centroid,
3499 + \begin{equation}
3500 + {\mathbf v}_f(t) =  \frac{1}{3} \sum_{i=1}^{3} {\mathbf v}_i,
3501 + \end{equation}
3502 + and $\Xi_f(t)$ is an approximate ($3 \times 3$) resistance tensor that
3503 + depends on the geometry and surface area of facet $f$ and the
3504 + viscosity of the bath.  The resistance tensor is related to the
3505 + fluctuations of the random force, $\mathbf{R}(t)$, by the
3506 + fluctuation-dissipation theorem (see Eq. \ref{eq:randomForce}).
3507 +
3508 + Once the resistance tensor is known for a given facet, a stochastic
3509 + vector that has the properties in Eq. (\ref{eq:randomForce}) can be
3510 + calculated efficiently by carrying out a Cholesky decomposition to
3511 + obtain the square root matrix of the resistance tensor (see
3512 + Eq. \ref{eq:Cholesky}).
3513 +
3514 + Our treatment of the resistance tensor for the Langevin Hull facets is
3515 + approximate.  $\Xi_f$ for a rigid triangular plate would normally be
3516 + treated as a $6 \times 6$ tensor that includes translational and
3517 + rotational drag as well as translational-rotational coupling. The
3518 + computation of resistance tensors for rigid bodies has been detailed
3519 + elsewhere,\cite{JoseGarciadelaTorre02012000,Garcia-de-la-Torre:2001wd,GarciadelaTorreJ2002,Sun:2008fk}
3520 + but the standard approach involving bead approximations would be
3521 + prohibitively expensive if it were recomputed at each step in a
3522 + molecular dynamics simulation.
3523 +
3524 + Instead, we are utilizing an approximate resistance tensor obtained by
3525 + first constructing the Oseen tensor for the interaction of the
3526 + centroid of the facet ($f$) with each of the subfacets $\ell=1,2,3$,
3527 + \begin{equation}
3528 + T_{\ell f}=\frac{A_\ell}{8\pi\eta R_{\ell f}}\left(I +
3529 +  \frac{\mathbf{R}_{\ell f}\mathbf{R}_{\ell f}^T}{R_{\ell f}^2}\right)
3530 + \end{equation}
3531 + Here, $A_\ell$ is the area of subfacet $\ell$ which is a triangle
3532 + containing two of the vertices of the facet along with the centroid.
3533 + $\mathbf{R}_{\ell f}$ is the vector between the centroid of facet $f$
3534 + and the centroid of sub-facet $\ell$, and $I$ is the ($3 \times 3$)
3535 + identity matrix.  $\eta$ is the viscosity of the external bath.
3536 +
3537 + The tensors for each of the sub-facets are added together, and the
3538 + resulting matrix is inverted to give a $3 \times 3$ resistance tensor
3539 + for translations of the triangular facet,
3540 + \begin{equation}
3541 + \Xi_f(t) =\left[\sum_{i=1}^3 T_{if}\right]^{-1}.
3542 + \end{equation}
3543 + Note that this treatment ignores rotations (and
3544 + translational-rotational coupling) of the facet.  In compact systems,
3545 + the facets stay relatively fixed in orientation between
3546 + configurations, so this appears to be a reasonably good approximation.
3547 +
3548 + At each
3549 + molecular dynamics time step, the following process is carried out:
3550 + \begin{enumerate}
3551 + \item The standard inter-atomic forces ($\nabla_iU$) are computed.
3552 + \item Delaunay triangulation is carried out using the current atomic
3553 +  configuration.
3554 + \item The convex hull is computed and facets are identified.
3555 + \item For each facet:
3556 + \begin{itemize}
3557 + \item[a.] The force from the pressure bath ($-\hat{n}_fPA_f$) is
3558 +  computed.
3559 + \item[b.] The resistance tensor ($\Xi_f(t)$) is computed using the
3560 +  viscosity ($\eta$) of the bath.
3561 + \item[c.] Facet drag ($-\Xi_f(t) \mathbf{v}_f(t)$) forces are
3562 +  computed.
3563 + \item[d.] Random forces ($\mathbf{R}_f(t)$) are computed using the
3564 +  resistance tensor and the temperature ($T$) of the bath.
3565 + \end{itemize}
3566 + \item The facet forces are divided equally among the vertex atoms.
3567 + \item Atomic positions and velocities are propagated.
3568 + \end{enumerate}
3569 + The Delaunay triangulation and computation of the convex hull are done
3570 + using calls to the qhull library,\cite{Qhull} and for this reason, if
3571 + qhull is not detected during the build, the Langevin Hull integrator
3572 + will not be available.  There is a minimal penalty for computing the
3573 + convex hull and resistance tensors at each step in the molecular
3574 + dynamics simulation (roughly 0.02 $\times$ cost of a single force
3575 + evaluation).
3576 +
3577 + \begin{longtable}[c]{GBF}
3578 + \caption{Meta-data Keywords: Required parameters for the Langevin Hull integrator}
3579 + \\
3580 + {\bf keyword} & {\bf units} & {\bf use}  \\ \hline
3581 + \endhead
3582 + \hline
3583 + \endfoot
3584 + {\tt viscosity} & poise & Sets the value of viscosity of the implicit
3585 + solven . \\
3586 + {\tt targetTemp} & K & Sets the target temperature of the system.
3587 + This parameter must be specified to use Langevin Hull dynamics. \\
3588 + {\tt targetPressure} & atm & Sets the target pressure of the system.
3589 + This parameter must be specified to use Langevin Hull dynamics. \\
3590 + {\tt usePeriodicBoundaryConditions} & logical & Turns off periodic boundary conditions.
3591 + This parameter must be set to \tt false \\
3592 + \label{table:lhullParameters}
3593 + \end{longtable}
3594 +
3595 +
3596   \section{\label{sec:constraints}Constraint Methods}
3597  
3598   \subsection{\label{section:rattle}The {\sc rattle} Method for Bond
# Line 2775 | Line 3741 | Harmonic Forces are used by default
3741   \label{table:zconParams}
3742   \end{longtable}
3743  
3744 < \chapter{\label{section:restraints}Restraints}
3745 < Restraints are external potentials that are added to a system to keep
3746 < particular molecules or collections of particles close to some
3747 < reference structure.  A restraint can be a collective
3744 > % \chapter{\label{section:restraints}Restraints}
3745 > % Restraints are external potentials that are added to a system to
3746 > % keep particular molecules or collections of particles close to some
3747 > % reference structure.  A restraint can be a collective
3748  
3749   \chapter{\label{section:thermInt}Thermodynamic Integration}
3750  
# Line 2917 | Line 3883 | Einstein crystal
3883   Einstein crystal
3884   \label{table:thermIntParams}
3885   \end{longtable}
3886 +
3887 + \chapter{\label{section:rnemd}Reverse Non-Equilibrium Molecular Dynamics (RNEMD)}
3888 +
3889 + There are many ways to compute transport properties from molecular
3890 + dynamics simulations.  Equilibrium Molecular Dynamics (EMD)
3891 + simulations can be used by computing relevant time correlation
3892 + functions and assuming linear response theory holds.  For some transport properties (notably thermal conductivity), EMD approaches
3893 + are subject to noise and poor convergence of the relevant
3894 + correlation functions. Traditional Non-equilibrium Molecular Dynamics
3895 + (NEMD) methods impose a gradient (e.g. thermal or momentum) on a
3896 + simulation.  However, the resulting flux is often difficult to
3897 + measure. Furthermore, problems arise for NEMD simulations of
3898 + heterogeneous systems, such as phase-phase boundaries or interfaces,
3899 + where the type of gradient to enforce at the boundary between
3900 + materials is unclear.
3901 +
3902 + {\it Reverse} Non-Equilibrium Molecular Dynamics (RNEMD) methods adopt
3903 + a different approach in that an unphysical {\it flux} is imposed
3904 + between different regions or ``slabs'' of the simulation box.  The
3905 + response of the system is to develop a temperature or momentum {\it
3906 +  gradient} between the two regions. Since the amount of the applied
3907 + flux is known exactly, and the measurement of gradient is generally
3908 + less complicated, imposed-flux methods typically take shorter
3909 + simulation times to obtain converged results for transport properties.
3910  
3911 + \begin{figure}
3912 + \includegraphics[width=\linewidth]{rnemdDemo}
3913 + \caption{The (VSS) RNEMD approach imposes unphysical transfer of both
3914 +  linear momentum and kinetic energy between a ``hot'' slab and a
3915 +  ``cold'' slab in the simulation box.  The system responds to this
3916 +  imposed flux by generating both momentum and temperature gradients.
3917 +  The slope of the gradients can then be used to compute transport
3918 +  properties (e.g. shear viscosity and thermal conductivity).}
3919 + \label{rnemdDemo}
3920 + \end{figure}
3921  
3922 + \section{\label{section:algo}Three algorithms for carrying out RNEMD simulations}
3923 + \subsection{\label{subsection:swapping}The swapping algorithm}
3924 + The original ``swapping'' approaches by M\"{u}ller-Plathe {\it et
3925 +  al.}\cite{ISI:000080382700030,MullerPlathe:1997xw} can be understood
3926 + as a sequence of imaginary elastic collisions between particles in
3927 + opposite slabs.  In each collision, the entire momentum vectors of
3928 + both particles may be exchanged to generate a thermal
3929 + flux. Alternatively, a single component of the momentum vectors may be
3930 + exchanged to generate a shear flux.  This algorithm turns out to be
3931 + quite useful in many simulations. However, the M\"{u}ller-Plathe
3932 + swapping approach perturbs the system away from ideal
3933 + Maxwell-Boltzmann distributions, and this may leads to undesirable
3934 + side-effects when the applied flux becomes large.\cite{Maginn:2010}
3935 + This limits the applicability of the swapping algorithm, so in OpenMD,
3936 + we have implemented two additional algorithms for RNEMD in addition to the
3937 + original swapping approach.
3938 +
3939 + \subsection{\label{subsection:nivs}Non-Isotropic Velocity Scaling (NIVS)}
3940 + Instead of having momentum exchange between {\it individual particles}
3941 + in each slab, the NIVS algorithm applies velocity scaling to all of
3942 + the selected particles in both slabs.\cite{kuang:164101} A combination of linear
3943 + momentum, kinetic energy, and flux constraint equations governs the
3944 + amount of velocity scaling performed at each step. Interested readers
3945 + should consult ref. \citealp{kuang:164101} for further details on the
3946 + methodology.
3947 +
3948 + NIVS has been shown to be very effective at producing thermal
3949 + gradients and for computing thermal conductivities, particularly for
3950 + heterogeneous interfaces.  Although the NIVS algorithm can also be
3951 + applied to impose a directional momentum flux, thermal anisotropy was
3952 + observed in relatively high flux simulations, and the method is not
3953 + suitable for imposing a shear flux or for computing shear viscosities.
3954 +
3955 + \subsection{\label{subsection:vss}Velocity Shearing and Scaling (VSS)}
3956 + The third RNEMD algorithm implemented in OpenMD utilizes a series of
3957 + simultaneous velocity shearing and scaling exchanges between the two
3958 + slabs.\cite{2012MolPh.110..691K}  This method results in a set of simpler equations to satisfy
3959 + the conservation constraints while creating a desired flux between the
3960 + two slabs.
3961 +
3962 + The VSS approach is versatile in that it may be used to implement both
3963 + thermal and shear transport either separately or simultaneously.
3964 + Perturbations of velocities away from the ideal Maxwell-Boltzmann
3965 + distributions are minimal, and thermal anisotropy is kept to a
3966 + minimum.  This ability to generate simultaneous thermal and shear
3967 + fluxes has been utilized to map out the shear viscosity of SPC/E water
3968 + over a wide range of temperatures (90~K) just with a single simulation.
3969 + VSS-RNEMD also allows the directional momentum flux to have
3970 + arbitary directions, which could aid in the study of anisotropic solid
3971 + surfaces in contact with liquid environments.
3972 +
3973 + \section{\label{section:usingRNEMD}Using OpenMD to perform a RNEMD simulation}
3974 + \subsection{\label{section:rnemdParams} What the user needs to specify}
3975 + To carry out a RNEMD simulation,
3976 + a user must specify a number of parameters in the MetaData (.md) file.
3977 + Because the RNEMD methods have a large number of parameters, these
3978 + must be enclosed in a {\it separate} {\tt RNEMD\{...\}} block.  The most important
3979 + parameters to specify are the {\tt useRNEMD}, {\tt fluxType} and flux
3980 + parameters. Most other parameters (summarized in table
3981 + \ref{table:rnemd}) have reasonable default values.  {\tt fluxType}
3982 + sets up the kind of exchange that will be carried out between the two
3983 + slabs (either Kinetic Energy ({\tt KE}) or momentum ({\tt Px, Py, Pz,
3984 +  Pvector}), or some combination of these).  The flux is specified
3985 + with the use of three possible parameters: {\tt kineticFlux} for
3986 + kinetic energy exchange, as well as {\tt momentumFlux} or {\tt
3987 +  momentumFluxVector} for simulations with directional exchange.
3988 +
3989 + \subsection{\label{section:rnemdResults} Processing the results}
3990 + OpenMD will generate a {\tt .rnemd}
3991 + file with the same prefix as the original {\tt .md} file.  This file
3992 + contains a running average of properties of interest computed within a
3993 + set of bins that divide the simulation cell along the $z$-axis.  The
3994 + first column of the {\tt .rnemd} file is the $z$ coordinate of the
3995 + center of each bin, while following columns may contain the average
3996 + temperature, velocity, or density within each bin.  The output format
3997 + in the {\tt .rnemd} file can be altered with the {\tt outputFields},
3998 + {\tt outputBins}, and {\tt outputFileName} parameters.  A report at
3999 + the top of the {\tt .rnemd} file contains the current exchange totals
4000 + as well as the average flux applied during the simulation.  Using the
4001 + slope of the temperature or velocity gradient obtaine from the {\tt
4002 +  .rnemd} file along with the applied flux, the user can very simply
4003 + arrive at estimates of thermal conductivities ($\lambda$),
4004 + \begin{equation}
4005 + J_z = -\lambda \frac{\partial T}{\partial z},
4006 + \end{equation}
4007 + and shear viscosities ($\eta$),
4008 + \begin{equation}
4009 + j_z(p_x) = -\eta \frac{\partial \langle v_x \rangle}{\partial z}.
4010 + \end{equation}
4011 + Here, the quantities on the left hand side are the actual flux values
4012 + (in the header of the {\tt .rnemd} file), while the slopes are
4013 + obtained from linear fits to the gradients observed in the {\tt
4014 +  .rnemd} file.
4015 +
4016 + More complicated simulations (including interfaces) require a bit more
4017 + care.  Here the second derivative may be required to compute the
4018 + interfacial thermal conductance,
4019 + \begin{align}
4020 +  G^\prime &= \left(\nabla\lambda \cdot \mathbf{\hat{n}}\right)_{z_0} \\
4021 +  &= \frac{\partial}{\partial z}\left(-\frac{J_z}{
4022 +      \left(\frac{\partial T}{\partial z}\right)}\right)_{z_0} \\
4023 +  &= J_z\left(\frac{\partial^2 T}{\partial z^2}\right)_{z_0} \Big/
4024 +  \left(\frac{\partial T}{\partial z}\right)_{z_0}^2.
4025 +  \label{derivativeG}
4026 + \end{align}
4027 + where $z_0$ is the location of the interface between two materials and
4028 + $\mathbf{\hat{n}}$ is a unit vector normal to the interface.  We
4029 + suggest that users interested in interfacial conductance consult
4030 + reference \citealp{kuang:AuThl} for other approaches to computing $G$.
4031 + Users interested in {\it friction coefficients} at heterogeneous
4032 + interfaces may also find reference \citealp{2012MolPh.110..691K}
4033 + useful.
4034 +
4035 + \newpage
4036 +
4037 + \begin{longtable}[c]{JKLM}
4038 + \caption{Meta-data Keywords: Parameters for RNEMD simulations}\\
4039 + \multicolumn{4}{c}{The following keywords must be enclosed inside a {\tt RNEMD\{...\}} block.}
4040 + \\ \hline
4041 + {\bf keyword} & {\bf units} & {\bf use} & {\bf remarks}  \\ \hline
4042 + \endhead
4043 + \hline
4044 + \endfoot
4045 + {\tt useRNEMD} & logical & perform RNEMD? & default is ``false'' \\
4046 + {\tt objectSelection} & string & see section \ref{section:syntax}
4047 + for selection syntax & default is ``select all'' \\
4048 + {\tt method} & string & exchange method & one of the following:
4049 + {\tt Swap, NIVS,} or {\tt VSS}  (default is {\tt VSS}) \\
4050 + {\tt fluxType} & string & what is being exchanged between slabs? & one
4051 + of the following: {\tt KE, Px, Py, Pz, Pvector, KE+Px, KE+Py, KE+Pvector} \\
4052 + {\tt kineticFlux} & kcal mol$^{-1}$ \AA$^{-2}$ fs$^{-1}$ & specify the kinetic energy flux &  \\
4053 + {\tt momentumFlux} & amu \AA$^{-1}$ fs$^{-2}$ & specify the momentum flux & \\
4054 + {\tt momentumFluxVector} & amu \AA$^{-1}$ fs$^{-2}$ & specify the momentum flux when
4055 + {\tt Pvector} is part of the exchange & Vector3d input\\
4056 + {\tt exchangeTime} & fs & how often to perform the exchange & default is 100 fs\\
4057 +
4058 + {\tt slabWidth} & $\mbox{\AA}$ & width of the two exchange slabs & default is $\mathsf{H}_{zz} / 10.0$ \\
4059 + {\tt slabAcenter} & $\mbox{\AA}$ & center of the end slab & default is 0 \\
4060 + {\tt slabBcenter} & $\mbox{\AA}$ & center of the middle slab & default is $\mathsf{H}_{zz} / 2$ \\
4061 + {\tt outputFileName} & string & file name for output histograms & default is the same prefix as the
4062 + .md file, but with the {\tt .rnemd} extension \\
4063 + {\tt outputBins} & int & number of $z$-bins in the output histogram &
4064 + default is 20 \\
4065 + {\tt outputFields} & string & columns to print in the {\tt .rnemd}
4066 + file where each column is separated by a pipe ($\mid$) symbol. & Allowed column names are: {\sc z, temperature, velocity, density} \\
4067 + \label{table:rnemd}
4068 + \end{longtable}
4069 +
4070   \chapter{\label{section:minimizer}Energy Minimization}
4071  
4072 < As one of the basic procedures of molecular modeling, energy
2925 < minimization is used to identify local configurations that are stable
4072 > Energy minimization is used to identify local configurations that are stable
4073   points on the potential energy surface. There is a vast literature on
4074   energy minimization algorithms have been developed to search for the
4075   global energy minimum as well as to find local structures which are
# Line 3049 | Line 4196 | diagram of the class heirarchy:
4196   \begin{figure}
4197   \centering
4198   \includegraphics[width=3in]{heirarchy.pdf}
4199 < \caption[Class heirarchy for StuntDoubles in {\sc OpenMD}-4]{ \\ The
4200 < class heirarchy of StuntDoubles in {\sc OpenMD}-4. The selection
4199 > \caption[Class heirarchy for StuntDoubles in {\sc OpenMD}]{ \\ The
4200 > class heirarchy of StuntDoubles in {\sc OpenMD}. The selection
4201   syntax allows the user to select any of the objects that are descended
4202   from a StuntDouble.}
4203   \label{fig:heirarchy}
# Line 3190 | Line 4337 | For example, the phrase {\tt select mass > 16.0 and ch
4337   \end{center}
4338  
4339   For example, the phrase {\tt select mass > 16.0 and charge < -2}
4340 < wouldselect StuntDoubles which have mass greater than 16.0 and charges
4340 > would select StuntDoubles which have mass greater than 16.0 and charges
4341   less than -2.
4342  
4343   \subsection{\label{section:within}Within expressions}
# Line 3230 | Line 4377 | VMD. The options available for Dump2XYZ are as follows
4377    -z & {\tt -{}-zconstraint}  &                replace the atom types of zconstraint molecules  (default=off) \\
4378    -r & {\tt -{}-rigidbody}  &                  add a pseudo COM atom to rigidbody  (default=off) \\
4379    -t & {\tt -{}-watertype} &                   replace the atom type of water model (default=on) \\
4380 <  -b & {\tt -{}-basetype}  &                   using base atom type  (default=off) \\
4380 >  -b & {\tt -{}-basetype}  &                   using base atom type
4381 >  (default=off) \\
4382 >  -v& {\tt -{}-velocities}             & Print velocities in xyz file  (default=off)\\
4383 >  -f& {\tt -{}-forces}                 & Print forces xyz file  (default=off)\\
4384 >  -u& {\tt -{}-vectors}                & Print vectors (dipoles, etc) in xyz file  
4385 >                                  (default=off)\\
4386 >  -c& {\tt -{}-charges}                & Print charges in xyz file  (default=off)\\
4387 >  -e& {\tt -{}-efield}                 & Print electric field vector in xyz file  
4388 >                                  (default=off)\\
4389       & {\tt -{}-repeatX=INT}  &                 The number of images to repeat in the x direction  (default=`0') \\
4390       & {\tt -{}-repeatY=INT} &                 The number of images to repeat in the y direction  (default=`0') \\
4391       &  {\tt -{}-repeatZ=INT}  &                The number of images to repeat in the z direction  (default=`0') \\
# Line 3322 | Line 4477 | The options available for {\tt StaticProps} are as fol
4477      & {\tt -{}-sele1=selection script}   & select the first StuntDouble set \\
4478      & {\tt -{}-sele2=selection script}   & select the second StuntDouble set \\
4479      & {\tt -{}-sele3=selection script}   & select the third StuntDouble set \\
4480 <    & {\tt -{}-refsele=selection script} & select reference (can only be used with {\tt -{}-gxyz}) \\
4480 >    & {\tt -{}-refsele=selection script} & select reference (can only
4481 >    be used with {\tt -{}-gxyz}) \\
4482 >    & {\tt -{}-comsele=selection script}
4483 >                               & select stunt doubles for center-of-mass
4484 >                                  reference point\\
4485 >    & {\tt -{}-seleoffset=INT}        & global index offset for a second object (used
4486 >                                  to define a vector between sites in molecule)\\
4487 >
4488      & {\tt -{}-molname=STRING}           & molecule name \\
4489      & {\tt -{}-begin=INT}                & begin internal index \\
4490      & {\tt -{}-end=INT}                  & end internal index \\
4491 +    & {\tt -{}-radius=DOUBLE}            & nanoparticle radius\\
4492   \hline
4493   \multicolumn{3}{|l|}{One option from the following group of options is required:} \\
4494   \hline
4495 <    &  {\tt -{}-gofr}                    &  $g(r)$ \\
4496 <    &  {\tt -{}-r\_theta}                 &  $g(r, \cos(\theta))$ \\
4497 <    &  {\tt -{}-r\_omega}                 &  $g(r, \cos(\omega))$ \\
4498 <    &  {\tt -{}-theta\_omega}             &  $g(\cos(\theta), \cos(\omega))$ \\
4495 >    & {\tt -{}-bo}          & bond order parameter ({\tt -{}-rcut} must be specified) \\
4496 >    & {\tt -{}-bor}         & bond order parameter as a function of
4497 >    radius  ({\tt -{}-rcut} must be specified) \\
4498 >    & {\tt -{}-bad}         & $N(\theta)$ bond angle density within ({\tt -{}-rcut} must be specified) \\
4499 >    & {\tt -{}-count}       & count of molecules matching selection
4500 >    criteria (and associated statistics) \\
4501 >  -g&  {\tt -{}-gofr}                    &  $g(r)$ \\
4502 >    &  {\tt -{}-gofz}                    &  $g(z)$ \\
4503 >    &  {\tt -{}-r\_theta}                &  $g(r, \cos(\theta))$ \\
4504 >    &  {\tt -{}-r\_omega}                &  $g(r, \cos(\omega))$ \\
4505 >    &  {\tt -{}-r\_z}                    &  $g(r, z)$ \\
4506 >    &  {\tt -{}-theta\_omega}            &  $g(\cos(\theta), \cos(\omega))$ \\
4507      &  {\tt -{}-gxyz}                    &  $g(x, y, z)$ \\
4508 <    &  {\tt -{}-p2}                      &  $P_2$ order parameter ({\tt -{}-sele1} and {\tt -{}-sele2} must be specified) \\
4508 >    &  {\tt -{}-twodgofr}                & 2D $g(r)$ (Slab width {\tt -{}-dz} must be specified)\\
4509 >  -p&  {\tt -{}-p2}                      &  $P_2$ order parameter  ({\tt -{}-sele1} must be specified, {\tt -{}-sele2} is optional) \\
4510 >    &  {\tt -{}-rp2}                     &  Ripple order parameter ({\tt -{}-sele1} and {\tt -{}-sele2} must be specified) \\
4511      &  {\tt -{}-scd}                     &  $S_{CD}$ order parameter(either {\tt -{}-sele1}, {\tt -{}-sele2}, {\tt -{}-sele3} are specified or {\tt -{}-molname}, {\tt -{}-begin}, {\tt -{}-end} are specified) \\
4512 <    &  {\tt -{}-density}                 &  density plot ({\tt -{}-sele1} must be specified) \\
4513 <    &  {\tt -{}-slab\_density}           &  slab density ({\tt -{}-sele1} must be specified)
4512 >  -d&  {\tt -{}-density}                 &  density plot \\
4513 >    &  {\tt -{}-slab\_density}           &  slab density \\
4514 >    &  {\tt -{}-p\_angle}                & $p(\cos(\theta))$ ($\theta$
4515 >    is the angle between molecular axis and radial vector from origin\\
4516 >    &  {\tt -{}-hxy}                     & Calculates the undulation  spectrum, $h(x,y)$, of an interface \\
4517 >    &  {\tt -{}-rho\_r}                  & $\rho(r)$\\
4518 >    &  {\tt -{}-angle\_r}                &  $\theta(r)$ (spatially resolves the
4519 >    angle between the molecular axis and the radial vector from the
4520 >    origin)\\
4521 >    &  {\tt -{}-hullvol}                 & hull volume of nanoparticle\\
4522 >    &  {\tt -{}-rodlength}               & length of nanorod\\
4523 >  -Q&  {\tt -{}-tet\_param}              & tetrahedrality order parameter ($Q$)\\
4524 >    &  {\tt -{}-tet\_param\_z}           & spatially-resolved tetrahedrality order
4525 >                                   parameter $Q(z)$\\
4526 >    &  {\tt -{}-rnemdz}                  & slab-resolved RNEMD statistics (temperature,
4527 >                                  density, velocity)\\
4528 >    &  {\tt -{}-rnemdr}                  & shell-resolved RNEMD statistics (temperature,
4529 >                                  density, angular velocity)
4530   \end{longtable}
4531  
4532   \subsection{\label{section:DynamicProps}DynamicProps}
# Line 3378 | Line 4567 | The options available for DynamicProps are as follows:
4567    -o& {\tt -{}-output=filename}        & output file name \\
4568      & {\tt -{}-sele1=selection script} & select first StuntDouble set \\
4569      & {\tt -{}-sele2=selection script} & select second StuntDouble set (if sele2 is not set, use script from sele1) \\
4570 +    & {\tt -{}-order=INT}              & Lengendre Polynomial Order\\
4571 +  -z& {\tt -{}-nzbins=INT}             & Number of $z$ bins (default=`100`)\\
4572 +  -m& {\tt -{}-memory=memory specification}
4573 +                                &Available memory  
4574 +                                  (default=`2G`)\\
4575   \hline
4576   \multicolumn{3}{|l|}{One option from the following group of options is required:} \\
4577   \hline
4578 <  -r& {\tt -{}-rcorr}                  & compute mean square displacement \\
4579 <  -v& {\tt -{}-vcorr}                  & compute velocity correlation function \\
4580 <  -d& {\tt -{}-dcorr}                  & compute dipole correlation function
4578 >  -s& {\tt -{}-selecorr}               & selection correlation function \\
4579 >  -r& {\tt -{}-rcorr}                  & compute mean squared displacement \\
4580 >  -v& {\tt -{}-vcorr}                  & velocity autocorrelation function \\
4581 >  -d& {\tt -{}-dcorr}                  & dipole correlation function \\
4582 >  -l& {\tt -{}-lcorr}                  & Lengendre correlation function \\
4583 >    & {\tt -{}-lcorrZ}                 & Lengendre correlation function binned by $z$ \\
4584 >    & {\tt -{}-cohZ}                   & Lengendre correlation function for OH bond vectors binned by $z$\\
4585 >  -M& {\tt -{}-sdcorr}                 & System dipole correlation function\\
4586 >    & {\tt -{}-r\_rcorr}               & Radial mean squared displacement\\
4587 >    & {\tt -{}-thetacorr}              & Angular mean squared displacement\\
4588 >    & {\tt -{}-drcorr}                 & Directional mean squared displacement for particles with unit vectors\\
4589 >    & {\tt -{}-helfandEcorr}           & Helfand moment for thermal conductvity\\
4590 >  -p& {\tt -{}-momentum}               & Helfand momentum for viscosity\\
4591 >    & {\tt -{}-stresscorr}             & Stress tensor correlation function
4592   \end{longtable}
4593  
4594   \chapter{\label{section:PreparingInput} Preparing Input Configurations}
# Line 3450 | Line 4655 | expect the the input specifier on the command line.
4655   to {\tt atom2md}, but they use a specific input format and do not
4656   expect the the input specifier on the command line.
4657  
4658 +
4659   \section{\label{section:SimpleBuilder}SimpleBuilder}
4660  
4661   {\tt SimpleBuilder} creates simple lattice structures.  It requires an
# Line 3476 | Line 4682 | The options available for SimpleBuilder are as follows
4682      &  {\tt -{}-nz=INT}            &  number of unit cells in z
4683   \end{longtable}
4684  
4685 + \section{\label{section:icosahedralBuilder}icosahedralBuilder}
4686 +
4687 + {\tt icosahedralBuilder} creates single-component geometric solids
4688 + that can be useful in simulating nanostructures.  Like the other
4689 + builders, it requires an initial, but skeletal {\sc OpenMD} file to
4690 + specify the component that is to be placed on the lattice.  The total
4691 + number of placed molecules will be shown at the top of the
4692 + configuration file that is generated, and that number may not match
4693 + the original meta-data file, so a new meta-data file is also generated
4694 + which matches the lattice structure.
4695 +
4696 + The options available for icosahedralBuilder are as follows:
4697 + \begin{longtable}[c]{|EFG|}
4698 + \caption{icosahedralBuilder Command-line Options}
4699 + \\ \hline
4700 + {\bf option} & {\bf verbose option} & {\bf behavior} \\ \hline
4701 + \endhead
4702 + \hline
4703 + \endfoot
4704 +  -h& {\tt -{}-help}               & Print help and exit\\
4705 +  -V& {\tt -{}-version}            & Print version and exit\\
4706 +  -o& {\tt -{}-output=STRING}      & Output file name\\
4707 +  -n& {\tt -{}-shells=INT}         & Nanoparticle shells\\
4708 +  -d& {\tt -{}-latticeConstant=DOUBLE} & Lattice spacing in Angstroms for cubic lattice.\\
4709 +  -c& {\tt -{}-columnAtoms=INT}        & Number of atoms along central
4710 +  column (Decahedron only)\\
4711 +  -t& {\tt -{}-twinAtoms=INT}          & Number of atoms along twin
4712 +  boundary (Decahedron only) \\
4713 +  -p& {\tt -{}-truncatedPlanes=INT}   & Number of truncated planes (Curling-stone Decahedron only)\\
4714 + \hline
4715 + \multicolumn{3}{|l|}{One option from the following group of options is required:} \\
4716 + \hline
4717 +   & {\tt -{}-ico}    & Create an Icosahedral cluster \\
4718 +   & {\tt -{}-deca}   & Create a regualar Decahedral cluster\\
4719 +   & {\tt -{}-ino}    & Create an Ino Decahedral cluster\\
4720 +   & {\tt -{}-marks}  & Create a Marks Decahedral cluster\\
4721 +   & {\tt -{}-stone}  & Create a Curling-stone Decahedral cluster
4722 + \end{longtable}
4723 +
4724 +
4725   \section{\label{section:Hydro}Hydro}
4726   {\tt Hydro} generates resistance tensor ({\tt .diff}) files which are
4727   required when using the Langevin integrator using complex rigid
# Line 3509 | Line 4755 | hydrodynamic calculations will not be performed (defau
4755   \end{longtable}
4756  
4757  
4758 +
4759 +
4760 +
4761   \chapter{\label{section:parallelization} Parallel Simulation Implementation}
4762  
4763   Although processor power is continually improving, it is still
# Line 3592 | Line 4841 | DMR-0079647.
4841   DMR-0079647.
4842  
4843  
4844 < \bibliographystyle{jcc}
4844 > \bibliographystyle{aip}
4845   \bibliography{openmdDoc}
4846  
4847   \end{document}

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines