ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/openmdDocs/openmdDoc.tex
(Generate patch)

Comparing trunk/openmdDocs/openmdDoc.tex (file contents):
Revision 3708 by kstocke1, Mon Nov 22 22:34:45 2010 UTC vs.
Revision 3709 by gezelter, Wed Nov 24 20:44:51 2010 UTC

# Line 41 | Line 41
41  
42   \title{{\sc OpenMD}: Molecular Dynamics in the Open}
43  
44 < \author{Shenyu Kuang, Chunlei Li, Charles F. Vardeman II, \\
45 < Teng Lin, Christopher J. Fennell,  Xiuquan Sun, \\
46 < Kyle Daily, Yang Zheng, Matthew A. Meineke, and J. Daniel Gezelter\\
47 < Department of Chemistry and Biochemistry\\
48 < University of Notre Dame\\
49 < Notre Dame, Indiana 46556}
44 > \author{Kelsey M. Stocker, Shenyu Kuang, Charles F. Vardeman II, \\
45 >  Teng Lin, Christopher J. Fennell,  Xiuquan Sun, \\
46 >  Chunlei Li, Kyle Daily, Yang Zheng, Matthew A. Meineke, and \\
47 >  J. Daniel Gezelter \\
48 >  Department of Chemistry and Biochemistry\\
49 >  University of Notre Dame\\
50 >  Notre Dame, Indiana 46556}
51  
52   \maketitle
53  
# Line 497 | Line 498 | are SD and CG. Either {\tt ensemble} or {\tt minimizer
498   {\tt minimizer} & string & Chooses a minimizer & Possible minimizers
499   are SD and CG. Either {\tt ensemble} or {\tt minimizer} must be specified. \\
500   {\tt ensemble} & string & Sets the ensemble. & Possible ensembles are
501 < NVE, NVT, NPTi, NPAT, NPTf, NPTxyz, LD and LHull.  Either {\tt ensemble}
501 > NVE, NVT, NPTi, NPAT, NPTf, NPTxyz, LD and LangevinHull.  Either {\tt ensemble}
502   or {\tt minimizer} must be specified. \\
503   {\tt dt} & fs & Sets the time step. & Selection of {\tt dt} should be
504   small enough to sample the fastest motion of the simulation. ({\tt
# Line 707 | Line 708 | molecule{
708    <MetaData>
709   molecule{
710    name = "I2";
711 <  atom[0]{
712 <    type = "I";
713 <  }
713 <  atom[1]{
714 <    type = "I";
715 <  }
716 <  bond{
717 <    members( 0, 1);
718 <  }
711 >  atom[0]{ type = "I"; }
712 >  atom[1]{ type = "I"; }
713 >  bond{ members( 0, 1); }
714   }
715   molecule{
716    name = "HCl"
717 <  atom[0]{
718 <    type = "H";
719 <  }
725 <  atom[1]{
726 <    type = "Cl";
727 <  }
728 <  bond{
729 <    members( 0, 1);
730 <  }
717 >  atom[0]{ type = "H";}
718 >  atom[1]{ type = "Cl";}
719 >  bond{ members( 0, 1); }
720   }
721   component{
722    type = "HCl";
# Line 1906 | Line 1895 | LD & Langevin Dynamics & {\tt ensemble = LD;} \\
1895   &  (with separate barostats on each box dimension) & \\
1896   LD & Langevin Dynamics & {\tt ensemble = LD;} \\
1897   &  (approximates the effects of an implicit solvent) & \\
1898 < LangevinHull & Non-periodic Langevin Dynamics  & {\tt ensemble = LHull;} \\
1898 > LangevinHull & Non-periodic Langevin Dynamics  & {\tt ensemble = LangevinHull;} \\
1899   & (Langevin Dynamics for molecules on convex hull;\\
1900   & Newtonian for interior molecules) & \\
1901   \end{tabular}
# Line 2630 | Line 2619 | tensor.
2619   \label{table:ldParameters}
2620   \end{longtable}
2621  
2622 < \section{Langevin Hull Dynamics (LHull)}
2622 > \section{Constant Pressure without periodic boundary conditions (The LangevinHull)}
2623  
2624   The Langevin Hull uses an external bath at a fixed constant pressure
2625   ($P$) and temperature ($T$) with an effective solvent viscosity
# Line 2706 | Line 2695 | fluctuations of the random force, $\mathbf{R}(t)$, by
2695   depends on the geometry and surface area of facet $f$ and the
2696   viscosity of the bath.  The resistance tensor is related to the
2697   fluctuations of the random force, $\mathbf{R}(t)$, by the
2698 < fluctuation-dissipation theorem,
2710 < \begin{eqnarray}
2711 < \left< {\mathbf R}_f(t) \right> & = & 0 \\
2712 < \left<{\mathbf R}_f(t) {\mathbf R}_f^T(t^\prime)\right> & = & 2 k_B T\
2713 < \Xi_f(t)\delta(t-t^\prime).
2714 < \label{eq:randomForce}
2715 < \end{eqnarray}
2698 > fluctuation-dissipation theorem (see Eq. \ref{eq:randomForce}).
2699  
2700   Once the resistance tensor is known for a given facet, a stochastic
2701   vector that has the properties in Eq. (\ref{eq:randomForce}) can be
2702   calculated efficiently by carrying out a Cholesky decomposition to
2703 < obtain the square root matrix of the resistance tensor,
2704 < \begin{equation}
2722 < \Xi_f = {\bf S} {\bf S}^{T},
2723 < \label{eq:Cholesky}
2724 < \end{equation}
2725 < where ${\bf S}$ is a lower triangular matrix.\cite{Schlick2002} A
2726 < vector with the statistics required for the random force can then be
2727 < obtained by multiplying ${\bf S}$ onto a random 3-vector ${\bf Z}$ which
2728 < has elements chosen from a Gaussian distribution, such that:
2729 < \begin{equation}
2730 < \langle {\bf Z}_i \rangle = 0, \hspace{1in} \langle {\bf Z}_i \cdot
2731 < {\bf Z}_j \rangle = \frac{2 k_B T}{\delta t} \delta_{ij},
2732 < \end{equation}
2733 < where $\delta t$ is the timestep in use during the simulation. The
2734 < random force, ${\bf R}_{f} = {\bf S} {\bf Z}$, can be shown to
2735 < have the correct properties required by Eq. (\ref{eq:randomForce}).
2703 > obtain the square root matrix of the resistance tensor (see
2704 > Eq. \ref{eq:Cholesky}).
2705  
2706 < Our treatment of the resistance tensor is approximate.  $\Xi_f$ for a
2707 < rigid triangular plate would normally be treated as a $6 \times 6$
2708 < tensor that includes translational and rotational drag as well as
2709 < translational-rotational coupling. The computation of resistance
2710 < tensors for rigid bodies has been detailed
2706 > Our treatment of the resistance tensor for the Langevin Hull facets is
2707 > approximate.  $\Xi_f$ for a rigid triangular plate would normally be
2708 > treated as a $6 \times 6$ tensor that includes translational and
2709 > rotational drag as well as translational-rotational coupling. The
2710 > computation of resistance tensors for rigid bodies has been detailed
2711   elsewhere,\cite{JoseGarciadelaTorre02012000,Garcia-de-la-Torre:2001wd,GarciadelaTorreJ2002,Sun:2008fk}
2712   but the standard approach involving bead approximations would be
2713   prohibitively expensive if it were recomputed at each step in a
# Line 2790 | Line 2759 | The Delaunay triangulation and computation of the conv
2759   \item Atomic positions and velocities are propagated.
2760   \end{enumerate}
2761   The Delaunay triangulation and computation of the convex hull are done
2762 < using calls to the qhull library.\cite{Qhull} There is a minimal
2763 < penalty for computing the convex hull and resistance tensors at each
2764 < step in the molecular dynamics simulation (roughly 0.02 $\times$ cost
2765 < of a single force evaluation), and the convex hull is remarkably easy
2766 < to parallelize on distributed memory machines.
2767 <
2762 > using calls to the qhull library,\cite{Qhull} and for this reason, if
2763 > qhull is not detected during the build, the Langevin Hull integrator
2764 > will not be available.  There is a minimal penalty for computing the
2765 > convex hull and resistance tensors at each step in the molecular
2766 > dynamics simulation (roughly 0.02 $\times$ cost of a single force
2767 > evaluation).
2768  
2769   \begin{longtable}[c]{GBF}
2770   \caption{Meta-data Keywords: Required parameters for the Langevin Hull integrator}
# Line 2810 | Line 2779 | This parameter must be specified to use Langevin Hull
2779   This parameter must be specified to use Langevin Hull dynamics. \\
2780   {\tt targetPressure} & atm & Sets the target pressure of the system.
2781   This parameter must be specified to use Langevin Hull dynamics. \\
2782 < {\tt usePeriodicBoundaryConditions = false} & logical & Turns off periodic boundary conditions.
2782 > {\tt usePeriodicBoundaryConditions} & logical & Turns off periodic boundary conditions.
2783   This parameter must be set to \tt false \\
2784   \label{table:lhullParameters}
2785   \end{longtable}

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines