ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/openmdDocs/openmdDoc.tex
(Generate patch)

Comparing trunk/openmdDocs/openmdDoc.tex (file contents):
Revision 3709 by gezelter, Wed Nov 24 20:44:51 2010 UTC vs.
Revision 4105 by gezelter, Mon Apr 28 21:41:01 2014 UTC

# Line 9 | Line 9
9   \usepackage{longtable}
10   \pagestyle{plain}
11   \pagenumbering{arabic}
12 + \usepackage{floatrow}
13 + \usepackage[margin=0.5cm,font=small,format=hang]{caption}
14 +
15   \oddsidemargin 0.0cm
16   \evensidemargin 0.0cm
17   \topmargin -21pt
# Line 17 | Line 20
20   \textwidth 6.5in
21   \brokenpenalty=10000
22   \renewcommand{\baselinestretch}{1.2}
23 + \usepackage[square, comma, sort&compress]{natbib}
24 + \bibpunct{[}{]}{,}{n}{}{;}
25  
26 + \DeclareFloatFont{tiny}{\scriptsize}% "scriptsize" is defined by floatrow, "tiny" not
27 + \floatsetup[table]{font=tiny}
28 +
29 +
30   %\renewcommand\citemid{\ } % no comma in optional reference note
31 < \lstset{language=C,frame=TB,basicstyle=\tiny,basicstyle=\ttfamily, %
31 > \lstset{language=C,frame=TB,basicstyle=\footnotesize\ttfamily, %
32          xleftmargin=0.25in, xrightmargin=0.25in,captionpos=b, %
33          abovecaptionskip=0.5cm, belowcaptionskip=0.5cm, escapeinside={~}{~}}
34 < \renewcommand{\lstlistingname}{Scheme}
34 > \renewcommand{\lstlistingname}{Example}
35  
36 + \lstnewenvironment{code}[1][]%
37 +  {\noindent\minipage{\linewidth}\vspace{0.5\baselineskip}
38 +   \lstset{language=C,basicstyle=\footnotesize\ttfamily,%
39 +     captionpos=b,aboveskip=0.5cm,belowskip=0.5cm,abovecaptionskip=0.5cm,%
40 +     belowcaptionskip=0.5cm,%
41 +     escapeinside={~}{~},frame=single,#1}}
42 +  {\endminipage}
43 +
44 +
45 +
46   \begin{document}
47  
48   \newcolumntype{A}{p{1.5in}}
# Line 38 | Line 57
57   \newcolumntype{H}{p{0.75in}}
58   \newcolumntype{I}{p{5in}}
59  
60 + \newcolumntype{J}{p{1.5in}}
61 + \newcolumntype{K}{p{1.2in}}
62 + \newcolumntype{L}{p{1.5in}}
63 + \newcolumntype{M}{p{1.55in}}
64  
42 \title{{\sc OpenMD}: Molecular Dynamics in the Open}
65  
66 < \author{Kelsey M. Stocker, Shenyu Kuang, Charles F. Vardeman II, \\
67 <  Teng Lin, Christopher J. Fennell,  Xiuquan Sun, \\
66 > \title{{\sc OpenMD-2.2}: Molecular Dynamics in the Open}
67 >
68 > \author{Joseph Michalka, James Marr, Kelsey Stocker, Madan Lamichhane,
69 >  Patrick Louden, \\
70 >  Teng Lin, Charles F. Vardeman II, Christopher J. Fennell, Shenyu
71 >  Kuang, Xiuquan Sun, \\
72    Chunlei Li, Kyle Daily, Yang Zheng, Matthew A. Meineke, and \\
73    J. Daniel Gezelter \\
74    Department of Chemistry and Biochemistry\\
# Line 133 | Line 159 | leave an interaction region.
159   leave an interaction region.
160  
161   {\tt Atoms} may also be grouped in more traditional ways into {\tt
162 < bonds}, {\tt bends}, and {\tt torsions}.  These groupings allow the
163 < correct choice of interaction parameters for short-range interactions
164 < to be chosen from the definitions in the {\tt forceField}.
162 >  bonds}, {\tt bends}, {\tt torsions}, and {\tt inversions}.  These
163 > groupings allow the correct choice of interaction parameters for
164 > short-range interactions to be chosen from the definitions in the {\tt
165 >  forceField}.
166  
167   All of these groups of {\tt atoms} are brought together in the {\tt
168   molecule}, which is the fundamental structure for setting up and {\sc
# Line 170 | Line 197 | formats are described in the following sections.
197   $<$Snapshot$>$} block.  Both the {\tt $<$MetaData$>$} and {\tt $<$Snapshot$>$}
198   formats are described in the following sections.
199  
200 < \begin{lstlisting}[float,caption={[The structure of an {\sc OpenMD} file]
200 > \begin{code}[caption={[The structure of an {\sc OpenMD} file]
201   The basic structure of an {\sc OpenMD} file contains HTML-like tags to
202   define simulation meta-data and subsequent instantaneous configuration
203 < information. A well-formed {\sc OpenMD} file must contain one $<$MetaData$>$
204 < block and {\it at least one} $<$Snapshot$>$ block.  Each
205 < $<$Snapshot$>$ is further divided into $<$FrameData$>$ and
206 < $<$StuntDoubles$>$ sections.},
180 < label=sch:mdFormat]
203 > information. A well-formed {\sc OpenMD} file must contain one {\tt <MetaData>}
204 > block and {\it at least one} {\tt <Snapshot>} block.  Each
205 > {\tt <Snapshot>} is further divided into {\tt <FrameData>} and
206 > {\tt <StuntDoubles>} sections.},label={sch:mdFormat}]
207   <OpenMD>
208    <MetaData>
209        // see section ~\ref{sec:miscConcepts}~ for details on the formatting
# Line 203 | Line 229 | label=sch:mdFormat]
229    <Snapshot>         // Further information on <Snapshot> blocks
230    </Snapshot>        // can be found in section ~\ref{section:coordFiles}~.
231   </OpenMD>
232 < \end{lstlisting}
232 > \end{code}
233  
234  
235   \section{OpenMD Files and $<$MetaData$>$ blocks}
# Line 219 | Line 245 | Scheme~\ref{sch:mdExample}.
245   shown in Scheme~\ref{sch:mdFormat} and example file is shown in
246   Scheme~\ref{sch:mdExample}.
247  
248 < \begin{lstlisting}[float,caption={[An example of a complete OpenMD
248 > \begin{code}[caption={[An example of a complete OpenMD
249   file] An example showing a complete OpenMD file.},
250   label={sch:mdExample}]
251   <OpenMD>
# Line 258 | Line 284 | statusTime = 50;  // statistics file frequency
284      </StuntDoubles>
285    </Snapshot>
286   </OpenMD>
287 < \end{lstlisting}
287 > \end{code}
288  
289   Within the {\tt $<$MetaData$>$} block it is necessary to provide a
290   complete description of the molecule before it is actually placed in
# Line 272 | Line 298 | become Scheme~\ref{sch:mdExPrime}.
298   Scheme~\ref{sch:mdIncludeExample}, and the new {\sc OpenMD} file would
299   become Scheme~\ref{sch:mdExPrime}.
300  
301 < \begin{lstlisting}[float,caption={An example molecule definition in an
301 > \begin{code}[caption={An example molecule definition in an
302   include file.},label={sch:mdIncludeExample}]
303   molecule{
304    name = "Ar";
# Line 281 | Line 307 | molecule{
307      position( 0.0, 0.0, 0.0 );
308    }
309   }
310 < \end{lstlisting}
310 > \end{code}
311  
312 < \begin{lstlisting}[float,caption={Revised OpenMD input file
312 > \begin{code}[caption={Revised OpenMD input file
313   example.},label={sch:mdExPrime}]
314   <OpenMD>
315    <MetaData>
# Line 316 | Line 342 | statusTime = 50;
342      </StuntDoubles>
343    </Snapshot>
344   </OpenMD>
345 < \end{lstlisting}
345 > \end{code}
346  
347   \section{\label{section:atomsMolecules}Atoms, Molecules, and other
348   ways of grouping atoms}
# Line 387 | Line 413 | rigid body can be seen in Scheme
413   rigid body can be seen in Scheme
414   \ref{sch:rigidBody}.
415  
416 < \begin{lstlisting}[float,caption={[Defining rigid bodies]A sample
416 > \begin{code}[caption={[Defining rigid bodies]A sample
417   definition of a molecule containing a rigid body and a cutoff
418   group},label={sch:rigidBody}]
419   molecule{
# Line 413 | Line 439 | molecule{
439      members(0, 1, 2);
440    }
441   }
442 < \end{lstlisting}
442 > \end{code}
443  
444   \section{\label{sec:miscConcepts}Creating a $<$MetaData$>$ block}
445  
# Line 491 | Line 517 | fs}^{-1}$), and body-fixed moments of inertia ($\mbox{
517   \endhead
518   \hline
519   \endfoot
520 < {\tt forceField} & string & Sets the force field. & Possible force
521 < fields are DUFF, WATER, LJ, EAM, SC, and CLAY. \\
520 > {\tt forceField} & string & Sets the base name for the force field file &
521 > OpenMD appends a {\tt .frc} to the end of this to look for a force
522 > field file.\\
523   {\tt component} & & Defines the molecular components of the system &
524   Every {\tt $<$MetaData$>$} block must have a component statement. \\
525   {\tt minimizer} & string & Chooses a minimizer & Possible minimizers
# Line 562 | Line 589 | column names are: {\sc time, total\_energy, potential\
589   default is the first eight of these columns in order.)  \\
590   & & \multicolumn{2}{p{3.5in}}{Allowed
591   column names are: {\sc time, total\_energy, potential\_energy, kinetic\_energy,
592 < temperature, pressure, volume, conserved\_quantity,
592 > temperature, pressure, volume, conserved\_quantity, hullvolume, gyrvolume,
593   translational\_kinetic, rotational\_kinetic,  long\_range\_potential,
594   short\_range\_potential, vanderwaals\_potential,
595 < electrostatic\_potential, bond\_potential, bend\_potential,
596 < dihedral\_potential, improper\_potential, vraw, vharm,
597 < pressure\_tensor\_x, pressure\_tensor\_y, pressure\_tensor\_z}} \\
595 > electrostatic\_potential, metallic\_potential,
596 > hydrogen\_bonding\_potential, bond\_potential, bend\_potential,
597 > dihedral\_potential, inversion\_potential, raw\_potential, restraint\_potential,
598 > pressure\_tensor, system\_dipole, heatflux, electronic\_temperature}} \\
599   {\tt printPressureTensor} & logical & sets whether {\sc OpenMD} will print
600   out the pressure tensor & can be useful for calculations of the bulk
601   modulus \\
# Line 619 | Line 647 | quaternions to save space in the output files.
647   complete rotation matrix, directional entities are written out using
648   quaternions to save space in the output files.
649  
650 < \begin{lstlisting}[float,caption={[The format of the {\tt $<$Snapshot$>$} block]
650 > \begin{code}[caption={[The format of the {\tt $<$Snapshot$>$} block]
651   An example of the format of the {\tt $<$Snapshot$>$} block.  There is an
652   initial sub-block called {\tt $<$FrameData$>$} which contains the time
653   stamp, the three column vectors of $\mathsf{H}$, and optional extra
# Line 628 | Line 656 | additional information is present on the line.  Atoms
656   configuration of each integrable object.  For each integrable object,
657   the global index is followed by a short string describing what
658   additional information is present on the line.  Atoms with only
659 < position and velocity information use the ``pv'' string which must
659 > position and velocity information use the {\tt pv} string which must
660   then be followed by the position and velocity vectors for that atom.
661 < Directional atoms and Rigid Bodies typically use the ``pvqj'' string
661 > Directional atoms and Rigid Bodies typically use the {\tt pvqj} string
662   which is followed by position, velocity, quaternions, and
663 < lastly, body fixed angular momentum for that integrable object.},
636 < label=sch:dumpFormat]
663 > lastly, body fixed angular momentum for that integrable object.},label={sch:dumpFormat}]
664    <Snapshot>
665      <FrameData>
666          Time: 0
# Line 648 | Line 675 | label=sch:dumpFormat]
675           3      pvqj        x y z vx vy vz  qw qx qy qz jx jy jz
676      </StuntDoubles>
677    </Snapshot>
678 < \end{lstlisting}
678 > \end{code}
679  
680   There are three {\sc OpenMD} files that are written using the combined
681   format.  They are: the initial startup file (\texttt{.md}), the
# Line 699 | Line 726 | An example is given in the {\sc OpenMD} file in Scheme
726   \end{enumerate}
727   An example is given in the {\sc OpenMD} file in Scheme~\ref{sch:initEx1}.
728  
729 < \begin{lstlisting}[float,caption={Example declaration of the
730 < $\text{I}_2$ molecule and the HCl molecule in $<$MetaData$>$ and
731 < $<$Snapshot$>$ blocks.  Note that even though $\text{I}_2$ is
732 < declared before HCl, the $<$Snapshot$>$ block follows the order {\it in
729 > \begin{code}[caption={Example declaration of the
730 > $\text{I}_2$ molecule and the HCl molecule in {\tt <MetaData>} and
731 > {\tt <Snapshot>} blocks.  Note that even though $\text{I}_2$ is
732 > declared before HCl, the {\tt <Snapshot>} block follows the order {\it in
733   which the components were included}.}, label=sch:initEx1]
734   <OpenMD>
735    <MetaData>
# Line 746 | Line 773 | component{
773      </StuntDoubles>
774    </Snapshot>
775   </OpenMD>
776 < \end{lstlisting}
776 > \end{code}
777  
778   \section{The Statistics File}
779  
# Line 762 | Line 789 | statistics file is denoted with the \texttt{.stat} fil
789   allowing the user to gauge the stability of the integrator. The
790   statistics file is denoted with the \texttt{.stat} file extension.
791  
792 < \chapter{\label{section:empiricalEnergy}The Empirical Energy
766 < Functions}
792 > \chapter{\label{chapter:forceFields}Force Fields}
793  
794 < Like many simulation packages, {\sc OpenMD} splits the potential energy
795 < into the short-ranged (bonded) portion and a long-range (non-bonded)
796 < potential,
794 > Like many molecular simulation packages, {\sc OpenMD} splits the
795 > potential energy into the short-ranged (bonded) portion and a
796 > long-range (non-bonded) potential,
797   \begin{equation}
798   V = V_{\mathrm{short-range}} + V_{\mathrm{long-range}}.
799   \end{equation}
800 < The short-ranged portion includes the explicit bonds, bends, and
801 < torsions which have been defined in the meta-data file for the
802 < molecules which are present in the simulation.  The functional forms and
803 < parameters for these interactions are defined by the force field which
804 < is chosen.
779 <
780 < Calculating the long-range (non-bonded) potential involves a sum over
781 < all pairs of atoms (except for those atoms which are involved in a
782 < bond, bend, or torsion with each other).  If done poorly, calculating
783 < the the long-range interactions for $N$ atoms would involve $N(N-1)/2$
784 < evaluations of atomic distances.  To reduce the number of distance
785 < evaluations between pairs of atoms, {\sc OpenMD} uses a switched cutoff
786 < with Verlet neighbor lists.\cite{Allen87} It is well known that
787 < neutral groups which contain charges will exhibit pathological forces
788 < unless the cutoff is applied to the neutral groups evenly instead of
789 < to the individual atoms.\cite{leach01:mm} {\sc OpenMD} allows users to
790 < specify cutoff groups which may contain an arbitrary number of atoms
791 < in the molecule.  Atoms in a cutoff group are treated as a single unit
792 < for the evaluation of the switching function:
793 < \begin{equation}
794 < V_{\mathrm{long-range}} = \sum_{a} \sum_{b>a} s(r_{ab}) \sum_{i \in a} \sum_{j \in b} V_{ij}(r_{ij}),
795 < \end{equation}
796 < where $r_{ab}$ is the distance between the centers of mass of the two
797 < cutoff groups ($a$ and $b$).
800 > The short-ranged portion includes the bonds, bends, torsions, and
801 > inversions which have been defined in the meta-data file for the
802 > molecules.  The functional forms and parameters for these interactions
803 > are defined by the force field which is selected in the MetaData
804 > section.
805  
806 < The sums over $a$ and $b$ are over the cutoff groups that are present
807 < in the simulation.  Atoms which are not explicitly defined as members
808 < of a {\tt cutoffGroup} are treated as a group consisting of only one
809 < atom.  The switching function, $s(r)$ is the standard cubic switching
810 < function,
806 > \section{\label{section:divisionOfLabor}Separation into Internal and
807 >  Cross interactions}
808 >
809 > The classical potential energy function for a system composed of $N$
810 > molecules is traditionally written
811   \begin{equation}
812 < S(r) =
813 <        \begin{cases}
814 <        1 & \text{if $r \le r_{\text{sw}}$},\\
808 <        \frac{(r_{\text{cut}} + 2r - 3r_{\text{sw}})(r_{\text{cut}} - r)^2}
809 <        {(r_{\text{cut}} - r_{\text{sw}})^3}
810 <        & \text{if $r_{\text{sw}} < r \le r_{\text{cut}}$}, \\
811 <        0 & \text{if $r > r_{\text{cut}}$.}
812 <        \end{cases}
813 < \label{eq:dipoleSwitching}
812 > V = \sum^{N}_{I=1} V^{I}_{\text{Internal}}
813 >        + \sum^{N-1}_{I=1} \sum_{J>I} V^{IJ}_{\text{Cross}},
814 > \label{eq:totalPotential}
815   \end{equation}
816 < Here, $r_{\text{sw}}$ is the {\tt switchingRadius}, or the distance
817 < beyond which interactions are reduced, and $r_{\text{cut}}$ is the
818 < {\tt cutoffRadius}, or the distance at which interactions are
819 < truncated.
816 > where $V^{I}_{\text{Internal}}$ contains all of the terms internal to
817 > molecule $I$ (e.g. bonding, bending, torsional, and inversion terms)
818 > and $V^{IJ}_{\text{Cross}}$ contains all intermolecular interactions
819 > between molecules $I$ and $J$.  For large molecules, the internal
820 > potential may also include some non-bonded terms like electrostatic or
821 > van der Waals interactions.
822  
823 < Users of {\sc OpenMD} do not need to specify the {\tt cutoffRadius} or
824 < {\tt switchingRadius}.  In simulations containing only Lennard-Jones
825 < atoms, the cutoff radius has a default value of $2.5\sigma_{ii}$,
826 < where $\sigma_{ii}$ is the largest Lennard-Jones length parameter
827 < present in the simulation.  In simulations containing charged or
825 < dipolar atoms, the default cutoff radius is $15 \mbox{\AA}$.  
823 > The types of atoms being simulated, as well as the specific functional
824 > forms and parameters of the intra-molecular functions and the
825 > long-range potentials are defined by the force field. In the following
826 > sections we discuss the stucture of an OpenMD force field file and the
827 > specification of blocks that may be present within these files.
828  
829 < The {\tt switchingRadius} is set to a default value of 95\% of the
828 < {\tt cutoffRadius}.  In the special case of a simulation containing
829 < {\it only} Lennard-Jones atoms, the default switching radius takes the
830 < same value as the cutoff radius, and {\sc OpenMD} will use a shifted
831 < potential to remove discontinuities in the potential at the cutoff.
832 < Both radii may be specified in the meta-data file.
829 > \section{\label{section:frcFile}Force Field Files}
830  
831 < Force fields can be added to {\sc OpenMD}, although it comes with a few
832 < simple examples (Lennard-Jones, {\sc duff}, {\sc water}, and {\sc
833 < eam}) which are explained in the following sections.
831 > Force field files have a number of ``Blocks'' to delineate different
832 > types of information.  The blocks contain AtomType data, which provide
833 > properties belonging to a single AtomType, as well as interaction
834 > information which provides information about bonded or non-bonded
835 > interactions that cannot be deduced from AtomType information alone.
836 > A simple example of a forceField file is shown in scheme
837 > \ref{sch:frcExample}.
838  
839 < \section{\label{sec:LJPot}The Lennard Jones Force Field}
839 > \begin{code}[caption={[An example of a complete OpenMD
840 > force field file for straight-chain united-atom alkanes.] An example
841 > showing a complete OpenMD force field for straight-chain united-atom
842 > alkanes.}, label={sch:frcExample}]
843 > begin Options
844 >  Name = "alkane"
845 > end Options
846  
847 < The most basic force field implemented in {\sc OpenMD} is the
848 < Lennard-Jones force field, which mimics the van der Waals interaction
849 < at long distances and uses an empirical repulsion at short
850 < distances. The Lennard-Jones potential is given by:
847 > begin BaseAtomTypes  
848 > //name          mass  
849 > C               12.0107
850 > end BaseAtomTypes
851 >
852 > begin AtomTypes
853 > //name  base    mass
854 > CH4     C       16.05          
855 > CH3     C       15.04          
856 > CH2     C       14.03          
857 > end AtomTypes
858 >
859 > begin LennardJonesAtomTypes
860 > //name          epsilon         sigma
861 > CH4             0.2941          3.73
862 > CH3             0.1947          3.75
863 > CH2             0.09140         3.95
864 > end LennardJonesAtomTypes
865 >
866 > begin BondTypes
867 > //AT1       AT2 Type                    r0              k
868 > CH3         CH3 Harmonic                1.526           260
869 > CH3         CH2 Harmonic                1.526           260
870 > CH2         CH2 Harmonic                1.526           260
871 > end BondTypes
872 >
873 > begin BendTypes
874 > //AT1   AT2     AT3     Type            theta0   k
875 > CH3     CH2     CH3     Harmonic        114.0    124.19
876 > CH3     CH2     CH2     Harmonic        114.0    124.19
877 > CH2     CH2     CH2     Harmonic        114.0    124.19
878 > end BendTypes
879 >
880 > begin TorsionTypes
881 > //AT1 AT2  AT3  AT4  Type    
882 > CH3   CH2  CH2  CH3  Trappe  0.0  0.70544  -0.13549  1.5723
883 > CH3   CH2  CH2  CH2  Trappe  0.0  0.70544  -0.13549  1.5723  
884 > CH2   CH2  CH2  CH2  Trappe  0.0  0.70544  -0.13549  1.5723  
885 > end TorsionTypes
886 > \end{code}
887 >
888 > \section{\label{section:ffOptions}The Options block}
889 >
890 > The Options block defines properties governing how the force field
891 > interactions are carried out.  This block is delineated with the text
892 > tags {\tt begin Options} and {\tt end Options}.  Most options don't
893 > need to be set as they come with fairly sensible default values, but
894 > the various keywords and their possible values are given in Scheme
895 > \ref{sch:optionsBlock}.
896 >
897 > \begin{code}[caption={[A force field Options block showing default values
898 > for many force field options.] A force field Options block showing default values
899 > for many force field options.  Most of these options do not need to be
900 > specified if the default values are working.},
901 > label={sch:optionsBlock}]
902 > begin Options
903 > Name                      = "alkane"       // any string
904 > vdWtype                   = "Lennard-Jones"
905 > DistanceMixingRule        = "arithmetic"   // can also be "geometric" or "cubic"
906 > DistanceType              = "sigma"        // can also be "Rmin"
907 > EnergyMixingRule          = "geometric"    // can also be "arithmetic" or "hhg"
908 > EnergyUnitScaling         = 1.0
909 > MetallicEnergyUnitScaling = 1.0
910 > DistanceUnitScaling       = 1.0
911 > AngleUnitScaling          = 1.0
912 > TorsionAngleConvention    = "180_is_trans" // can also be "0_is_trans"
913 > vdW-12-scale              = 0.0
914 > vdW-13-scale              = 0.0
915 > vdW-14-scale              = 0.0
916 > electrostatic-12-scale    = 0.0
917 > electrostatic-13-scale    = 0.0
918 > electrostatic-14-scale    = 0.0
919 > GayBerneMu                = 2.0
920 > GayBerneNu                = 1.0
921 > EAMMixingMethod           = "Johnson"      // can also be "Daw"
922 > end Options
923 > \end{code}
924 >
925 > \section{\label{section:ffBase}The BaseAtomTypes block}
926 >
927 > An AtomType the primary data structure that OpenMD uses to store
928 > static data about an atom.  Things that belong to AtomType are
929 > universal properties (i.e. does this atom have a fixed charge?  What
930 > is its mass?)  Dynamic properties of an atom are not intended to be
931 > properties of an atom type.  A BaseAtomType can be used to build
932 > extended sets of related atom types that all fall back to one
933 > particular type.  For example, one might want a series of atomTypes
934 > that inherit from more basic types:
935 > \begin{displaymath}
936 > \mathtt{ALA-CA} \rightarrow \mathtt{CT} \rightarrow \mathtt{CSP3} \rightarrow \mathtt{C}
937 > \end{displaymath}
938 > where for each step to the right, the atomType falls back to more
939 > primitive data.  That is, the mass could be a property of the {\tt C}
940 > type, while Lennard-Jones parameters could be properties of the {\tt
941 >  CSP3} type.  {\tt CT} could have charge information and its own set
942 > of Lennard-Jones parameter that override the CSP3 parameters.  And the
943 > {\tt ALA-CA} type might have specific torsion or charge information
944 > that override the lower level types.  A BaseAtomType contains only
945 > information a primitive name and the mass of this atom type.
946 > BaseAtomTypes can also be useful in creating files that can be easily
947 > viewed in visualization programs.  The {\tt Dump2XYZ} utility has the
948 > ability to print out the names of the base atom types for displaying
949 > simulations in Jmol or VMD.
950 >
951 > \begin{code}[caption={[A simple example of a BaseAtomTypes
952 > block.] A simple example of a BaseAtomTypes block.},
953 > label={sch:baseAtomTypesBlock}]
954 > begin BaseAtomTypes
955 > //Name  mass (amu)
956 > H       1.0079
957 > O       15.9994
958 > Si      28.0855
959 > Al      26.981538
960 > Mg      24.3050
961 > Ca      40.078
962 > Fe      55.845
963 > Li      6.941
964 > Na      22.98977
965 > K       39.0983
966 > Cs      132.90545
967 > Ca      40.078
968 > Ba      137.327
969 > Cl      35.453
970 > end BaseAtomTypes
971 > \end{code}
972 >
973 > \section{\label{section:ffAtom}The AtomTypes block}
974 >
975 > AtomTypes inherit most properties from BaseAtomTypes, but can override
976 > their lower-level properties as well.  Scheme \ref{sch:atomTypesBlock}
977 > shows an example where multiple types of oxygen atoms can inherit mass
978 > from the oxygen base type.
979 >
980 > \begin{code}[caption={[An example of a AtomTypes block.] A
981 > simple example of an AtomTypes block which
982 > shows how multiple types can inherit from the same base type.},
983 > label={sch:atomTypesBlock}]
984 > begin AtomTypes    
985 > //Name  baseatomtype
986 > h*      H
987 > ho      H
988 > o*      O
989 > oh      O
990 > ob      O
991 > obos    O
992 > obts    O
993 > obss    O
994 > ohs     O
995 > st      Si
996 > ao      Al
997 > at      Al
998 > mgo     Mg
999 > mgh     Mg
1000 > cao     Ca
1001 > cah     Ca
1002 > feo     Fe
1003 > lio     Li
1004 > end AtomTypes
1005 > \end{code}
1006 >
1007 > \section{\label{section:ffDirectionalAtom}The DirectionalAtomTypes
1008 >  block}
1009 > DirectionalAtoms have orientational degrees of freedom as well as
1010 > translation, so moving these atoms requires information about the
1011 > moments of inertias in the same way that translational motion requires
1012 > mass.  For DirectionalAtoms, OpenMD treats the mass distribution with
1013 > higher priority than electrostatic distributions; the moment of
1014 > inertia tensor, $\overleftrightarrow{\mathsf I}$, should be
1015 > diagonalized to obtain body-fixed axes, and the three diagonal moments
1016 > should correspond to rotational motion \textit{around} each of these
1017 > body-fixed axes.  Charge distributions may then result in dipole
1018 > vectors that are oriented along a linear combination of the body-axes,
1019 > and in quadrupole tensors that are not necessarily diagonal in the
1020 > body frame.
1021 >
1022 > \begin{code}[caption={[An example of a DirectionalAtomTypes block.] A
1023 > simple example of a DirectionalAtomTypes block.},
1024 > label={sch:datomTypesBlock}]
1025 > begin DirectionalAtomTypes
1026 > //Name          I_xx    I_yy    I_zz    (All moments in (amu*Ang^2)
1027 > SSD             1.7696  0.6145  1.1550  
1028 > GBC6H6          88.781  88.781  177.561
1029 > GBCH3OH         4.056   20.258  20.999
1030 > GBH2O           1.777   0.581   1.196
1031 > CO2             43.06   43.06   0.0    // single-site model for CO2
1032 > end DirectionalAtomTypes                    
1033 >
1034 > \end{code}
1035 >
1036 > For a DirectionalAtom that represents a linear object, it is
1037 > appropriate for one of the moments of inertia to be zero.  In this
1038 > case, OpenMD identifies that DirectionalAtom as having only 5 degrees
1039 > of freedom (three translations and two rotations), and will alter
1040 > calculation of temperatures to reflect this.
1041 >
1042 > \section{\label{section::ffAtomProperties}AtomType properties}
1043 > \subsection{\label{section:ffLJ}The LennardJonesAtomTypes block}
1044 > One of the most basic interatomic interactions implemented in {\sc
1045 >  OpenMD} is the Lennard-Jones potential, which mimics the van der
1046 > Waals interaction at long distances and uses an empirical repulsion at
1047 > short distances. The Lennard-Jones potential is given by:
1048   \begin{equation}
1049   V_{\text{LJ}}(r_{ij}) =
1050          4\epsilon_{ij} \biggl[
# Line 851 | Line 1055 | $\sigma_{ij}$ scales the length of the interaction, an
1055   \end{equation}
1056   where $r_{ij}$ is the distance between particles $i$ and $j$,
1057   $\sigma_{ij}$ scales the length of the interaction, and
1058 < $\epsilon_{ij}$ scales the well depth of the potential. Scheme
855 < \ref{sch:LJFF} gives an example meta-data file that
856 < sets up a system of 108 Ar particles to be simulated using the
857 < Lennard-Jones force field.
1058 > $\epsilon_{ij}$ scales the well depth of the potential.
1059  
859 \begin{lstlisting}[float,caption={[Invocation of the Lennard-Jones
860 force field] A sample startup file for a small Lennard-Jones
861 simulation.},label={sch:LJFF}]
862 <OpenMD>
863  <MetaData>
864 #include "argon.md"
865
866 component{
867  type = "Ar";
868  nMol = 108;
869 }
870
871 forceField = "LJ";
872  </MetaData>
873  <Snapshot>     // not shown in this scheme
874  </Snapshot>
875 </OpenMD>
876 \end{lstlisting}
877
1060   Interactions between dissimilar particles requires the generation of
1061   cross term parameters for $\sigma$ and $\epsilon$. These parameters
1062 < are determined using the Lorentz-Berthelot mixing
1062 > are usually determined using the Lorentz-Berthelot mixing
1063   rules:\cite{Allen87}
1064   \begin{equation}
1065   \sigma_{ij} = \frac{1}{2}[\sigma_{ii} + \sigma_{jj}],
# Line 889 | Line 1071 | and
1071   \label{eq:epsilonMix}
1072   \end{equation}
1073  
1074 < \section{\label{section:DUFF}Dipolar Unified-Atom Force Field}
1074 > The values of $\sigma_{ii}$ and $\epsilon_{ii}$ are properties of atom
1075 > type $i$, and must be specified in a section of the force field file
1076 > called the {\tt LennardJonesAtomTypes} block (see listing
1077 > \ref{sch:LJatomTypesBlock}).  Separate Lennard-Jones interactions
1078 > which are not determined by the mixing rules can also be specified in
1079 > the {\tt NonbondedInteractionTypes} block (see section
1080 > \ref{section:ffNBinteraction}).
1081  
1082 < The dipolar unified-atom force field ({\sc duff}) was developed to
1083 < simulate lipid bilayers. These types of simulations require a model
1084 < capable of forming bilayers, while still being sufficiently
1085 < computationally efficient to allow large systems ($\sim$100's of
1086 < phospholipids, $\sim$1000's of waters) to be simulated for long times
1087 < ($\sim$10's of nanoseconds). With this goal in mind, {\sc duff} has no
1088 < point charges. Charge-neutral distributions are replaced with dipoles,
1089 < while most atoms and groups of atoms are reduced to Lennard-Jones
1090 < interaction sites. This simplification reduces the length scale of
1091 < long range interactions from $\frac{1}{r}$ to $\frac{1}{r^3}$,
1092 < removing the need for the computationally expensive Ewald
1093 < sum. Instead, Verlet neighbor-lists and cutoff radii are used for the
1094 < dipolar interactions, and, if desired, a reaction field may be added
1095 < to mimic longer range interactions.
1082 > \begin{code}[caption={[An example of a LennardJonesAtomTypes block.] A
1083 > simple example of a LennardJonesAtomTypee block.   Units for
1084 > $\epsilon$ are kcal / mol and for $\sigma$ are \AA\ .},
1085 > label={sch:LJatomTypesBlock}]
1086 > begin LennardJonesAtomTypes
1087 > //Name          epsilon             sigma      
1088 > O_TIP4P         0.1550          3.15365
1089 > O_TIP4P-Ew      0.16275         3.16435
1090 > O_TIP5P         0.16            3.12  
1091 > O_TIP5P-E       0.178           3.097  
1092 > O_SPCE          0.15532         3.16549
1093 > O_SPC           0.15532         3.16549
1094 > CH4             0.279           3.73
1095 > CH3             0.185           3.75
1096 > CH2             0.0866          3.95
1097 > CH              0.0189          4.68
1098 > end LennardJonesAtomTypes
1099 > \end{code}
1100  
1101 < As an example, lipid head-groups in {\sc duff} are represented as
910 < point dipole interaction sites.  Placing a dipole at the head group's
911 < center of mass mimics the charge separation found in common
912 < phospholipid head groups such as phosphatidylcholine.\cite{Cevc87}
913 < Additionally, a large Lennard-Jones site is located at the
914 < pseudoatom's center of mass. The model is illustrated by the red atom
915 < in Fig.~\ref{fig:lipidModel}. The water model we use to
916 < complement the dipoles of the lipids is a
917 < reparameterization\cite{fennell04} of the soft sticky dipole (SSD)
918 < model of Ichiye
919 < \emph{et al.}\cite{liu96:new_model}
1101 > \subsection{\label{section:ffCharge}The ChargeAtomTypes block}
1102  
1103 < \begin{figure}
1104 < \centering
1105 < \includegraphics[width=\linewidth]{lipidModel.pdf}
1106 < \caption[A representation of a lipid model in {\sc duff}]{A
1107 < representation of the lipid model. $\phi$ is the torsion angle,
1108 < $\theta$ is the bend angle, and $\mu$ is the dipole moment of the head
1109 < group.}
1110 < \label{fig:lipidModel}
1111 < \end{figure}
1112 <
1113 < A set of scalable parameters has been used to model the alkyl groups
1114 < with Lennard-Jones sites. For this, parameters from the TraPPE force
1115 < field of Siepmann \emph{et al.}\cite{Siepmann1998} have been
934 < utilized. TraPPE is a unified-atom representation of n-alkanes which
935 < is parametrized against phase equilibria using Gibbs ensemble Monte
936 < Carlo simulation techniques.\cite{Siepmann1998} One of the advantages
937 < of TraPPE is that it generalizes the types of atoms in an alkyl chain
938 < to keep the number of pseudoatoms to a minimum; thus, the parameters
939 < for a unified atom such as $\text{CH}_2$ do not change depending on
940 < what species are bonded to it.
941 <
942 < As is required by TraPPE, {\sc duff} also constrains all bonds to be
943 < of fixed length. Typically, bond vibrations are the fastest motions in
944 < a molecular dynamic simulation.  With these vibrations present, small
945 < time steps between force evaluations must be used to ensure adequate
946 < energy conservation in the bond degrees of freedom. By constraining
947 < the bond lengths, larger time steps may be used when integrating the
948 < equations of motion. A simulation using {\sc duff} is illustrated in
949 < Scheme \ref{sch:DUFF}.
950 <
951 < \begin{lstlisting}[float,caption={[Invocation of {\sc duff}]A portion
952 < of a startup file showing a simulation utilizing {\sc
953 < duff}},label={sch:DUFF}]  
954 < <OpenMD>
955 <  <MetaData>
956 < #include "water.md"
957 < #include "lipid.md"
958 <
959 < component{
960 <  type = "simpleLipid_16";
961 <  nMol = 60;
962 < }
963 <
964 < component{
965 <  type = "SSD_water";
966 <  nMol = 1936;
967 < }
968 <
969 < forceField = "DUFF";
970 <  </MetaData>
971 <  <Snapshot>     // not shown in this scheme
972 <  </Snapshot>
973 < </OpenMD>
974 < \end{lstlisting}
975 <
976 < \subsection{\label{section:energyFunctions}{\sc duff} Energy Functions}
977 <
978 < The total potential energy function in {\sc duff} is
1103 > In molecular simulations, proper accumulation of the electrostatic
1104 > interactions is essential and is one of the most
1105 > computationally-demanding tasks.  Most common molecular mechanics
1106 > force fields represent atomic sites with full or partial charges
1107 > protected by Lennard-Jones (short range) interactions.  Partial charge
1108 > values, $q_i$ are empirical representations of the distribution of
1109 > electronic charge in a molecule.  This means that nearly every pair
1110 > interaction involves a calculation of charge-charge forces.  Coupled
1111 > with relatively long-ranged $r^{-1}$ decay, the monopole interactions
1112 > quickly become the most expensive part of molecular simulations.  The
1113 > interactions between point charges can be handled via a number of
1114 > different algorithms, but Coulomb's law is the fundamental physical
1115 > principle governing these interactions,
1116   \begin{equation}
1117 < V = \sum^{N}_{I=1} V^{I}_{\text{Internal}}
1118 <        + \sum^{N-1}_{I=1} \sum_{J>I} V^{IJ}_{\text{Cross}},
982 < \label{eq:totalPotential}
1117 >  V_{\text{charge}}(r_{ij}) = \sum_{ij}\frac{q_iq_je^2}{4 \pi \epsilon_0
1118 >    r_{ij}},
1119   \end{equation}
1120 < where $V^{I}_{\text{Internal}}$ is the internal potential of molecule $I$:
1121 < \begin{equation}
1122 < V^{I}_{\text{Internal}} =
987 <        \sum_{\theta_{ijk} \in I} V_{\text{bend}}(\theta_{ijk})
988 <        + \sum_{\phi_{ijkl} \in I} V_{\text{torsion}}(\phi_{ijkl})
989 <        + \sum_{i \in I} \sum_{(j>i+4) \in I}
990 <        \biggl[ V_{\text{LJ}}(r_{ij}) +  V_{\text{dipole}}
991 <        (\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},\boldsymbol{\Omega}_{j})
992 <        \biggr].
993 < \label{eq:internalPotential}
994 < \end{equation}
995 < Here $V_{\text{bend}}$ is the bend potential for all 1, 3 bonded pairs
996 < within the molecule $I$, and $V_{\text{torsion}}$ is the torsion
997 < potential for all 1, 4 bonded pairs.  The pairwise portions of the
998 < non-bonded interactions are excluded for atom pairs that are involved
999 < in the smae bond, bend, or torsion. All other atom pairs within a
1000 < molecule are subject to the LJ pair potential.
1120 > where $q$ represents the charge on particle $i$ or $j$, and $e$ is the
1121 > charge of an electron in Coulombs.  $\epsilon_0$ is the permittivity
1122 > of free space.
1123  
1124 < The bend potential of a molecule is represented by the following function:
1125 < \begin{equation}
1126 < V_{\text{bend}}(\theta_{ijk}) = k_{\theta}( \theta_{ijk} - \theta_0
1127 < )^2, \label{eq:bendPot}
1128 < \end{equation}
1129 < where $\theta_{ijk}$ is the angle defined by atoms $i$, $j$, and $k$
1130 < (see Fig.~\ref{fig:lipidModel}), $\theta_0$ is the equilibrium
1131 < bond angle, and $k_{\theta}$ is the force constant which determines the
1132 < strength of the harmonic bend. The parameters for $k_{\theta}$ and
1133 < $\theta_0$ are borrowed from those in TraPPE.\cite{Siepmann1998}
1124 > \begin{code}[caption={[An example of a ChargeAtomTypes block.] A
1125 > simple example of a ChargeAtomTypes block.   Units for
1126 > charge are in multiples of electron charge.},
1127 > label={sch:ChargeAtomTypesBlock}]
1128 > begin ChargeAtomTypes
1129 > // Name         charge
1130 > O_TIP3P        -0.834
1131 > O_SPCE         -0.8476
1132 > H_TIP3P         0.417
1133 > H_TIP4P         0.520
1134 > H_SPCE          0.4238
1135 > EP_TIP4P       -1.040
1136 > Na+             1.0
1137 > Cl-            -1.0
1138 > end ChargeAtomTypes
1139 > \end{code}
1140  
1141 < The torsion potential and parameters are also borrowed from TraPPE. It is
1142 < of the form:
1141 > \subsection{\label{section:ffMultipole}The MultipoleAtomTypes
1142 >  block}
1143 > For complex charge distributions that are centered on single sites, it
1144 > is convenient to write the total electrostatic potential in terms of
1145 > multipole moments,
1146   \begin{equation}
1147 < V_{\text{torsion}}(\phi) = c_1[1 + \cos \phi]
1017 <        + c_2[1 + \cos(2\phi)]
1018 <        + c_3[1 + \cos(3\phi)],
1019 < \label{eq:origTorsionPot}
1147 > U_{\bf{ab}}(r)=\hat{M}_{\bf a} \hat{M}_{\bf b} \frac{1}{r}  \label{kernel}.
1148   \end{equation}
1149 < where:
1149 > where the multipole operator on site $\bf a$,
1150   \begin{equation}
1151 < \cos\phi = (\hat{\mathbf{r}}_{ij} \times \hat{\mathbf{r}}_{jk}) \cdot
1152 <        (\hat{\mathbf{r}}_{jk} \times \hat{\mathbf{r}}_{kl}).
1153 < \label{eq:torsPhi}
1151 > \hat{M}_{\bf a} = C_{\bf a} - D_{{\bf a}\alpha} \frac{\partial}{\partial r_{\alpha}}
1152 > +  Q_{{\bf a}\alpha\beta}
1153 > \frac{\partial^2}{\partial r_{\alpha} \partial r_{\beta}} + \dots
1154   \end{equation}
1155 < Here, $\hat{\mathbf{r}}_{\alpha\beta}$ are the set of unit bond
1156 < vectors between atoms $i$, $j$, $k$, and $l$. For computational
1157 < efficiency, the torsion potential has been recast after the method of
1158 < {\sc charmm},\cite{Brooks83} in which the angle series is converted to
1159 < a power series of the form:
1160 < \begin{equation}
1161 < V_{\text{torsion}}(\phi) =  
1162 <        k_3 \cos^3 \phi + k_2 \cos^2 \phi + k_1 \cos \phi + k_0,
1163 < \label{eq:torsionPot}
1164 < \end{equation}
1165 < where:
1166 < \begin{align*}
1167 < k_0 &= c_1 + c_3, \\
1168 < k_1 &= c_1 - 3c_3, \\
1041 < k_2 &= 2 c_2, \\
1042 < k_3 &= 4c_3.
1043 < \end{align*}
1044 < By recasting the potential as a power series, repeated trigonometric
1045 < evaluations are avoided during the calculation of the potential
1046 < energy.
1155 > Here, the point charge, dipole, and quadrupole for site $\bf a$ are
1156 > given by $C_{\bf a}$, $D_{{\bf a}\alpha}$, and $Q_{{\bf
1157 >    a}\alpha\beta}$, respectively.  These are the {\it primitive}
1158 > multipoles.  If the site is representing a distribution of charges,
1159 > these can be expressed as,
1160 > \begin{align}
1161 > C_{\bf a} =&\sum_{k \, \text{in \bf a}} q_k , \label{eq:charge} \\
1162 > D_{{\bf a}\alpha} =&\sum_{k \, \text{in \bf a}} q_k r_{k\alpha}, \label{eq:dipole}\\
1163 > Q_{{\bf a}\alpha\beta} =& \frac{1}{2} \sum_{k \, \text{in \bf a}} q_k
1164 > r_{k\alpha}  r_{k\beta} . \label{eq:quadrupole}
1165 > \end{align}
1166 > Note that the definition of the primitive quadrupole here differs from
1167 > the standard traceless form, and contains an additional Taylor-series
1168 > based factor of $1/2$.  
1169  
1170 <
1171 < The cross potential between molecules $I$ and $J$,
1050 < $V^{IJ}_{\text{Cross}}$, is as follows:
1170 > The details of the multipolar interactions will be given later, but
1171 > many readers are familiar with the dipole-dipole potential:
1172   \begin{equation}
1052 V^{IJ}_{\text{Cross}} =
1053        \sum_{i \in I} \sum_{j \in J}
1054        \biggl[ V_{\text{LJ}}(r_{ij}) +  V_{\text{dipole}}
1055        (\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},\boldsymbol{\Omega}_{j})
1056        + V_{\text{sticky}}
1057        (\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},\boldsymbol{\Omega}_{j})
1058        \biggr],
1059 \label{eq:crossPotentail}
1060 \end{equation}
1061 where $V_{\text{LJ}}$ is the Lennard Jones potential,
1062 $V_{\text{dipole}}$ is the dipole dipole potential, and
1063 $V_{\text{sticky}}$ is the sticky potential defined by the SSD model
1064 (Sec.~\ref{section:SSD}). Note that not all atom types include all
1065 interactions.
1066
1067 The dipole-dipole potential has the following form:
1068 \begin{equation}
1173   V_{\text{dipole}}(\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},
1174 <        \boldsymbol{\Omega}_{j}) = \frac{|\mu_i||\mu_j|}{4\pi\epsilon_{0}r_{ij}^{3}} \biggl[
1174 >        \boldsymbol{\Omega}_{j}) = \frac{|{\bf D}_i||{\bf D}_j|}{4\pi\epsilon_{0}r_{ij}^{3}} \biggl[
1175          \boldsymbol{\hat{u}}_{i} \cdot \boldsymbol{\hat{u}}_{j}
1176          -
1177          3(\boldsymbol{\hat{u}}_i \cdot \hat{\mathbf{r}}_{ij}) %
# Line 1077 | Line 1181 | are the orientational degrees of freedom for atoms $i$
1181   Here $\mathbf{r}_{ij}$ is the vector starting at atom $i$ pointing
1182   towards $j$, and $\boldsymbol{\Omega}_i$ and $\boldsymbol{\Omega}_j$
1183   are the orientational degrees of freedom for atoms $i$ and $j$
1184 < respectively. The magnitude of the dipole moment of atom $i$ is
1185 < $|\mu_i|$, $\boldsymbol{\hat{u}}_i$ is the standard unit orientation
1184 > respectively. The magnitude of the dipole moment of atom $i$ is $|{\bf
1185 >  D}_i|$, $\boldsymbol{\hat{u}}_i$ is the standard unit orientation
1186   vector of $\boldsymbol{\Omega}_i$, and $\boldsymbol{\hat{r}}_{ij}$ is
1187   the unit vector pointing along $\mathbf{r}_{ij}$
1188   ($\boldsymbol{\hat{r}}_{ij}=\mathbf{r}_{ij}/|\mathbf{r}_{ij}|$).
1189  
1086 \subsection{\label{section:SSD}The {\sc duff} Water Models: SSD/E
1087 and SSD/RF}
1190  
1191 < In the interest of computational efficiency, the default solvent used
1192 < by {\sc OpenMD} is the extended Soft Sticky Dipole (SSD/E) water
1193 < model.\cite{fennell04} The original SSD was developed by Ichiye
1194 < \emph{et al.}\cite{liu96:new_model} as a modified form of the hard-sphere
1191 > \begin{code}[caption={[An example of a MultipoleAtomTypes block.] A
1192 > simple example of a MultipoleAtomTypes block.   Dipoles are given in
1193 > units of Debyes, and Quadrupole moments are given in units of Debye
1194 > \AA~(or $10^{-26} \mathrm{~esu~cm}^2$)},
1195 > label={sch:MultipoleAtomTypesBlock}]
1196 > begin MultipoleAtomTypes
1197 > // Euler angles are given in zxz convention in units of degrees.
1198 > //
1199 > // point dipoles:
1200 > // name d phi theta psi dipole_moment
1201 > DIP     d 0.0 0.0   0.0     1.91   // dipole points along z-body axis
1202 > //
1203 > // point quadrupoles:
1204 > // name q phi theta psi Qxx Qyy Qzz
1205 > CO2     q 0.0 0.0   0.0 0.0 0.0 -0.430592  //quadrupole tensor has zz element
1206 > //
1207 > // Atoms with both dipole and quadrupole moments:
1208 > // name dq phi theta psi dipole_moment  Qxx    Qyy     Qzz
1209 > SSD     dq 0.0 0.0   0.0     2.35      -1.682  1.762   -0.08
1210 > end MultipoleAtomTypes
1211 > \end{code}
1212 >
1213 > Specifying a MultipoleAtomType requires declaring how the
1214 > electrostatic frame for the site is rotated relative to the body-fixed
1215 > axes for that atom. The Euler angles $(\phi, \theta, \psi)$ for this
1216 > rotation must be given, and then the dipole, quadrupole, or all of
1217 > these moments are specified in the electrostatic frame.  In OpenMD,
1218 > the Euler angles are specified in the $zxz$ convention and are entered
1219 > in units of degrees.  Dipole moments are entered in units of Debye,
1220 > and Quadrupole moments in units of Debye \AA.
1221 >
1222 > \subsection{\label{section:ffGB}The FluctuatingChargeAtomTypes  block}
1223 > %\subsubsection{\label{section:ffPol}The PolarizableAtomTypes block}
1224 >
1225 > \subsection{\label{section:ffGB}The GayBerneAtomTypes block}
1226 >
1227 > The Gay-Berne potential has been widely used in the liquid crystal
1228 > community to describe anisotropic phase
1229 > behavior.~\cite{Gay:1981yu,Berne:1972pb,Kushick:1976xy,Luckhurst:1990fy,Cleaver:1996rt}
1230 > The form of the Gay-Berne potential implemented in OpenMD was
1231 > generalized by Cleaver {\it et al.} and is appropriate for dissimilar
1232 > uniaxial ellipsoids.\cite{Cleaver:1996rt} The potential is constructed
1233 > in the familiar form of the Lennard-Jones function using
1234 > orientation-dependent $\sigma$ and $\epsilon$ parameters,
1235 > \begin{equation*}
1236 > V_{ij}({{\bf \hat u}_i}, {{\bf \hat u}_j}, {{\bf \hat
1237 > r}_{ij}}) = 4\epsilon ({{\bf \hat u}_i}, {{\bf \hat u}_j},
1238 > {{\bf \hat r}_{ij}})\left[\left(\frac{\sigma_0}{r_{ij}-\sigma({{\bf \hat u
1239 > }_i},
1240 > {{\bf \hat u}_j}, {{\bf \hat r}_{ij}})+\sigma_0}\right)^{12}
1241 > -\left(\frac{\sigma_0}{r_{ij}-\sigma({{\bf \hat u}_i}, {{\bf \hat u}_j},
1242 > {{\bf \hat r}_{ij}})+\sigma_0}\right)^6\right]
1243 > \label{eq:gb}
1244 > \end{equation*}
1245 >
1246 > The range $(\sigma({\bf \hat{u}}_{i},{\bf \hat{u}}_{j},{\bf
1247 > \hat{r}}_{ij}))$, and strength $(\epsilon({\bf \hat{u}}_{i},{\bf
1248 > \hat{u}}_{j},{\bf \hat{r}}_{ij}))$ parameters
1249 > are dependent on the relative orientations of the two ellipsoids (${\bf
1250 > \hat{u}}_{i},{\bf \hat{u}}_{j}$) as well as the direction of the
1251 > inter-ellipsoid separation (${\bf \hat{r}}_{ij}$).  The shape and
1252 > attractiveness of each ellipsoid is governed by a relatively small set
1253 > of parameters:
1254 > \begin{itemize}
1255 > \item  $d$:  range parameter for the side-by-side (S) and cross (X) configurations
1256 > \item  $l$:  range parameter for the end-to-end (E) configuration
1257 > \item  $\epsilon_X$:  well-depth parameter for the cross (X) configuration
1258 > \item  $\epsilon_S$:  well-depth parameter for the side-by-side (S) configuration
1259 > \item  $\epsilon_E$:  well depth parameter for the end-to-end (E) configuration
1260 > \item  $dw$: The ``softness'' of the potential
1261 > \end{itemize}
1262 > Additionally, there are two universal paramters to govern the overall
1263 > importance of the purely orientational ($\nu$) and the mixed
1264 > orientational / translational ($\mu$) parts of strength of the
1265 > interactions.  These parameters have default or ``canonical'' values,
1266 > but may be changed as a force field option:
1267 > \begin{itemize}
1268 >  \item $\nu$: purely orientational part : defaults to 1
1269 >  \item $\mu$: mixed orientational / translational part : defaults to
1270 >    2
1271 > \end{itemize}
1272 > Further details of the potential are given
1273 > elsewhere,\cite{Luckhurst:1990fy,Golubkov06,SunX._jp0762020} and an
1274 > excellent overview of the computational methods that can be used to
1275 > efficiently compute forces and torques for this potential can be found
1276 > in Ref. \citealp{Golubkov06}
1277 >
1278 > \begin{code}[caption={[An example of a GayBerneAtomTypes block.] A
1279 > simple example of a GayBerneAtomTypes block.  Distances ($d$ and $l$)
1280 > are given in \AA\ and energies ($\epsilon_X, \epsilon_S, \epsilon_E$)
1281 > are in units of kcal/mol. $dw$ is unitless.},
1282 > label={sch:GayBerneAtomTypes}]
1283 > begin GayBerneAtomTypes
1284 > //Name          d       l       eps_X           eps_S           eps_E     dw
1285 > GBlinear        2.8104  9.993   0.774729        0.774729        0.116839  1.0
1286 > GBC6H6          4.65    2.03    0.540           0.540           1.9818    0.6
1287 > GBCH3OH         2.55    3.18    0.542           0.542           0.55826   1.0
1288 > end GayBerneAtomTypes                  
1289 > \end{code}
1290 >
1291 > \subsection{\label{section:ffSticky}The StickyAtomTypes block}
1292 >
1293 > One of the solvents that can be simulated by {\sc OpenMD} is the
1294 > extended Soft Sticky Dipole (SSD/E) water model.\cite{fennell04} The
1295 > original SSD was developed by Ichiye \emph{et
1296 >  al.}\cite{liu96:new_model} as a modified form of the hard-sphere
1297   water model proposed by Bratko, Blum, and
1298   Luzar.\cite{Bratko85,Bratko95} It consists of a single point dipole
1299   with a Lennard-Jones core and a sticky potential that directs the
# Line 1155 | Line 1359 | HOH angle in each water molecule. }
1359   \label{fig:ssd}
1360   \end{figure}
1361  
1158
1362   Since SSD/E is a single-point {\it dipolar} model, the force
1363   calculations are simplified significantly relative to the standard
1364   {\it charged} multi-point models. In the original Monte Carlo
# Line 1174 | Line 1377 | SSD model that led to lower than expected densities at
1377  
1378   Recent constant pressure simulations revealed issues in the original
1379   SSD model that led to lower than expected densities at all target
1380 < pressures.\cite{Ichiye03,fennell04} The default model in {\sc OpenMD}
1381 < is therefore SSD/E, a density corrected derivative of SSD that
1382 < exhibits improved liquid structure and transport behavior. If the use
1383 < of a reaction field long-range interaction correction is desired, it
1384 < is recommended that the parameters be modified to those of the SSD/RF
1385 < model (an SSD variant parameterized for reaction field). These solvent
1183 < parameters are listed and can be easily modified in the {\sc duff}
1184 < force field file ({\tt DUFF.frc}).  A table of the parameter values
1185 < and the drawbacks and benefits of the different density corrected SSD
1186 < models can be found in reference~\cite{fennell04}.
1380 > pressures,\cite{Ichiye03,fennell04} so variants on the sticky
1381 > potential can be specified by using one of a number of substitute atom
1382 > types (see listing \ref{sch:StickyAtomTypes}).  A table of the
1383 > parameter values and the drawbacks and benefits of the different
1384 > density corrected SSD models can be found in
1385 > reference~\citealp{fennell04}.
1386  
1387 < \section{\label{section:WATER}The {\sc water} Force Field}
1387 > \begin{code}[caption={[An example of a StickyAtomTypes block.] A
1388 > simple example of a StickyAtomTypes block.  Distances ($r_l$, $r_u$,
1389 > $r_{l}'$ and $r_{u}'$) are given in \AA\ and energies ($v_0, v_{0}'$)
1390 > are in units of kcal/mol. $w_0$ is unitless.},
1391 > label={sch:StickyAtomTypes}]
1392 > begin StickyAtomTypes
1393 > //name  w0      v0 (kcal/mol)   v0p     rl (Ang)  ru    rlp     rup
1394 > SSD_E   0.07715 3.90            3.90    2.40      3.80  2.75    3.35
1395 > SSD_RF  0.07715 3.90            3.90    2.40      3.80  2.75    3.35
1396 > SSD     0.07715 3.7284          3.7284  2.75      3.35  2.75    4.0
1397 > SSD1    0.07715 3.6613          3.6613  2.75      3.35  2.75    4.0
1398 > end StickyAtomTypes
1399 > \end{code}
1400  
1401 < In addition to the {\sc duff} force field's solvent description, a
1191 < separate {\sc water} force field has been included for simulating most
1192 < of the common rigid-body water models. This force field includes the
1193 < simple and point-dipolar models (SSD, SSD1, SSD/E, SSD/RF, and DPD
1194 < water), as well as the common charge-based models (SPC, SPC/E, TIP3P,
1195 < TIP4P, and
1196 < TIP5P).\cite{liu96:new_model,Ichiye03,fennell04,Marrink01,Berendsen81,Berendsen87,Jorgensen83,Mahoney00}
1197 < In order to handle these models, charge-charge interactions were
1198 < included in the force-loop:
1199 < \begin{equation}
1200 < V_{\text{charge}}(r_{ij}) = \sum_{ij}\frac{q_iq_je^2}{r_{ij}},
1201 < \end{equation}
1202 < where $q$ represents the charge on particle $i$ or $j$, and $e$ is the
1203 < charge of an electron in Coulombs. The charge-charge interaction
1204 < support is rudimentary in the current version of {\sc OpenMD}.  As with
1205 < the other pair interactions, charges can be simulated with a pure
1206 < cutoff or a reaction field.  The various methods for performing the
1207 < Ewald summation have not yet been included.  The {\sc water} force
1208 < field can be easily expanded through modification of the {\sc water}
1209 < force field file ({\tt WATER.frc}). By adding atom types and inserting
1210 < the appropriate parameters, it is possible to extend the force field
1211 < to handle rigid molecules other than water.
1212 <
1213 < \section{\label{section:eam}Embedded Atom Method}
1401 > \section{\label{section::ffMetals}Metallic Atom Types}
1402  
1403 < {\sc OpenMD} implements a potential that describes bonding in
1404 < transition metal
1405 < systems.~\cite{Finnis84,Ercolessi88,Chen90,Qi99,Ercolessi02} This
1406 < potential has an attractive interaction which models ``Embedding'' a
1407 < positively charged pseudo-atom core in the electron density due to the
1408 < free valance ``sea'' of electrons created by the surrounding atoms in
1409 < the system.  A pairwise part of the potential (which is primarily
1410 < repulsive) describes the interaction of the positively charged metal
1223 < core ions with one another.  The Embedded Atom Method ({\sc
1224 < eam})~\cite{Daw84,FBD86,johnson89,Lu97} has been widely adopted in the
1225 < materials science community and has been included in {\sc OpenMD}. A
1226 < good review of {\sc eam} and other formulations of metallic potentials
1227 < was given by Voter.\cite{Voter:95}
1228 <
1229 < The {\sc eam} potential has the form:
1403 > {\sc OpenMD} implements a number of related potentials that describe
1404 > bonding in transition metals. These potentials have an attractive
1405 > interaction which models ``Embedding'' a positively charged
1406 > pseudo-atom core in the electron density due to the free valance
1407 > ``sea'' of electrons created by the surrounding atoms in the system.
1408 > A pairwise part of the potential (which is primarily repulsive)
1409 > describes the interaction of the positively charged metal core ions
1410 > with one another.  These potentials have the form:
1411   \begin{equation}
1412   V  =  \sum_{i} F_{i}\left[\rho_{i}\right] + \sum_{i} \sum_{j \neq i}
1413   \phi_{ij}({\bf r}_{ij})
# Line 1243 | Line 1424 | to compute the inter-atomic forces.
1424   transition metal potentials require two loops through the atom pairs
1425   to compute the inter-atomic forces.
1426  
1427 < The pairwise portion of the potential, $\phi_{ij}$, is a primarily
1428 < repulsive interaction between atoms $i$ and $j$. In the original
1248 < formulation of {\sc eam}\cite{Daw84}, $\phi_{ij}$ was an entirely
1249 < repulsive term; however later refinements to {\sc eam} allowed for
1250 < more general forms for $\phi$.\cite{Daw89} The effective cutoff
1251 < distance, $r_{{\text cut}}$ is the distance at which the values of
1252 < $f(r)$ and $\phi(r)$ drop to zero for all atoms present in the
1253 < simulation.  In practice, this distance is fairly small, limiting the
1254 < summations in the {\sc eam} equation to the few dozen atoms
1255 < surrounding atom $i$ for both the density $\rho$ and pairwise $\phi$
1256 < interactions.
1427 > The pairwise portion of the potential, $\phi_{ij}$, is usually a
1428 > repulsive interaction between atoms $i$ and $j$.
1429  
1430 < In computing forces for alloys, mixing rules as outlined by
1431 < Johnson~\cite{johnson89} are used to compute the heterogenous pair
1432 < potential,
1430 > \subsection{\label{section:ffEAM}The EAMAtomTypes block}
1431 > The Embedded Atom Method ({\sc eam}) is one of the most widely-used
1432 > potentials for transition
1433 > metals.~\cite{Finnis84,Ercolessi88,Chen90,Qi99,Ercolessi02,Daw84,FBD86,johnson89,Lu97}
1434 > It has been widely adopted in the materials science community and a
1435 > good review of {\sc eam} and other formulations of metallic potentials
1436 > was given by Voter.\cite{Voter:95}
1437 >
1438 > In the original formulation of {\sc eam}\cite{Daw84}, the pair
1439 > potential, $\phi_{ij}$ was an entirely repulsive term; however later
1440 > refinements to {\sc eam} allowed for more general forms for
1441 > $\phi$.\cite{Daw89} The effective cutoff distance, $r_{{\text cut}}$
1442 > is the distance at which the values of $f(r)$ and $\phi(r)$ drop to
1443 > zero for all atoms present in the simulation.  In practice, this
1444 > distance is fairly small, limiting the summations in the {\sc eam}
1445 > equation to the few dozen atoms surrounding atom $i$ for both the
1446 > density $\rho$ and pairwise $\phi$ interactions.
1447 >
1448 > In computing forces for alloys, OpenMD uses mixing rules outlined by
1449 > Johnson~\cite{johnson89} to compute the heterogenous pair potential,
1450   \begin{equation}
1451   \label{eq:johnson}
1452   \phi_{ab}(r)=\frac{1}{2}\left(
# Line 1289 | Line 1478 | files.  
1478   $\mbox{kcal mol}^{-1}$ as in the rest of the {\sc OpenMD} force field
1479   files.  
1480  
1481 < \section{\label{section:sc}The Sutton-Chen Force Field}
1481 > \begin{code}[caption={[An example of a EAMAtomTypes block.] A
1482 > simple example of a EAMAtomTypes block. Here the only data provided is
1483 > the name of a {\tt funcfl} file which contains the raw data for spline
1484 > interpolations for the density, functional, and pair potential.},
1485 > label={sch:EAMAtomTypes}]
1486 > begin EAMAtomTypes
1487 > Au      Au.u3.funcfl
1488 > Ag      Ag.u3.funcfl
1489 > Cu      Cu.u3.funcfl
1490 > Ni      Ni.u3.funcfl
1491 > Pd      Pd.u3.funcfl
1492 > Pt      Pt.u3.funcfl
1493 > end EAMAtomTypes
1494 > \end{code}
1495  
1496 + \subsection{\label{section:ffSC}The SuttonChenAtomTypes block}
1497 +
1498   The Sutton-Chen ({\sc sc})~\cite{Chen90} potential has been used to
1499 < study a wide range of phenomena in metals.  Although it is similar in
1500 < form to the {\sc eam} potential, the Sutton-Chen model takes on a
1501 < simpler form,
1499 > study a wide range of phenomena in metals.  Although it has the same
1500 > basic form as the {\sc eam} potential, the Sutton-Chen model requires
1501 > a simpler set of parameters,
1502   \begin{equation}
1503   \label{eq:SCP1}
1504   U_{tot}=\sum _{i}\left[ \frac{1}{2}\sum _{j\neq
1505 < i}D_{ij}V^{pair}_{ij}(r_{ij})-c_{i}D_{ii}\sqrt{\rho_{i}}\right] ,
1505 > i}\epsilon_{ij}V^{pair}_{ij}(r_{ij})-c_{i}\epsilon_{ii}\sqrt{\rho_{i}}\right] ,
1506   \end{equation}
1507   where $V^{pair}_{ij}$ and $\rho_{i}$ are given by
1508   \begin{equation}
1509   \label{eq:SCP2}
1510   V^{pair}_{ij}(r)=\left(
1511 < \frac{\alpha_{ij}}{r_{ij}}\right)^{n_{ij}}, \rho_{i}=\sum_{j\neq i}\left(
1511 > \frac{\alpha_{ij}}{r_{ij}}\right)^{n_{ij}} \hspace{1in} \rho_{i}=\sum_{j\neq i}\left(
1512   \frac{\alpha_{ij}}{r_{ij}}\right) ^{m_{ij}}
1513   \end{equation}
1514  
# Line 1312 | Line 1516 | the interactions between the valence electrons and the
1516   interactions of the pseudo-atom cores.  The $\sqrt{\rho_i}$ term in
1517   Eq. (\ref{eq:SCP1}) is an attractive many-body potential that models
1518   the interactions between the valence electrons and the cores of the
1519 < pseudo-atoms.  $D_{ij}$, $D_{ii}$, $c_i$ and $\alpha_{ij}$ are
1520 < parameters used to tune the potential for different transition
1521 < metals.
1519 > pseudo-atoms.  $\epsilon_{ij}$, $\epsilon_{ii}$, $c_i$ and
1520 > $\alpha_{ij}$ are parameters used to tune the potential for different
1521 > transition metals.
1522  
1523   The {\sc sc} potential form has also been parameterized by Qi {\it et
1524   al.}\cite{Qi99} These parameters were obtained via empirical and {\it
1525   ab initio} calculations to match structural features of the FCC
1526 < crystal.  To specify the original Sutton-Chen variant of the {\sc sc}
1527 < force field, the user would add the {\tt forceFieldVariant = "SC";}
1324 < line to the meta-data file, while specification of the Qi {\it et al.}
1325 < quantum-adapted variant of the {\sc sc} potential, the user would add
1326 < the {\tt forceFieldVariant = "QSC";} line to the meta-data file.
1526 > crystal.  Interested readers are encouraged to consult reference
1527 > \citealp{Qi99} for further details.
1528  
1529 < \section{\label{section:clay}The CLAY force field}
1530 <
1531 < The {\sc clay} force field is based on an ionic (nonbonded)
1532 < description of the metal-oxygen interactions associated with hydrated
1533 < phases. All atoms are represented as point charges and are allowed
1534 < complete translational freedom. Metal-oxygen interactions are based on
1535 < a simple Lennard-Jones potential combined with electrostatics. The
1536 < empirical parameters were optimized by Cygan {\it et
1537 < al.}\cite{Cygan04} on the basis of known mineral structures, and
1538 < partial atomic charges were derived from periodic DFT quantum chemical
1539 < calculations of simple oxide, hydroxide, and oxyhydroxide model
1540 < compounds with well-defined structures.
1529 > \begin{code}[caption={[An example of a SCAtomTypes block.] A
1530 > simple example of a SCAtomTypes block.  Distances ($\alpha$)
1531 > are given in \AA\ and energies ($\epsilon$) are (by convention) given in
1532 > units of eV.  These units must be specified in the {\tt Options} block
1533 > using the keyword {\tt MetallicEnergyUnitScaling}.  Without this {\tt
1534 > Options} keyword, the default units for $\epsilon$ are kcal/mol.  The
1535 > other parameters, $m$, $n$, and $c$ are unitless.},
1536 > label={sch:SCAtomTypes}]
1537 > begin SCAtomTypes
1538 > // Name  epsilon(eV)      c      m       n      alpha(angstroms)
1539 > Ni      0.0073767       84.745  5.0     10.0    3.5157
1540 > Cu      0.0057921       84.843  5.0     10.0    3.6030
1541 > Rh      0.0024612       305.499 5.0     13.0    3.7984
1542 > Pd      0.0032864       148.205 6.0     12.0    3.8813
1543 > Ag      0.0039450       96.524  6.0     11.0    4.0691
1544 > Ir      0.0037674       224.815 6.0     13.0    3.8344  
1545 > Pt      0.0097894       71.336  7.0     11.0    3.9163
1546 > Au      0.0078052       53.581  8.0     11.0    4.0651
1547 > Au2     0.0078052       53.581  8.0     11.0    4.0651
1548 > end SCAtomTypes
1549 > \end{code}
1550  
1551 + \section{\label{section::ffShortRange}Short Range Interactions}
1552 + The internal structure of a molecule is usually specified in terms of
1553 + a set of ``bonded'' terms in the potential energy function for
1554 + molecule $I$,
1555 + \begin{align*}
1556 + V^{I}_{\text{Internal}} =  &
1557 + \sum_{r_{ij} \in I} V_{\text{bond}}(r_{ij})
1558 + + \sum_{\theta_{ijk} \in I} V_{\text{bend}}(\theta_{ijk})
1559 + + \sum_{\phi_{ijkl} \in I} V_{\text{torsion}}(\phi_{ijkl})
1560 + + \sum_{\omega_{ijkl} \in I} V_{\text{inversion}}(\omega_{ijkl}) \\
1561 + & + \sum_{i \in I} \sum_{(j>i+4) \in I}
1562 + \biggl[ V_{\text{dispersion}}(r_{ij}) +  V_{\text{electrostatic}}
1563 + (\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},\boldsymbol{\Omega}_{j})
1564 + \biggr].
1565 + \label{eq:internalPotential}
1566 + \end{align*}
1567 + Here $V_{\text{bond}}, V_{\text{bend}},
1568 + V_{\text{torsion}},\mathrm{~and~} V_{\text{inversion}}$ represent the
1569 + bond, bend, torsion, and inversion potentials for all
1570 + topologically-connected sets of atoms within the molecule.  Bonds are
1571 + the primary way of specifying how the atoms are connected together to
1572 + form the molecule (i.e. they define the molecular topology).  The
1573 + other short-range interactions may be specified explicitly in the
1574 + molecule definition, or they may be deduced from bonding information.
1575 + For example, bends can be implicitly deduced from two bonds which
1576 + share an atom.  Torsions can be deduced from two bends that share a
1577 + bond.  Inversion potentials are utilized primarily to enforce
1578 + planarity around $sp^2$-hybridized sites, and these are specified with
1579 + central atoms and satellites (or an atom with bonds to exactly three
1580 + satellites). Non-bonded interactions are usually excluded for atom
1581 + pairs that are involved in the same bond, bend, or torsion, but all
1582 + other atom pairs are included in the standard non-bonded interactions.
1583  
1584 + Bond lengths, angles, and torsions (dihedrals) are ``natural''
1585 + coordinates to treat molecular motion, as it is usually in these
1586 + coordinates that most chemists understand the behavior of molecules.
1587 + The bond lengths and angles are often considered ``hard'' degrees of
1588 + freedom.  That is, we can't deform them very much without a
1589 + significant energetic penalty.  On the other hand, dihedral angles or
1590 + torsions are ``soft'' and typically undergo significant deformation
1591 + under normal conditions.
1592 +
1593 + \subsection{\label{section:ffBond}The BondTypes block}
1594 +
1595 + Bonds are the primary way to specify how the atoms are connected
1596 + together to form the molecule.  In general, bonds exert strong
1597 + restoring forces to keep the molecule compact.  The bond energy
1598 + functions are relatively simple functions of the distance between two
1599 + atomic sites,
1600 + \begin{equation}
1601 + b = \left| \vec{r}_{ij} \right| = \sqrt{(x_j - x_i)^2 + (y_j - y_i)^2
1602 +  + (z_j - z_i)^2}.
1603 + \end{equation}
1604 + All BondTypes must specify two AtomType names ($i$ and $j$) that
1605 + describe when that bond should be applied, as well as an equilibrium
1606 + bond length, $b_{ij}^0$, in units of \AA. The most common forms for
1607 + bonding potentials are {\tt Harmonic} bonds,
1608 + \begin{equation}
1609 + V_{\text{bond}}(b) = \frac{k_{ij}}{2} \left(b -
1610 +  b_{ij}^0 \right)^2
1611 + \end{equation}
1612 + and {\tt Morse} bonds,
1613 + \begin{equation}
1614 + V_{\text{bond}}(b) = D_{ij} \left[ 1 - e^{-\beta_{ij} (b - b_{ij}^0)} \right]^2
1615 + \end{equation}
1616 +
1617 + \begin{figure}[h]
1618 + \centering
1619 + \includegraphics[width=2.5in]{bond.pdf}
1620 + \caption[Bond coordinates]{The coordinate describing a
1621 + a bond between atoms $i$ and $j$ is $|r_{ij}|$, the length of the
1622 + $\vec{r}_{ij}$ vector. }
1623 + \label{fig:bond}
1624 + \end{figure}
1625 +
1626 + OpenMD can also simulate some less common types of bond potentials,
1627 + including {\tt Fixed} bonds (which are constrained to be at a
1628 + specified bond length),
1629 + \begin{equation}
1630 + V_{\text{bond}}(b) = 0.
1631 + \end{equation}
1632 + {\tt Cubic} bonds include terms to model anharmonicity,
1633 + \begin{equation}
1634 + V_{\text{bond}}(b) =  K_3 (b -  b_{ij}^0)^3 + K_2 (b - b_{ij}^0)^2 + K_1 (b -  b_{ij}^0) + K_0,
1635 + \end{equation}
1636 + and {\tt Quartic} bonds, include another term in the Taylor
1637 + expansion around $b_{ij}^0$,
1638 + \begin{equation}
1639 + V_{\text{bond}}(b) = K_4 (b -  b_{ij}^0)^4 +  K_3 (b -  b_{ij}^0)^3 +
1640 + K_2 (b - b_{ij}^0)^2 + K_1 (b -  b_{ij}^0) + K_0,
1641 + \end{equation}
1642 + can also be simulated.  Note that the factor of $1/2$ that is included
1643 + in the {\tt Harmonic} bond type force constant is {\it not} present in
1644 + either the {\tt Cubic} or {\tt Quartic} bond types.
1645 +
1646 + {\tt Polynomial} bonds which can have any number of terms,
1647 + \begin{equation}
1648 + V_{\text{bond}}(b) = \sum_n K_n (b -  b_{ij}^0)^n.
1649 + \end{equation}
1650 + can also be specified by giving a sequence of integer ($n$) and force
1651 + constant ($K_n$) pairs.
1652 +
1653 + The order of terms in the BondTypes block is:
1654 + \begin{itemize}
1655 + \item {\tt AtomType} 1
1656 + \item {\tt AtomType} 2
1657 + \item {\tt BondType} (one of {\tt Harmonic}, {\tt Morse}, {\tt Fixed}, {\tt
1658 +        Cubic}, {\tt Quartic}, or {\tt Polynomial})
1659 + \item $b_{ij}^0$, the equilibrium bond length in \AA
1660 + \item any other parameters required by the {\tt BondType}
1661 + \end{itemize}
1662 +
1663 + \begin{code}[caption={[An example of a BondTypes block.] A
1664 + simple example of a BondTypes block.  Distances ($b_0$)
1665 + are given in \AA\ and force constants are given in
1666 + units so that when multiplied by the correct power of distance they
1667 + return energies in kcal/mol.  For example $k$ for a Harmonic bond is
1668 + in units of kcal/mol/\AA$^2$.},
1669 + label={sch:BondTypes}]
1670 + begin BondTypes
1671 + //Atom1 Atom2   Harmonic        b0        k (kcal/mol/A^2)
1672 + CH2     CH2     Harmonic        1.526     260
1673 + //Atom1 Atom2   Morse           b0        D       beta (A^-1)
1674 + CN      NC      Morse           1.157437  212.95  2.5802
1675 + //Atom1 Atom2   Fixed           b0
1676 + CT      HC      Fixed           1.09
1677 + //Atom1 Atom2   Cubic           b0        K3      K2      K1      K0
1678 + //Atom1 Atom2   Quartic         b0        K4      K3      K2      K1      K0
1679 + //Atom1 Atom2   Polynomial      b0        n       Kn      [m      Km]
1680 + end BondTypes
1681 + \end{code}
1682 +
1683 + There are advantages and disadvantages of all of the different types
1684 + of bonds, but specific simulation tasks may call for specific
1685 + behaviors.
1686 +
1687 + \subsection{\label{section:ffBend}The BendTypes block}
1688 + The equilibrium geometries and energy functions for bending motions in
1689 + a molecule are strongly dependent on the bonding environment of the
1690 + central atomic site.  For example, different types of hybridized
1691 + carbon centers require different bending angles and force constants to
1692 + describe the local geometry.
1693 +
1694 + The bending potential energy functions used in most force fields are
1695 + often simple functions of the angle between two bonds,
1696 + \begin{equation}
1697 + \theta_{ijk} = \cos^{-1} \left(\frac{\vec{r}_{ji} \cdot
1698 +    \vec{r}_{jk}}{\left| \vec{r}_{ji} \right| \left| \vec{r}_{jk}
1699 +    \right|} \right)
1700 + \end{equation}
1701 + Here atom $j$ is the central atom that is bonded to two partners $i$
1702 + and $k$.
1703 +
1704 + \begin{figure}[h]
1705 + \centering
1706 + \includegraphics[width=3.5in]{bend.pdf}
1707 + \caption[Bend angle coordinates]{The coordinate describing a bend
1708 +  between atoms $i$, $j$, and $k$ is the angle $\theta_{ijk} =
1709 +  \cos^{-1} \left(\hat{r}_{ji} \cdot \hat{r}_{jk}\right)$ where $\hat{r}_{ji}$ is
1710 +  the unit vector between atoms $j$ and $i$. }
1711 + \label{fig:bend}
1712 + \end{figure}
1713 +
1714 +
1715 + All BendTypes must specify three AtomType names ($i$, $j$ and $k$)
1716 + that describe when that bend potential should be applied, as well as
1717 + an equilibrium bending angle, $\theta_{ijk}^0$, in units of
1718 + degrees. The most common forms for bending potentials are {\tt
1719 +  Harmonic} bends,
1720 + \begin{equation}
1721 + V_{\text{bend}}(\theta_{ijk}) = \frac{k_{ijk}}{2}( \theta_{ijk} - \theta_{ijk}^0
1722 + )^2, \label{eq:bendPot}
1723 + \end{equation}
1724 + where $k_{ijk}$ is the force constant which determines the strength of
1725 + the harmonic bend. {\tt UreyBradley} bends utilize an additional 1-3
1726 + bond-type interaction in addition to the harmonic bending potential:
1727 + \begin{equation}
1728 +  V_{\text{bend}}(\vec{r}_i , \vec{r}_j, \vec{r}_k)
1729 +  =\frac{k_{ijk}}{2}( \theta_{ijk} - \theta_{ijk}^0)^2
1730 +  + \frac{k_{ub}}{2}( r_{ik} - s_0 )^2. \label{eq:ubBend}
1731 + \end{equation}
1732 +
1733 + A {\tt Cosine} bend is a variant on the harmonic bend which utilizes
1734 + the cosine of the angle instead of the angle itself,
1735 + \begin{equation}
1736 + V_{\text{bend}}(\theta_{ijk}) = \frac{k_{ijk}}{2}( \cos\theta_{ijk} -
1737 + \cos \theta_{ijk}^0 )^2. \label{eq:cosBend}
1738 + \end{equation}
1739 +
1740 + OpenMD can also simulate some less common types of bend potentials,
1741 + including {\tt Cubic} bends, which include terms to model anharmonicity,
1742 + \begin{equation}
1743 + V_{\text{bend}}(\theta_{ijk}) =  K_3 (\theta_{ijk} -  \theta_{ijk}^0)^3 + K_2 (\theta_{ijk} -  \theta_{ijk}^0)^2 + K_1 (\theta_{ijk} -  \theta_{ijk}^0) + K_0,
1744 + \end{equation}
1745 + and {\tt Quartic} bends, which include another term in the Taylor
1746 + expansion around $\theta_{ijk}^0$,
1747 + \begin{equation}
1748 +  V_{\text{bend}}(\theta_{ijk}) = K_4 (\theta_{ijk} -  \theta_{ijk}^0)^4 +  K_3 (\theta_{ijk} -  \theta_{ijk}^0)^3 +
1749 +  K_2 (\theta_{ijk} -  \theta_{ijk}^0)^2 + K_1 (\theta_{ijk} -
1750 +  \theta_{ijk}^0) + K_0,
1751 + \end{equation}
1752 + can also be simulated.  Note that the factor of $1/2$ that is included
1753 + in the {\tt Harmonic} bend type force constant is {\it not} present in
1754 + either the {\tt Cubic} or {\tt Quartic} bend types.
1755 +
1756 + {\tt Polynomial} bends which can have any number of terms,
1757 + \begin{equation}
1758 + V_{\text{bend}}(\theta_{ijk}) = \sum_n K_n (\theta_{ijk} -  \theta_{ijk}^0)^n.
1759 + \end{equation}
1760 + can also be specified by giving a sequence of integer ($n$) and force
1761 + constant ($K_n$) pairs.
1762 +
1763 + The order of terms in the BendTypes block is:
1764 + \begin{itemize}
1765 + \item {\tt AtomType} 1
1766 + \item {\tt AtomType} 2 (this is the central atom)
1767 + \item {\tt AtomType} 3
1768 + \item {\tt BendType} (one of {\tt Harmonic}, {\tt UreyBradley}, {\tt
1769 +    Cosine}, {\tt Cubic}, {\tt Quartic}, or {\tt Polynomial})
1770 + \item $\theta_{ijk}^0$, the equilibrium bending angle in degrees.
1771 + \item any other parameters required by the {\tt BendType}
1772 + \end{itemize}
1773 +
1774 + \begin{code}[caption={[An example of a BendTypes block.] A
1775 + simple example of a BendTypes block.  By convention, equilibrium angles
1776 + ($\theta_0$) are given in degrees but force constants are given in
1777 + units so that when multiplied by the correct power of angle (in
1778 + radians) they return energies in kcal/mol.  For example $k$ for a
1779 + Harmonic bend is in units of kcal/mol/radians$^2$.},
1780 + label={sch:BendTypes}]
1781 + begin BendTypes
1782 + //Atom1 Atom2   Atom3   Harmonic      theta0(deg) Ktheta(kcal/mol/radians^2)
1783 + CT      CT      CT      Harmonic      109.5        80.000000
1784 + CH2     CH      CH2     Harmonic      112.0       117.68
1785 + CH3     CH2     SH      Harmonic       96.0        67.220
1786 + //UreyBradley
1787 + //Atom1 Atom2   Atom3   UreyBradley   theta0      Ktheta  s0  Kub
1788 + //Cosine
1789 + //Atom1 Atom2   Atom3   Cosine        theta0      Ktheta(kcal/mol)
1790 + //Cubic
1791 + //Atom1 Atom2   Atom3   Cubic         theta0      K3      K2  K1   K0
1792 + //Quartic
1793 + //Atom1 Atom2   Atom3   Quartic       theta0      K4      K3  K2   K1   K0
1794 + //Polynomial
1795 + //Atom1 Atom2   Atom3   Polynomial    theta0      n       Kn  [m   Km]
1796 + end BendTypes
1797 + \end{code}
1798 +
1799 + Note that the parameters for a particular bend type are the same for
1800 + any bending triplet of the same atomic types (in the same or reversed
1801 + order).  Changing the AtomType in the Atom2 position will change the
1802 + matched bend types in the force field.
1803 +
1804 + \subsection{\label{section:ffTorsion}The TorsionTypes block}
1805 + The torsion potential for rotation of groups around a central bond can
1806 + often be represented with various cosine functions.  For two
1807 + tetrahedral ($sp^3$) carbons connected by a single bond, the torsion
1808 + potential might be
1809 + \begin{equation*}
1810 + V_{\text{torsion}} = \frac{v}{2} \left[ 1 + \cos( 3 \phi ) \right]
1811 + \end{equation*}
1812 + where $v$ is the barrier for going from {\em staggered} $\rightarrow$
1813 + {\em eclipsed} conformations, while for $sp^2$ carbons connected by a
1814 + double bond, the potential might be
1815 + \begin{equation*}
1816 + V_{\text{torsion}} = \frac{w}{2} \left[ 1 - \cos( 2 \phi ) \right]
1817 + \end{equation*}
1818 + where $w$ is the barrier for going from  {\em cis} $\rightarrow$ {\em
1819 +  trans} conformations.
1820 +
1821 + A general torsion potentials can be represented as a cosine series of
1822 + the form:
1823 + \begin{equation}
1824 + V_{\text{torsion}}(\phi_{ijkl}) = c_1[1 + \cos \phi_{ijkl}]
1825 +        + c_2[1 - \cos(2\phi_{ijkl})]
1826 +        + c_3[1 + \cos(3\phi_{ijkl})],
1827 + \label{eq:origTorsionPot}
1828 + \end{equation}
1829 + where the angle $\phi_{ijkl}$ is defined
1830 + \begin{equation}
1831 + \cos\phi_{ijkl} = (\hat{\mathbf{r}}_{ij} \times \hat{\mathbf{r}}_{jk}) \cdot
1832 +        (\hat{\mathbf{r}}_{jk} \times \hat{\mathbf{r}}_{kl}).
1833 + \label{eq:torsPhi}
1834 + \end{equation}
1835 + Here, $\hat{\mathbf{r}}_{\alpha\beta}$ are the set of unit bond
1836 + vectors between atoms $i$, $j$, $k$, and $l$.  Note that some force
1837 + fields define the zero of the $\phi_{ijkl}$ angle when atoms $i$ and
1838 + $l$ are in the {\em trans} configuration, while most define the zero
1839 + angle for when $i$ and $l$ are in the fully eclipsed orientation.  The
1840 + behavior of the torsion parser can be altered with the {\tt
1841 +  TorsionAngleConvention} keyword in the Options block.  The default
1842 + behavior is {\tt "180\_is\_trans"} while the opposite behavior can be
1843 + invoked by setting this keyword to {\tt "0\_is\_trans"}.
1844 +
1845 + \begin{figure}[h]
1846 + \centering
1847 + \includegraphics[width=4.5in]{torsion.pdf}
1848 + \caption[Torsion or dihedral angle coordinates]{The coordinate
1849 +  describing a torsion between atoms $i$, $j$, $k$, and $l$ is the
1850 +  dihedral angle $\phi_{ijkl}$ which measures the relative rotation of
1851 +  the two terminal atoms around the axis defined by the middle bond. }
1852 + \label{fig:torsion}
1853 + \end{figure}
1854 +
1855 + For computational efficiency, OpenMD recasts torsion potential in the
1856 + method of {\sc charmm},\cite{Brooks83} in which the angle series is
1857 + converted to a power series of the form:
1858 + \begin{equation}
1859 +  V_{\text{torsion}}(\phi_{ijkl}) =  
1860 +  k_3 \cos^3 \phi_{ijkl} + k_2 \cos^2 \phi_{ijkl} + k_1 \cos \phi_{ijkl} + k_0,
1861 + \label{eq:torsionPot}
1862 + \end{equation}
1863 + where:
1864 + \begin{align*}
1865 + k_0 &= c_1 + 2 c_2 + c_3, \\
1866 + k_1 &= c_1 - 3c_3, \\
1867 + k_2 &= - 2 c_2, \\
1868 + k_3 &= 4 c_3.
1869 + \end{align*}
1870 + By recasting the potential as a power series, repeated trigonometric
1871 + evaluations are avoided during the calculation of the potential
1872 + energy.
1873 +
1874 + Using this framework, OpenMD implements a variety of different
1875 + potential energy functions for torsions:
1876 + \begin{itemize}
1877 + \item {\tt Cubic}:
1878 + \begin{equation*}
1879 +  V_{\text{torsion}}(\phi) =  
1880 +  k_3 \cos^3 \phi + k_2 \cos^2 \phi + k_1 \cos \phi + k_0,
1881 + \end{equation*}
1882 + \item {\tt Quartic}:
1883 + \begin{equation*}
1884 +  V_{\text{torsion}}(\phi) =  k_4 \cos^4 \phi +
1885 +  k_3 \cos^3 \phi + k_2 \cos^2 \phi + k_1 \cos \phi + k_0,
1886 + \end{equation*}
1887 + \item {\tt Polynomial}:
1888 + \begin{equation*}
1889 + V_{\text{torsion}}(\phi) =  \sum_n k_n \cos^n \phi ,
1890 + \end{equation*}
1891 + \item {\tt Charmm}:
1892 + \begin{equation*}
1893 + V_{\text{torsion}}(\phi) = \sum_n K_n \left( 1 + cos(n
1894 +  \phi - \delta_n) \right),
1895 + \end{equation*}
1896 + \item {\tt Opls}:
1897 + \begin{equation*}
1898 +  V_{\text{torsion}}(\phi) =  \frac{1}{2} \left(v_1 (1 + \cos \phi) \right)
1899 +    + v_2 (1 - \cos 2 \phi) +  v_3 (1 + \cos 3 \phi),
1900 + \end{equation*}
1901 + \item {\tt Trappe}:\cite{Siepmann1998}
1902 + \begin{equation*}
1903 +  V_{\text{torsion}}(\phi) =  c_0 + c_1 (1 + \cos \phi) + c_2 (1 - \cos 2 \phi)  +
1904 +  c_3 (1 + \cos 3 \phi),
1905 + \end{equation*}
1906 + \item {\tt Harmonic}:
1907 + \begin{equation*}
1908 + V_{\text{torsion}}(\phi) =  \frac{d_0}{2} \left(\phi - \phi^0\right).
1909 + \end{equation*}
1910 + \end{itemize}
1911 +
1912 + Most torsion types don't require specific angle information in the
1913 + parameters since they are typically expressed in cosine polynomials.
1914 + {\tt Charmm} and {\tt Harmonic} torsions are a bit different.  {\tt
1915 +  Charmm} torsion types require a set of phase angles, $\delta_n$ that
1916 + are expressed in degrees, and associated periodicity numbers, $n$.
1917 + {\tt Harmonic} torsions have an equilibrium torsion angle, $\phi_0$
1918 + that is measured in degrees, while $d_0$ has units of
1919 + kcal/mol/degrees$^2$.  All other torsion parameters are measured in
1920 + units of kcal/mol.
1921 +
1922 + \begin{code}[caption={[An example of a TorsionTypes block.] A
1923 + simple example of a TorsionTypes block.  Energy constants are given in
1924 + kcal / mol, and when required by the form, $\delta$ angles are given
1925 + in degrees.},
1926 + label={sch:TorsionTypes}]
1927 + begin TorsionTypes
1928 + //Cubic
1929 + //Atom1 Atom2   Atom3   Atom4   Cubic   k3       k2        k1      k0  
1930 + CH2     CH2     CH2     CH2     Cubic   5.9602   -0.2568   -3.802  2.1586
1931 + CH2     CH      CH      CH2     Cubic   3.3254   -0.4215   -1.686  1.1661
1932 + //Trappe
1933 + //Atom1 Atom2   Atom3   Atom4   Trappe  c0       c1        c2      c3
1934 + CH3     CH2     CH2     SH      Trappe  0.10507  -0.10342  0.03668 0.60874    
1935 + //Charmm
1936 + //Atom1 Atom2   Atom3   Atom4   Charmm  Kchi     n    delta  [Kchi n delta]
1937 + CT      CT      CT      C       Charmm  0.156    3    0.00
1938 + OH      CT      CT      OH      Charmm  0.144    3    0.00    1.175 2  0
1939 + HC      CT      CM      CM      Charmm  1.150    1    0.00    0.38  3 180
1940 + //Quartic
1941 + //Atom1 Atom2   Atom3   Atom4   Quartic          k4    k3    k2    k1    k0
1942 + //Polynomial
1943 + //Atom1 Atom2   Atom3   Atom4   Polynomial  n Kn     [m  Km]
1944 + S       CH2     CH2     C       Polynomial  0 2.218   1  2.905  2 -3.136  3 -0.7313  4 6.272  5 -7.528
1945 + end TorsionTypes
1946 + \end{code}
1947 +
1948 + Note that the parameters for a particular torsion type are the same
1949 + for any torsional quartet of the same atomic types (in the same or
1950 + reversed order).
1951 +
1952 + \subsection{\label{section:ffInversion}The InversionTypes block}
1953 +
1954 + Inversion potentials are often added to force fields to enforce
1955 + planarity around $sp^2$-hybridized carbons or to correct vibrational
1956 + frequencies for umbrella-like vibrational modes for central atoms
1957 + bonded to exactly three satellite groups.
1958 +
1959 + In OpenMD's version of an inversion, the central atom is entered {\it
1960 +  first} in each line in the {\tt InversionTypes} block. Note that
1961 + this is quite different than how other codes treat Improper torsional
1962 + potentials to mimic inversion behavior.  In some other widely-used
1963 + simulation packages, the central atom is treated as atom 3 in a
1964 + standard torsion form:
1965 + \begin{itemize}
1966 +  \item OpenMD:  I - (J - K - L)  (e.g. I is $sp^2$ hybridized carbon)
1967 +  \item AMBER:   I - J - K - L   (e.g. K is $sp^2$ hybridized carbon)
1968 + \end{itemize}
1969 +
1970 + The inversion angle itself is defined as:
1971 + \begin{equation}
1972 + \cos\omega_{i-jkl} = \left(\hat{\mathbf{r}}_{il} \times
1973 +  \hat{\mathbf{r}}_{ij}\right)\cdot\left( \hat{\mathbf{r}}_{il} \times
1974 +  \hat{\mathbf{r}}_{ik}\right)
1975 + \end{equation}
1976 + Here, $\hat{\mathbf{r}}_{\alpha\beta}$ are the set of unit bond
1977 + vectors between the central atoms $i$, and the satellite atoms $j$,
1978 + $k$, and $l$.  Note that other definitions of inversion angles are
1979 + possible, so users are encouraged to be particularly careful when
1980 + converting other force field files for use with OpenMD.
1981 +
1982 + There are many common ways to create planarity or umbrella behavior in
1983 + a potential energy function, and OpenMD implements a number of the
1984 + more common functions:
1985 + \begin{itemize}
1986 + \item {\tt ImproperCosine}:
1987 + \begin{equation*}
1988 + V_{\text{torsion}}(\omega) = \sum_n \frac{K_n}{2} \left( 1 + cos(n
1989 +  \omega - \delta_n) \right),
1990 + \end{equation*}
1991 + \item {\tt AmberImproper}:
1992 + \begin{equation*}
1993 +  V_{\text{torsion}}(\omega) =  \frac{v}{2} (1 - \cos\left(2 \left(\omega - \omega_0\right)\right),
1994 + \end{equation*}
1995 + \item {\tt Harmonic}:
1996 + \begin{equation*}
1997 + V_{\text{torsion}}(\omega) =  \frac{d}{2} \left(\omega - \omega_0\right).
1998 + \end{equation*}
1999 + \end{itemize}
2000 + \begin{code}[caption={[An example of an InversionTypes block.] A
2001 + simple example of a InversionTypes block.  Angles ($\delta_n$ and
2002 + $\omega_0$) angles are given in degrees, while energy parameters ($v,
2003 + K_n$) are given in kcal / mol.   The Harmonic Inversion type has a
2004 + force constant that must be given in kcal/mol/degrees$^2$.},
2005 + label={sch:InversionTypes}]
2006 + begin InversionTypes
2007 + //Harmonic
2008 + //Atom1 Atom2   Atom3   Atom4   Harmonic  d(kcal/mol/deg^2)  omega0
2009 + RCHar3  X       X       X       Harmonic  1.21876e-2         180.0
2010 + //AmberImproper
2011 + //Atom1 Atom2   Atom3   Atom4   AmberImproper   v(kcal/mol)
2012 + C       CT      N       O       AmberImproper   10.500000
2013 + CA      CA      CA      CT      AmberImproper   1.100000
2014 + //ImproperCosine
2015 + //Atom1 Atom2   Atom3   Atom4   ImproperCosine  Kn  n  delta_n  [Kn n delta_n]
2016 + end InversionTypes
2017 + \end{code}
2018 +
2019 + \section{\label{section::ffLongRange}Long Range Interactions}
2020 +
2021 + Calculating the long-range (non-bonded) potential involves a sum over
2022 + all pairs of atoms (except for those atoms which are involved in a
2023 + bond, bend, or torsion with each other).  Many of these interactions
2024 + can be inferred from the AtomTypes,
2025 +
2026 + \subsection{\label{section:ffNBinteraction}The NonBondedInteractions
2027 +  block}
2028 +
2029 + The user might want like to specify explicit or special interactions
2030 + that override the default non-bodned interactions that are inferred
2031 + from the AtomTypes.  To do this, OpenMD implements a
2032 + NonBondedInteractions block to allow the user to specify the following
2033 + (pair-wise) non-bonded interactions:
2034 +
2035 + \begin{itemize}
2036 + \item {\tt LennardJones}:
2037 + \begin{equation*}
2038 + V_{\text{NB}}(r) = 4 \epsilon_{ij} \left(
2039 +  \left(\frac{\sigma_{ij}}{r} \right)^{12} -
2040 +  \left(\frac{\sigma_{ij}}{r} \right)^{6} \right),
2041 + \end{equation*}
2042 + \item {\tt ShiftedMorse}:
2043 + \begin{equation*}
2044 + V_{\text{NB}}(r) = D_{ij} \left( e^{-2 \beta_{ij} (r -
2045 +     r^0)} - 2 e^{- \beta_{ij} (r -
2046 +     r^0)} \right),
2047 + \end{equation*}
2048 + \item {\tt RepulsiveMorse}:
2049 + \begin{equation*}
2050 + V_{\text{NB}}(r) = D_{ij} \left( e^{-2 \beta_{ij} (r -
2051 +     r^0)} \right),
2052 + \end{equation*}
2053 + \item {\tt RepulsivePower}:
2054 + \begin{equation*}
2055 +  V_{\text{NB}}(r) = \epsilon_{ij}
2056 +  \left(\frac{\sigma_{ij}}{r} \right)^{n_{ij}}.
2057 + \end{equation*}
2058 + \end{itemize}
2059 +
2060 + \begin{code}[caption={[An example of a NonBondedInteractions block.] A
2061 + simple example of a NonBondedInteractions block. Distances ($\sigma,
2062 + r_0$) are given in \AA, while energies ($\epsilon, D0$) are in
2063 + kcal/mol.  The Morse potentials have an additional parameter $\beta_0$
2064 + which is in units of \AA$^{-1}$.},
2065 + label={sch:InversionTypes}]
2066 + begin NonBondedInteractions
2067 +
2068 + //Lennard-Jones
2069 + //Atom1 Atom2   LennardJones    sigma  epsilon
2070 + Au      CH3     LennardJones    3.54   0.2146
2071 + Au      CH2     LennardJones    3.54   0.1749
2072 + Au      CH      LennardJones    3.54   0.1749
2073 + Au      S       LennardJones    2.40   8.465
2074 +
2075 + //Shifted Morse
2076 + //Atom1 Atom2   ShiftedMorse    r0     D0       beta0
2077 + Au      O_SPCE  ShiftedMorse    3.70   0.0424   0.769
2078 +
2079 + //Repulsive Morse
2080 + //Atom1 Atom2   RepulsiveMorse  r0     D0       beta0
2081 + Au      H_SPCE  RepulsiveMorse  -1.00  0.00850  0.769
2082 +
2083 + //Repulsive Power
2084 + //Atom1 Atom2   RepulsivePower   sigma    epsilon    n
2085 + Au      ON      RepulsivePower   3.47005  0.186208   11
2086 + Au      NO      RepulsivePower   3.53955  0.168629   11
2087 + end NonBondedInteractions
2088 + \end{code}
2089 +
2090   \section{\label{section:electrostatics}Electrostatics}
2091  
2092 < To aid in performing simulations in more traditional force fields, we
2093 < have added routines to carry out electrostatic interactions using a
2094 < number of different electrostatic summation methods.  These methods
2095 < are extended from the damped and cutoff-neutralized Coulombic sum
2096 < originally proposed by Wolf, {\it et al.}\cite{Wolf99} One of these,
2097 < the damped shifted force method, shows a remarkable ability to
2098 < reproduce the energetic and dynamic characteristics exhibited by
2099 < simulations employing lattice summation techniques.  The basic idea is
2100 < to construct well-behaved real-space summation methods using two tricks:
2092 > Because nearly all force fields involve electrostatic interactions in
2093 > one form or another, OpenMD implements a number of different
2094 > electrostatic summation methods.  These methods are extended from the
2095 > damped and cutoff-neutralized Coulombic sum originally proposed by
2096 > Wolf, {\it et al.}\cite{Wolf99} One of these, the damped shifted force
2097 > method, shows a remarkable ability to reproduce the energetic and
2098 > dynamic characteristics exhibited by simulations employing lattice
2099 > summation techniques.  The basic idea is to construct well-behaved
2100 > real-space summation methods using two tricks:
2101   \begin{enumerate}
2102   \item shifting through the use of image charges, and
2103   \item damping the electrostatic interaction.
# Line 1468 | Line 2216 | the shifted potential (eq. (\ref{eq:SPPot})) becomes
2216   \end{equation}
2217   the shifted potential (eq. (\ref{eq:SPPot})) becomes
2218   \begin{equation}
2219 < V_{\textrm{DSP}}(r) = q_iq_j\left(\frac{\textrm{erfc}\left(\alpha r\right)}{r}-\
1472 < frac{\textrm{erfc}\left(\alpha R_\textrm{c}\right)}{R_\textrm{c}}\right) \quad r
2219 > V_{\textrm{DSP}}(r) = q_iq_j\left(\frac{\textrm{erfc}\left(\alpha r\right)}{r}-\frac{\textrm{erfc}\left(\alpha R_\textrm{c}\right)}{R_\textrm{c}}\right) \quad r
2220   \leqslant R_\textrm{c},
2221   \label{eq:DSPPot}
2222   \end{equation}
# Line 1513 | Line 2260 | this reason, the default electrostatic summation metho
2260   this reason, the default electrostatic summation method utilized by
2261   {\sc OpenMD} is the DSF (Eq. \ref{eq:DSFPot}) with a damping parameter
2262   ($\alpha$) that is set algorithmically from the cutoff radius.
2263 +
2264 +
2265 + \section{\label{section:cutoffGroups}Switching Functions}
2266 +
2267 + Calculating the the long-range interactions for $N$ atoms involves
2268 + $N(N-1)/2$ evaluations of atomic distances if it is done in a brute
2269 + force manner.  To reduce the number of distance evaluations between
2270 + pairs of atoms, {\sc OpenMD} allows the use of hard or switched
2271 + cutoffs with Verlet neighbor lists.\cite{Allen87} Neutral groups which
2272 + contain charges can exhibit pathological forces unless the cutoff is
2273 + applied to the neutral groups evenly instead of to the individual
2274 + atoms.\cite{leach01:mm} {\sc OpenMD} allows users to specify cutoff
2275 + groups which may contain an arbitrary number of atoms in the molecule.
2276 + Atoms in a cutoff group are treated as a single unit for the
2277 + evaluation of the switching function:
2278 + \begin{equation}
2279 + V_{\mathrm{long-range}} = \sum_{a} \sum_{b>a} s(r_{ab}) \sum_{i \in a} \sum_{j \in b} V_{ij}(r_{ij}),
2280 + \end{equation}
2281 + where $r_{ab}$ is the distance between the centers of mass of the two
2282 + cutoff groups ($a$ and $b$).
2283 +
2284 + The sums over $a$ and $b$ are over the cutoff groups that are present
2285 + in the simulation.  Atoms which are not explicitly defined as members
2286 + of a {\tt cutoffGroup} are treated as a group consisting of only one
2287 + atom.  The switching function, $s(r)$ is the standard cubic switching
2288 + function,
2289 + \begin{equation}
2290 + S(r) =
2291 +        \begin{cases}
2292 +        1 & \text{if $r \le r_{\text{sw}}$},\\
2293 +        \frac{(r_{\text{cut}} + 2r - 3r_{\text{sw}})(r_{\text{cut}} - r)^2}
2294 +        {(r_{\text{cut}} - r_{\text{sw}})^3}
2295 +        & \text{if $r_{\text{sw}} < r \le r_{\text{cut}}$}, \\
2296 +        0 & \text{if $r > r_{\text{cut}}$.}
2297 +        \end{cases}
2298 + \label{eq:dipoleSwitching}
2299 + \end{equation}
2300 + Here, $r_{\text{sw}}$ is the {\tt switchingRadius}, or the distance
2301 + beyond which interactions are reduced, and $r_{\text{cut}}$ is the
2302 + {\tt cutoffRadius}, or the distance at which interactions are
2303 + truncated.  
2304 +
2305 + Users of {\sc OpenMD} do not need to specify the {\tt cutoffRadius} or
2306 + {\tt switchingRadius}.  
2307 + If the {\tt cutoffRadius} was not explicitly set, OpenMD will attempt
2308 + to guess an appropriate choice.  If the system contains electrostatic
2309 + atoms, the default cutoff radius is 12 \AA.  In systems without
2310 + electrostatic (charge or multipolar) atoms, the atom types present in the simulation will be
2311 + polled for suggested cutoff values (e.g. $2.5 max(\left\{ \sigma
2312 +  \right\})$ for Lennard-Jones atoms.   The largest suggested value
2313 + that was found will be used.
2314 +
2315 + By default, OpenMD uses shifted force potentials to force the
2316 + potential energy and forces to smoothly approach zero at the cutoff
2317 + radius.  If the user would like to use another cutoff method
2318 + they may do so by setting the {\tt cutoffMethod} parameter to:
2319 + \begin{itemize}
2320 + \item {\tt HARD}
2321 + \item {\tt SWITCHED}
2322 + \item {\tt SHIFTED\_FORCE} (default):
2323 + \item {\tt TAYLOR\_SHIFTED}
2324 + \item {\tt SHIFTED\_POTENTIAL}
2325 + \end{itemize}
2326 +
2327 + The {\tt switchingRadius} is set to a default value of 95\% of the
2328 + {\tt cutoffRadius}.  In the special case of a simulation containing
2329 + {\it only} Lennard-Jones atoms, the default switching radius takes the
2330 + same value as the cutoff radius, and {\sc OpenMD} will use a shifted
2331 + potential to remove discontinuities in the potential at the cutoff.
2332 + Both radii may be specified in the meta-data file.
2333  
2334 +
2335   \section{\label{section:pbc}Periodic Boundary Conditions}
2336  
2337   \newcommand{\roundme}{\operatorname{round}}
# Line 2621 | Line 3439 | tensor.
3439  
3440   \section{Constant Pressure without periodic boundary conditions (The LangevinHull)}
3441  
3442 < The Langevin Hull uses an external bath at a fixed constant pressure
3442 > The Langevin Hull\cite{Vardeman2011} uses an external bath at a fixed constant pressure
3443   ($P$) and temperature ($T$) with an effective solvent viscosity
3444   ($\eta$).  This bath interacts only with the objects on the exterior
3445   hull of the system.  Defining the hull of the atoms in a simulation is
# Line 2933 | Line 3751 | Harmonic Forces are used by default
3751   \label{table:zconParams}
3752   \end{longtable}
3753  
3754 < \chapter{\label{section:restraints}Restraints}
3755 < Restraints are external potentials that are added to a system to keep
3756 < particular molecules or collections of particles close to some
3757 < reference structure.  A restraint can be a collective
3754 > % \chapter{\label{section:restraints}Restraints}
3755 > % Restraints are external potentials that are added to a system to
3756 > % keep particular molecules or collections of particles close to some
3757 > % reference structure.  A restraint can be a collective
3758  
3759   \chapter{\label{section:thermInt}Thermodynamic Integration}
3760  
# Line 3076 | Line 3894 | Einstein crystal
3894   \label{table:thermIntParams}
3895   \end{longtable}
3896  
3897 + \chapter{\label{section:rnemd}Reverse Non-Equilibrium Molecular Dynamics (RNEMD)}
3898  
3899 + There are many ways to compute transport properties from molecular
3900 + dynamics simulations.  Equilibrium Molecular Dynamics (EMD)
3901 + simulations can be used by computing relevant time correlation
3902 + functions and assuming linear response theory holds.  For some transport properties (notably thermal conductivity), EMD approaches
3903 + are subject to noise and poor convergence of the relevant
3904 + correlation functions. Traditional Non-equilibrium Molecular Dynamics
3905 + (NEMD) methods impose a gradient (e.g. thermal or momentum) on a
3906 + simulation.  However, the resulting flux is often difficult to
3907 + measure. Furthermore, problems arise for NEMD simulations of
3908 + heterogeneous systems, such as phase-phase boundaries or interfaces,
3909 + where the type of gradient to enforce at the boundary between
3910 + materials is unclear.
3911 +
3912 + {\it Reverse} Non-Equilibrium Molecular Dynamics (RNEMD) methods adopt
3913 + a different approach in that an unphysical {\it flux} is imposed
3914 + between different regions or ``slabs'' of the simulation box.  The
3915 + response of the system is to develop a temperature or momentum {\it
3916 +  gradient} between the two regions. Since the amount of the applied
3917 + flux is known exactly, and the measurement of gradient is generally
3918 + less complicated, imposed-flux methods typically take shorter
3919 + simulation times to obtain converged results for transport properties.
3920 +
3921 + \begin{figure}
3922 + \includegraphics[width=\linewidth]{rnemdDemo}
3923 + \caption{The (VSS) RNEMD approach imposes unphysical transfer of both
3924 +  linear momentum and kinetic energy between a ``hot'' slab and a
3925 +  ``cold'' slab in the simulation box.  The system responds to this
3926 +  imposed flux by generating both momentum and temperature gradients.
3927 +  The slope of the gradients can then be used to compute transport
3928 +  properties (e.g. shear viscosity and thermal conductivity).}
3929 + \label{rnemdDemo}
3930 + \end{figure}
3931 +
3932 + \section{\label{section:algo}Three algorithms for carrying out RNEMD simulations}
3933 + \subsection{\label{subsection:swapping}The swapping algorithm}
3934 + The original ``swapping'' approaches by M\"{u}ller-Plathe {\it et
3935 +  al.}\cite{ISI:000080382700030,MullerPlathe:1997xw} can be understood
3936 + as a sequence of imaginary elastic collisions between particles in
3937 + opposite slabs.  In each collision, the entire momentum vectors of
3938 + both particles may be exchanged to generate a thermal
3939 + flux. Alternatively, a single component of the momentum vectors may be
3940 + exchanged to generate a shear flux.  This algorithm turns out to be
3941 + quite useful in many simulations. However, the M\"{u}ller-Plathe
3942 + swapping approach perturbs the system away from ideal
3943 + Maxwell-Boltzmann distributions, and this may leads to undesirable
3944 + side-effects when the applied flux becomes large.\cite{Maginn:2010}
3945 + This limits the applicability of the swapping algorithm, so in OpenMD,
3946 + we have implemented two additional algorithms for RNEMD in addition to the
3947 + original swapping approach.
3948 +
3949 + \subsection{\label{subsection:nivs}Non-Isotropic Velocity Scaling (NIVS)}
3950 + Instead of having momentum exchange between {\it individual particles}
3951 + in each slab, the NIVS algorithm applies velocity scaling to all of
3952 + the selected particles in both slabs.\cite{kuang:164101} A combination of linear
3953 + momentum, kinetic energy, and flux constraint equations governs the
3954 + amount of velocity scaling performed at each step. Interested readers
3955 + should consult ref. \citealp{kuang:164101} for further details on the
3956 + methodology.
3957 +
3958 + NIVS has been shown to be very effective at producing thermal
3959 + gradients and for computing thermal conductivities, particularly for
3960 + heterogeneous interfaces.  Although the NIVS algorithm can also be
3961 + applied to impose a directional momentum flux, thermal anisotropy was
3962 + observed in relatively high flux simulations, and the method is not
3963 + suitable for imposing a shear flux or for computing shear viscosities.
3964 +
3965 + \subsection{\label{subsection:vss}Velocity Shearing and Scaling (VSS)}
3966 + The third RNEMD algorithm implemented in OpenMD utilizes a series of
3967 + simultaneous velocity shearing and scaling exchanges between the two
3968 + slabs.\cite{2012MolPh.110..691K}  This method results in a set of simpler equations to satisfy
3969 + the conservation constraints while creating a desired flux between the
3970 + two slabs.
3971 +
3972 + The VSS approach is versatile in that it may be used to implement both
3973 + thermal and shear transport either separately or simultaneously.
3974 + Perturbations of velocities away from the ideal Maxwell-Boltzmann
3975 + distributions are minimal, and thermal anisotropy is kept to a
3976 + minimum.  This ability to generate simultaneous thermal and shear
3977 + fluxes has been utilized to map out the shear viscosity of SPC/E water
3978 + over a wide range of temperatures (90~K) just with a single simulation.
3979 + VSS-RNEMD also allows the directional momentum flux to have
3980 + arbitary directions, which could aid in the study of anisotropic solid
3981 + surfaces in contact with liquid environments.
3982 +
3983 + \section{\label{section:usingRNEMD}Using OpenMD to perform a RNEMD simulation}
3984 + \subsection{\label{section:rnemdParams} What the user needs to specify}
3985 + To carry out a RNEMD simulation,
3986 + a user must specify a number of parameters in the MetaData (.md) file.
3987 + Because the RNEMD methods have a large number of parameters, these
3988 + must be enclosed in a {\it separate} {\tt RNEMD\{...\}} block.  The most important
3989 + parameters to specify are the {\tt useRNEMD}, {\tt fluxType} and flux
3990 + parameters. Most other parameters (summarized in table
3991 + \ref{table:rnemd}) have reasonable default values.  {\tt fluxType}
3992 + sets up the kind of exchange that will be carried out between the two
3993 + slabs (either Kinetic Energy ({\tt KE}) or momentum ({\tt Px, Py, Pz,
3994 +  Pvector}), or some combination of these).  The flux is specified
3995 + with the use of three possible parameters: {\tt kineticFlux} for
3996 + kinetic energy exchange, as well as {\tt momentumFlux} or {\tt
3997 +  momentumFluxVector} for simulations with directional exchange.
3998 +
3999 + \subsection{\label{section:rnemdResults} Processing the results}
4000 + OpenMD will generate a {\tt .rnemd}
4001 + file with the same prefix as the original {\tt .md} file.  This file
4002 + contains a running average of properties of interest computed within a
4003 + set of bins that divide the simulation cell along the $z$-axis.  The
4004 + first column of the {\tt .rnemd} file is the $z$ coordinate of the
4005 + center of each bin, while following columns may contain the average
4006 + temperature, velocity, or density within each bin.  The output format
4007 + in the {\tt .rnemd} file can be altered with the {\tt outputFields},
4008 + {\tt outputBins}, and {\tt outputFileName} parameters.  A report at
4009 + the top of the {\tt .rnemd} file contains the current exchange totals
4010 + as well as the average flux applied during the simulation.  Using the
4011 + slope of the temperature or velocity gradient obtaine from the {\tt
4012 +  .rnemd} file along with the applied flux, the user can very simply
4013 + arrive at estimates of thermal conductivities ($\lambda$),
4014 + \begin{equation}
4015 + J_z = -\lambda \frac{\partial T}{\partial z},
4016 + \end{equation}
4017 + and shear viscosities ($\eta$),
4018 + \begin{equation}
4019 + j_z(p_x) = -\eta \frac{\partial \langle v_x \rangle}{\partial z}.
4020 + \end{equation}
4021 + Here, the quantities on the left hand side are the actual flux values
4022 + (in the header of the {\tt .rnemd} file), while the slopes are
4023 + obtained from linear fits to the gradients observed in the {\tt
4024 +  .rnemd} file.
4025 +
4026 + More complicated simulations (including interfaces) require a bit more
4027 + care.  Here the second derivative may be required to compute the
4028 + interfacial thermal conductance,
4029 + \begin{align}
4030 +  G^\prime &= \left(\nabla\lambda \cdot \mathbf{\hat{n}}\right)_{z_0} \\
4031 +  &= \frac{\partial}{\partial z}\left(-\frac{J_z}{
4032 +      \left(\frac{\partial T}{\partial z}\right)}\right)_{z_0} \\
4033 +  &= J_z\left(\frac{\partial^2 T}{\partial z^2}\right)_{z_0} \Big/
4034 +  \left(\frac{\partial T}{\partial z}\right)_{z_0}^2.
4035 +  \label{derivativeG}
4036 + \end{align}
4037 + where $z_0$ is the location of the interface between two materials and
4038 + $\mathbf{\hat{n}}$ is a unit vector normal to the interface.  We
4039 + suggest that users interested in interfacial conductance consult
4040 + reference \citealp{kuang:AuThl} for other approaches to computing $G$.
4041 + Users interested in {\it friction coefficients} at heterogeneous
4042 + interfaces may also find reference \citealp{2012MolPh.110..691K}
4043 + useful.
4044 +
4045 + \newpage
4046 +
4047 + \begin{longtable}[c]{JKLM}
4048 + \caption{Meta-data Keywords: Parameters for RNEMD simulations}\\
4049 + \multicolumn{4}{c}{The following keywords must be enclosed inside a {\tt RNEMD\{...\}} block.}
4050 + \\ \hline
4051 + {\bf keyword} & {\bf units} & {\bf use} & {\bf remarks}  \\ \hline
4052 + \endhead
4053 + \hline
4054 + \endfoot
4055 + {\tt useRNEMD} & logical & perform RNEMD? & default is ``false'' \\
4056 + {\tt objectSelection} & string & see section \ref{section:syntax}
4057 + for selection syntax & default is ``select all'' \\
4058 + {\tt method} & string & exchange method & one of the following:
4059 + {\tt Swap, NIVS,} or {\tt VSS}  (default is {\tt VSS}) \\
4060 + {\tt fluxType} & string & what is being exchanged between slabs? & one
4061 + of the following: {\tt KE, Px, Py, Pz, Pvector, KE+Px, KE+Py, KE+Pvector} \\
4062 + {\tt kineticFlux} & kcal mol$^{-1}$ \AA$^{-2}$ fs$^{-1}$ & specify the kinetic energy flux &  \\
4063 + {\tt momentumFlux} & amu \AA$^{-1}$ fs$^{-2}$ & specify the momentum flux & \\
4064 + {\tt momentumFluxVector} & amu \AA$^{-1}$ fs$^{-2}$ & specify the momentum flux when
4065 + {\tt Pvector} is part of the exchange & Vector3d input\\
4066 + {\tt exchangeTime} & fs & how often to perform the exchange & default is 100 fs\\
4067 +
4068 + {\tt slabWidth} & $\mbox{\AA}$ & width of the two exchange slabs & default is $\mathsf{H}_{zz} / 10.0$ \\
4069 + {\tt slabAcenter} & $\mbox{\AA}$ & center of the end slab & default is 0 \\
4070 + {\tt slabBcenter} & $\mbox{\AA}$ & center of the middle slab & default is $\mathsf{H}_{zz} / 2$ \\
4071 + {\tt outputFileName} & string & file name for output histograms & default is the same prefix as the
4072 + .md file, but with the {\tt .rnemd} extension \\
4073 + {\tt outputBins} & int & number of $z$-bins in the output histogram &
4074 + default is 20 \\
4075 + {\tt outputFields} & string & columns to print in the {\tt .rnemd}
4076 + file where each column is separated by a pipe ($\mid$) symbol. & Allowed column names are: {\sc z, temperature, velocity, density} \\
4077 + \label{table:rnemd}
4078 + \end{longtable}
4079 +
4080   \chapter{\label{section:minimizer}Energy Minimization}
4081  
4082 < As one of the basic procedures of molecular modeling, energy
3083 < minimization is used to identify local configurations that are stable
4082 > Energy minimization is used to identify local configurations that are stable
4083   points on the potential energy surface. There is a vast literature on
4084   energy minimization algorithms have been developed to search for the
4085   global energy minimum as well as to find local structures which are
# Line 3207 | Line 4206 | diagram of the class heirarchy:
4206   \begin{figure}
4207   \centering
4208   \includegraphics[width=3in]{heirarchy.pdf}
4209 < \caption[Class heirarchy for StuntDoubles in {\sc OpenMD}-4]{ \\ The
4210 < class heirarchy of StuntDoubles in {\sc OpenMD}-4. The selection
4209 > \caption[Class heirarchy for StuntDoubles in {\sc OpenMD}]{ \\ The
4210 > class heirarchy of StuntDoubles in {\sc OpenMD}. The selection
4211   syntax allows the user to select any of the objects that are descended
4212   from a StuntDouble.}
4213   \label{fig:heirarchy}
# Line 3388 | Line 4387 | VMD. The options available for Dump2XYZ are as follows
4387    -z & {\tt -{}-zconstraint}  &                replace the atom types of zconstraint molecules  (default=off) \\
4388    -r & {\tt -{}-rigidbody}  &                  add a pseudo COM atom to rigidbody  (default=off) \\
4389    -t & {\tt -{}-watertype} &                   replace the atom type of water model (default=on) \\
4390 <  -b & {\tt -{}-basetype}  &                   using base atom type  (default=off) \\
4390 >  -b & {\tt -{}-basetype}  &                   using base atom type
4391 >  (default=off) \\
4392 >  -v& {\tt -{}-velocities}             & Print velocities in xyz file  (default=off)\\
4393 >  -f& {\tt -{}-forces}                 & Print forces xyz file  (default=off)\\
4394 >  -u& {\tt -{}-vectors}                & Print vectors (dipoles, etc) in xyz file  
4395 >                                  (default=off)\\
4396 >  -c& {\tt -{}-charges}                & Print charges in xyz file  (default=off)\\
4397 >  -e& {\tt -{}-efield}                 & Print electric field vector in xyz file  
4398 >                                  (default=off)\\
4399       & {\tt -{}-repeatX=INT}  &                 The number of images to repeat in the x direction  (default=`0') \\
4400       & {\tt -{}-repeatY=INT} &                 The number of images to repeat in the y direction  (default=`0') \\
4401       &  {\tt -{}-repeatZ=INT}  &                The number of images to repeat in the z direction  (default=`0') \\
# Line 3480 | Line 4487 | The options available for {\tt StaticProps} are as fol
4487      & {\tt -{}-sele1=selection script}   & select the first StuntDouble set \\
4488      & {\tt -{}-sele2=selection script}   & select the second StuntDouble set \\
4489      & {\tt -{}-sele3=selection script}   & select the third StuntDouble set \\
4490 <    & {\tt -{}-refsele=selection script} & select reference (can only be used with {\tt -{}-gxyz}) \\
4490 >    & {\tt -{}-refsele=selection script} & select reference (can only
4491 >    be used with {\tt -{}-gxyz}) \\
4492 >    & {\tt -{}-comsele=selection script}
4493 >                               & select stunt doubles for center-of-mass
4494 >                                  reference point\\
4495 >    & {\tt -{}-seleoffset=INT}        & global index offset for a second object (used
4496 >                                  to define a vector between sites in molecule)\\
4497 >
4498      & {\tt -{}-molname=STRING}           & molecule name \\
4499      & {\tt -{}-begin=INT}                & begin internal index \\
4500      & {\tt -{}-end=INT}                  & end internal index \\
4501 +    & {\tt -{}-radius=DOUBLE}            & nanoparticle radius\\
4502   \hline
4503   \multicolumn{3}{|l|}{One option from the following group of options is required:} \\
4504   \hline
4505 <    &  {\tt -{}-gofr}                    &  $g(r)$ \\
4506 <    &  {\tt -{}-r\_theta}                 &  $g(r, \cos(\theta))$ \\
4507 <    &  {\tt -{}-r\_omega}                 &  $g(r, \cos(\omega))$ \\
4508 <    &  {\tt -{}-theta\_omega}             &  $g(\cos(\theta), \cos(\omega))$ \\
4505 >    & {\tt -{}-bo}          & bond order parameter ({\tt -{}-rcut} must be specified) \\
4506 >    & {\tt -{}-bor}         & bond order parameter as a function of
4507 >    radius  ({\tt -{}-rcut} must be specified) \\
4508 >    & {\tt -{}-bad}         & $N(\theta)$ bond angle density within ({\tt -{}-rcut} must be specified) \\
4509 >    & {\tt -{}-count}       & count of molecules matching selection
4510 >    criteria (and associated statistics) \\
4511 >  -g&  {\tt -{}-gofr}                    &  $g(r)$ \\
4512 >    &  {\tt -{}-gofz}                    &  $g(z)$ \\
4513 >    &  {\tt -{}-r\_theta}                &  $g(r, \cos(\theta))$ \\
4514 >    &  {\tt -{}-r\_omega}                &  $g(r, \cos(\omega))$ \\
4515 >    &  {\tt -{}-r\_z}                    &  $g(r, z)$ \\
4516 >    &  {\tt -{}-theta\_omega}            &  $g(\cos(\theta), \cos(\omega))$ \\
4517      &  {\tt -{}-gxyz}                    &  $g(x, y, z)$ \\
4518 <    &  {\tt -{}-p2}                      &  $P_2$ order parameter ({\tt -{}-sele1} and {\tt -{}-sele2} must be specified) \\
4518 >    &  {\tt -{}-twodgofr}                & 2D $g(r)$ (Slab width {\tt -{}-dz} must be specified)\\
4519 >  -p&  {\tt -{}-p2}                      &  $P_2$ order parameter  ({\tt -{}-sele1} must be specified, {\tt -{}-sele2} is optional) \\
4520 >    &  {\tt -{}-rp2}                     &  Ripple order parameter ({\tt -{}-sele1} and {\tt -{}-sele2} must be specified) \\
4521      &  {\tt -{}-scd}                     &  $S_{CD}$ order parameter(either {\tt -{}-sele1}, {\tt -{}-sele2}, {\tt -{}-sele3} are specified or {\tt -{}-molname}, {\tt -{}-begin}, {\tt -{}-end} are specified) \\
4522 <    &  {\tt -{}-density}                 &  density plot ({\tt -{}-sele1} must be specified) \\
4523 <    &  {\tt -{}-slab\_density}           &  slab density ({\tt -{}-sele1} must be specified)
4522 >  -d&  {\tt -{}-density}                 &  density plot \\
4523 >    &  {\tt -{}-slab\_density}           &  slab density \\
4524 >    &  {\tt -{}-p\_angle}                & $p(\cos(\theta))$ ($\theta$
4525 >    is the angle between molecular axis and radial vector from origin\\
4526 >    &  {\tt -{}-hxy}                     & Calculates the undulation  spectrum, $h(x,y)$, of an interface \\
4527 >    &  {\tt -{}-rho\_r}                  & $\rho(r)$\\
4528 >    &  {\tt -{}-angle\_r}                &  $\theta(r)$ (spatially resolves the
4529 >    angle between the molecular axis and the radial vector from the
4530 >    origin)\\
4531 >    &  {\tt -{}-hullvol}                 & hull volume of nanoparticle\\
4532 >    &  {\tt -{}-rodlength}               & length of nanorod\\
4533 >  -Q&  {\tt -{}-tet\_param}              & tetrahedrality order parameter ($Q$)\\
4534 >    &  {\tt -{}-tet\_param\_z}           & spatially-resolved tetrahedrality order
4535 >                                   parameter $Q(z)$\\
4536 >    &  {\tt -{}-rnemdz}                  & slab-resolved RNEMD statistics (temperature,
4537 >                                  density, velocity)\\
4538 >    &  {\tt -{}-rnemdr}                  & shell-resolved RNEMD statistics (temperature,
4539 >                                  density, angular velocity)
4540   \end{longtable}
4541  
4542   \subsection{\label{section:DynamicProps}DynamicProps}
# Line 3536 | Line 4577 | The options available for DynamicProps are as follows:
4577    -o& {\tt -{}-output=filename}        & output file name \\
4578      & {\tt -{}-sele1=selection script} & select first StuntDouble set \\
4579      & {\tt -{}-sele2=selection script} & select second StuntDouble set (if sele2 is not set, use script from sele1) \\
4580 +    & {\tt -{}-order=INT}              & Lengendre Polynomial Order\\
4581 +  -z& {\tt -{}-nzbins=INT}             & Number of $z$ bins (default=`100`)\\
4582 +  -m& {\tt -{}-memory=memory specification}
4583 +                                &Available memory  
4584 +                                  (default=`2G`)\\
4585   \hline
4586   \multicolumn{3}{|l|}{One option from the following group of options is required:} \\
4587   \hline
4588 <  -r& {\tt -{}-rcorr}                  & compute mean square displacement \\
4589 <  -v& {\tt -{}-vcorr}                  & compute velocity correlation function \\
4590 <  -d& {\tt -{}-dcorr}                  & compute dipole correlation function
4588 >  -s& {\tt -{}-selecorr}               & selection correlation function \\
4589 >  -r& {\tt -{}-rcorr}                  & compute mean squared displacement \\
4590 >  -v& {\tt -{}-vcorr}                  & velocity autocorrelation function \\
4591 >  -d& {\tt -{}-dcorr}                  & dipole correlation function \\
4592 >  -l& {\tt -{}-lcorr}                  & Lengendre correlation function \\
4593 >    & {\tt -{}-lcorrZ}                 & Lengendre correlation function binned by $z$ \\
4594 >    & {\tt -{}-cohZ}                   & Lengendre correlation function for OH bond vectors binned by $z$\\
4595 >  -M& {\tt -{}-sdcorr}                 & System dipole correlation function\\
4596 >    & {\tt -{}-r\_rcorr}               & Radial mean squared displacement\\
4597 >    & {\tt -{}-thetacorr}              & Angular mean squared displacement\\
4598 >    & {\tt -{}-drcorr}                 & Directional mean squared displacement for particles with unit vectors\\
4599 >    & {\tt -{}-helfandEcorr}           & Helfand moment for thermal conductvity\\
4600 >  -p& {\tt -{}-momentum}               & Helfand momentum for viscosity\\
4601 >    & {\tt -{}-stresscorr}             & Stress tensor correlation function
4602   \end{longtable}
4603  
4604   \chapter{\label{section:PreparingInput} Preparing Input Configurations}
# Line 3608 | Line 4665 | expect the the input specifier on the command line.
4665   to {\tt atom2md}, but they use a specific input format and do not
4666   expect the the input specifier on the command line.
4667  
4668 +
4669   \section{\label{section:SimpleBuilder}SimpleBuilder}
4670  
4671   {\tt SimpleBuilder} creates simple lattice structures.  It requires an
# Line 3634 | Line 4692 | The options available for SimpleBuilder are as follows
4692      &  {\tt -{}-nz=INT}            &  number of unit cells in z
4693   \end{longtable}
4694  
4695 + \section{\label{section:icosahedralBuilder}icosahedralBuilder}
4696 +
4697 + {\tt icosahedralBuilder} creates single-component geometric solids
4698 + that can be useful in simulating nanostructures.  Like the other
4699 + builders, it requires an initial, but skeletal {\sc OpenMD} file to
4700 + specify the component that is to be placed on the lattice.  The total
4701 + number of placed molecules will be shown at the top of the
4702 + configuration file that is generated, and that number may not match
4703 + the original meta-data file, so a new meta-data file is also generated
4704 + which matches the lattice structure.
4705 +
4706 + The options available for icosahedralBuilder are as follows:
4707 + \begin{longtable}[c]{|EFG|}
4708 + \caption{icosahedralBuilder Command-line Options}
4709 + \\ \hline
4710 + {\bf option} & {\bf verbose option} & {\bf behavior} \\ \hline
4711 + \endhead
4712 + \hline
4713 + \endfoot
4714 +  -h& {\tt -{}-help}               & Print help and exit\\
4715 +  -V& {\tt -{}-version}            & Print version and exit\\
4716 +  -o& {\tt -{}-output=STRING}      & Output file name\\
4717 +  -n& {\tt -{}-shells=INT}         & Nanoparticle shells\\
4718 +  -d& {\tt -{}-latticeConstant=DOUBLE} & Lattice spacing in Angstroms for cubic lattice.\\
4719 +  -c& {\tt -{}-columnAtoms=INT}        & Number of atoms along central
4720 +  column (Decahedron only)\\
4721 +  -t& {\tt -{}-twinAtoms=INT}          & Number of atoms along twin
4722 +  boundary (Decahedron only) \\
4723 +  -p& {\tt -{}-truncatedPlanes=INT}   & Number of truncated planes (Curling-stone Decahedron only)\\
4724 + \hline
4725 + \multicolumn{3}{|l|}{One option from the following group of options is required:} \\
4726 + \hline
4727 +   & {\tt -{}-ico}    & Create an Icosahedral cluster \\
4728 +   & {\tt -{}-deca}   & Create a regualar Decahedral cluster\\
4729 +   & {\tt -{}-ino}    & Create an Ino Decahedral cluster\\
4730 +   & {\tt -{}-marks}  & Create a Marks Decahedral cluster\\
4731 +   & {\tt -{}-stone}  & Create a Curling-stone Decahedral cluster
4732 + \end{longtable}
4733 +
4734 +
4735   \section{\label{section:Hydro}Hydro}
4736   {\tt Hydro} generates resistance tensor ({\tt .diff}) files which are
4737   required when using the Langevin integrator using complex rigid
# Line 3667 | Line 4765 | hydrodynamic calculations will not be performed (defau
4765   \end{longtable}
4766  
4767  
4768 +
4769 +
4770 +
4771   \chapter{\label{section:parallelization} Parallel Simulation Implementation}
4772  
4773   Although processor power is continually improving, it is still
# Line 3750 | Line 4851 | DMR-0079647.
4851   DMR-0079647.
4852  
4853  
4854 < \bibliographystyle{jcc}
4854 > \bibliographystyle{aip}
4855   \bibliography{openmdDoc}
4856  
4857   \end{document}

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines