ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/openmdDocs/openmdDoc.tex
(Generate patch)

Comparing trunk/openmdDocs/openmdDoc.tex (file contents):
Revision 3607 by gezelter, Wed Jun 16 15:38:45 2010 UTC vs.
Revision 3709 by gezelter, Wed Nov 24 20:44:51 2010 UTC

# Line 41 | Line 41
41  
42   \title{{\sc OpenMD}: Molecular Dynamics in the Open}
43  
44 < \author{Shenyu Kuang, Chunlei Li, Charles F. Vardeman II, \\
45 < Teng Lin, Christopher J. Fennell,  Xiuquan Sun, \\
46 < Kyle Daily, Yang Zheng, Matthew A. Meineke, and J. Daniel Gezelter\\
47 < Department of Chemistry and Biochemistry\\
48 < University of Notre Dame\\
49 < Notre Dame, Indiana 46556}
44 > \author{Kelsey M. Stocker, Shenyu Kuang, Charles F. Vardeman II, \\
45 >  Teng Lin, Christopher J. Fennell,  Xiuquan Sun, \\
46 >  Chunlei Li, Kyle Daily, Yang Zheng, Matthew A. Meineke, and \\
47 >  J. Daniel Gezelter \\
48 >  Department of Chemistry and Biochemistry\\
49 >  University of Notre Dame\\
50 >  Notre Dame, Indiana 46556}
51  
52   \maketitle
53  
# Line 64 | Line 65 | that is easy to learn.
65   that is easy to learn.
66  
67   \tableofcontents
68 < %\listoffigures
69 < %\listoftables
68 > \listoffigures
69 > \listoftables
70  
71   \mainmatter
72  
# Line 497 | Line 498 | are SD and CG. Either {\tt ensemble} or {\tt minimizer
498   {\tt minimizer} & string & Chooses a minimizer & Possible minimizers
499   are SD and CG. Either {\tt ensemble} or {\tt minimizer} must be specified. \\
500   {\tt ensemble} & string & Sets the ensemble. & Possible ensembles are
501 < NVE, NVT, NPTi, NPAT, NPTf, NPTxyz, and LD.  Either {\tt ensemble}
501 > NVE, NVT, NPTi, NPAT, NPTf, NPTxyz, LD and LangevinHull.  Either {\tt ensemble}
502   or {\tt minimizer} must be specified. \\
503   {\tt dt} & fs & Sets the time step. & Selection of {\tt dt} should be
504   small enough to sample the fastest motion of the simulation. ({\tt
# Line 707 | Line 708 | molecule{
708    <MetaData>
709   molecule{
710    name = "I2";
711 <  atom[0]{
712 <    type = "I";
713 <  }
713 <  atom[1]{
714 <    type = "I";
715 <  }
716 <  bond{
717 <    members( 0, 1);
718 <  }
711 >  atom[0]{ type = "I"; }
712 >  atom[1]{ type = "I"; }
713 >  bond{ members( 0, 1); }
714   }
715   molecule{
716    name = "HCl"
717 <  atom[0]{
718 <    type = "H";
719 <  }
725 <  atom[1]{
726 <    type = "Cl";
727 <  }
728 <  bond{
729 <    members( 0, 1);
730 <  }
717 >  atom[0]{ type = "H";}
718 >  atom[1]{ type = "Cl";}
719 >  bond{ members( 0, 1); }
720   }
721   component{
722    type = "HCl";
# Line 1906 | Line 1895 | LD & Langevin Dynamics & {\tt ensemble = LD;} \\
1895   &  (with separate barostats on each box dimension) & \\
1896   LD & Langevin Dynamics & {\tt ensemble = LD;} \\
1897   &  (approximates the effects of an implicit solvent) & \\
1898 + LangevinHull & Non-periodic Langevin Dynamics  & {\tt ensemble = LangevinHull;} \\
1899 + & (Langevin Dynamics for molecules on convex hull;\\
1900 + & Newtonian for interior molecules) & \\
1901   \end{tabular}
1902   \end{center}
1903  
# Line 2391 | Line 2383 | ${\bf V} =
2383   in the body-fixed frame) and ${\bf V}$ is a generalized velocity,
2384   ${\bf V} =
2385   \left\{{\bf v},{\bf \omega}\right\}$. The right side of
2386 < Eq.~\ref{LDGeneralizedForm} consists of three generalized forces: a
2386 > Eq. \ref{LDGeneralizedForm} consists of three generalized forces: a
2387   system force (${\bf F}_{s}$), a frictional or dissipative force (${\bf
2388   F}_{f}$) and a stochastic force (${\bf F}_{r}$). While the evolution
2389   of the system in Newtonian mechanics is typically done in the lab
# Line 2613 | Line 2605 | program that is included in the {\sc OpenMD} distribut
2605   \endhead
2606   \hline
2607   \endfoot
2608 < {\tt viscosity} & centipoise & Sets the value of viscosity of the implicit
2608 > {\tt viscosity} & poise & Sets the value of viscosity of the implicit
2609   solvent  \\
2610   {\tt targetTemp} & K & Sets the target temperature of the system.
2611   This parameter must be specified to use Langevin dynamics. \\
2612   {\tt HydroPropFile} & string & Specifies the name of the resistance
2613   tensor (usually a {\tt .diff} file) which is precalculated by {\tt
2614 < Hydro}. This keyworkd is not necessary if the simulation contains only
2614 > Hydro}. This keyword is not necessary if the simulation contains only
2615   simple bodies (spheres and ellipsoids). \\
2616   {\tt beadSize} & $\mbox{\AA}$ & Sets the diameter of the beads to use
2617   when the {\tt RoughShell} model is used to approximate the resistance
2618   tensor.
2619   \label{table:ldParameters}
2620 + \end{longtable}
2621 +
2622 + \section{Constant Pressure without periodic boundary conditions (The LangevinHull)}
2623 +
2624 + The Langevin Hull uses an external bath at a fixed constant pressure
2625 + ($P$) and temperature ($T$) with an effective solvent viscosity
2626 + ($\eta$).  This bath interacts only with the objects on the exterior
2627 + hull of the system.  Defining the hull of the atoms in a simulation is
2628 + done in a manner similar to the approach of Kohanoff, Caro and
2629 + Finnis.\cite{Kohanoff:2005qm} That is, any instantaneous configuration
2630 + of the atoms in the system is considered as a point cloud in three
2631 + dimensional space.  Delaunay triangulation is used to find all facets
2632 + between coplanar
2633 + neighbors.\cite{delaunay,springerlink:10.1007/BF00977785} In highly
2634 + symmetric point clouds, facets can contain many atoms, but in all but
2635 + the most symmetric of cases, the facets are simple triangles in
2636 + 3-space which contain exactly three atoms.
2637 +
2638 + The convex hull is the set of facets that have {\it no concave
2639 +  corners} at an atomic site.\cite{Barber96,EDELSBRUNNER:1994oq} This
2640 + eliminates all facets on the interior of the point cloud, leaving only
2641 + those exposed to the bath. Sites on the convex hull are dynamic; as
2642 + molecules re-enter the cluster, all interactions between atoms on that
2643 + molecule and the external bath are removed.  Since the edge is
2644 + determined dynamically as the simulation progresses, no {\it a priori}
2645 + geometry is defined. The pressure and temperature bath interacts only
2646 + with the atoms on the edge and not with atoms interior to the
2647 + simulation.
2648 +
2649 + Atomic sites in the interior of the simulation move under standard
2650 + Newtonian dynamics,
2651 + \begin{equation}
2652 + m_i \dot{\mathbf v}_i(t)=-{\mathbf \nabla}_i U,
2653 + \label{eq:Newton}
2654 + \end{equation}
2655 + where $m_i$ is the mass of site $i$, ${\mathbf v}_i(t)$ is the
2656 + instantaneous velocity of site $i$ at time $t$, and $U$ is the total
2657 + potential energy.  For atoms on the exterior of the cluster
2658 + (i.e. those that occupy one of the vertices of the convex hull), the
2659 + equation of motion is modified with an external force, ${\mathbf
2660 +  F}_i^{\mathrm ext}$:
2661 + \begin{equation}
2662 + m_i \dot{\mathbf v}_i(t)=-{\mathbf \nabla}_i U + {\mathbf F}_i^{\mathrm ext}.
2663 + \end{equation}
2664 +
2665 + The external bath interacts indirectly with the atomic sites through
2666 + the intermediary of the hull facets.  Since each vertex (or atom)
2667 + provides one corner of a triangular facet, the force on the facets are
2668 + divided equally to each vertex.  However, each vertex can participate
2669 + in multiple facets, so the resultant force is a sum over all facets
2670 + $f$ containing vertex $i$:
2671 + \begin{equation}
2672 + {\mathbf F}_{i}^{\mathrm ext} = \sum_{\begin{array}{c}\mathrm{facets\
2673 +    } f \\ \mathrm{containing\ } i\end{array}} \frac{1}{3}\  {\mathbf
2674 +  F}_f^{\mathrm ext}
2675 + \end{equation}
2676 +
2677 + The external pressure bath applies a force to the facets of the convex
2678 + hull in direct proportion to the area of the facet, while the thermal
2679 + coupling depends on the solvent temperature, viscosity and the size
2680 + and shape of each facet. The thermal interactions are expressed as a
2681 + standard Langevin description of the forces,
2682 + \begin{equation}
2683 + \begin{array}{rclclcl}
2684 + {\mathbf F}_f^{\text{ext}} & = &  \text{external pressure} & + & \text{drag force} & + & \text{random force} \\
2685 + & = &  -\hat{n}_f P A_f  & - & \Xi_f(t) {\mathbf v}_f(t)  & + & {\mathbf R}_f(t)
2686 + \end{array}
2687 + \end{equation}
2688 + Here, $A_f$ and $\hat{n}_f$ are the area and (outward-facing) normal
2689 + vectors for facet $f$, respectively.  ${\mathbf v}_f(t)$ is the
2690 + velocity of the facet centroid,
2691 + \begin{equation}
2692 + {\mathbf v}_f(t) =  \frac{1}{3} \sum_{i=1}^{3} {\mathbf v}_i,
2693 + \end{equation}
2694 + and $\Xi_f(t)$ is an approximate ($3 \times 3$) resistance tensor that
2695 + depends on the geometry and surface area of facet $f$ and the
2696 + viscosity of the bath.  The resistance tensor is related to the
2697 + fluctuations of the random force, $\mathbf{R}(t)$, by the
2698 + fluctuation-dissipation theorem (see Eq. \ref{eq:randomForce}).
2699 +
2700 + Once the resistance tensor is known for a given facet, a stochastic
2701 + vector that has the properties in Eq. (\ref{eq:randomForce}) can be
2702 + calculated efficiently by carrying out a Cholesky decomposition to
2703 + obtain the square root matrix of the resistance tensor (see
2704 + Eq. \ref{eq:Cholesky}).
2705 +
2706 + Our treatment of the resistance tensor for the Langevin Hull facets is
2707 + approximate.  $\Xi_f$ for a rigid triangular plate would normally be
2708 + treated as a $6 \times 6$ tensor that includes translational and
2709 + rotational drag as well as translational-rotational coupling. The
2710 + computation of resistance tensors for rigid bodies has been detailed
2711 + elsewhere,\cite{JoseGarciadelaTorre02012000,Garcia-de-la-Torre:2001wd,GarciadelaTorreJ2002,Sun:2008fk}
2712 + but the standard approach involving bead approximations would be
2713 + prohibitively expensive if it were recomputed at each step in a
2714 + molecular dynamics simulation.
2715 +
2716 + Instead, we are utilizing an approximate resistance tensor obtained by
2717 + first constructing the Oseen tensor for the interaction of the
2718 + centroid of the facet ($f$) with each of the subfacets $\ell=1,2,3$,
2719 + \begin{equation}
2720 + T_{\ell f}=\frac{A_\ell}{8\pi\eta R_{\ell f}}\left(I +
2721 +  \frac{\mathbf{R}_{\ell f}\mathbf{R}_{\ell f}^T}{R_{\ell f}^2}\right)
2722 + \end{equation}
2723 + Here, $A_\ell$ is the area of subfacet $\ell$ which is a triangle
2724 + containing two of the vertices of the facet along with the centroid.
2725 + $\mathbf{R}_{\ell f}$ is the vector between the centroid of facet $f$
2726 + and the centroid of sub-facet $\ell$, and $I$ is the ($3 \times 3$)
2727 + identity matrix.  $\eta$ is the viscosity of the external bath.
2728 +
2729 + The tensors for each of the sub-facets are added together, and the
2730 + resulting matrix is inverted to give a $3 \times 3$ resistance tensor
2731 + for translations of the triangular facet,
2732 + \begin{equation}
2733 + \Xi_f(t) =\left[\sum_{i=1}^3 T_{if}\right]^{-1}.
2734 + \end{equation}
2735 + Note that this treatment ignores rotations (and
2736 + translational-rotational coupling) of the facet.  In compact systems,
2737 + the facets stay relatively fixed in orientation between
2738 + configurations, so this appears to be a reasonably good approximation.
2739 +
2740 + At each
2741 + molecular dynamics time step, the following process is carried out:
2742 + \begin{enumerate}
2743 + \item The standard inter-atomic forces ($\nabla_iU$) are computed.
2744 + \item Delaunay triangulation is carried out using the current atomic
2745 +  configuration.
2746 + \item The convex hull is computed and facets are identified.
2747 + \item For each facet:
2748 + \begin{itemize}
2749 + \item[a.] The force from the pressure bath ($-\hat{n}_fPA_f$) is
2750 +  computed.
2751 + \item[b.] The resistance tensor ($\Xi_f(t)$) is computed using the
2752 +  viscosity ($\eta$) of the bath.
2753 + \item[c.] Facet drag ($-\Xi_f(t) \mathbf{v}_f(t)$) forces are
2754 +  computed.
2755 + \item[d.] Random forces ($\mathbf{R}_f(t)$) are computed using the
2756 +  resistance tensor and the temperature ($T$) of the bath.
2757 + \end{itemize}
2758 + \item The facet forces are divided equally among the vertex atoms.
2759 + \item Atomic positions and velocities are propagated.
2760 + \end{enumerate}
2761 + The Delaunay triangulation and computation of the convex hull are done
2762 + using calls to the qhull library,\cite{Qhull} and for this reason, if
2763 + qhull is not detected during the build, the Langevin Hull integrator
2764 + will not be available.  There is a minimal penalty for computing the
2765 + convex hull and resistance tensors at each step in the molecular
2766 + dynamics simulation (roughly 0.02 $\times$ cost of a single force
2767 + evaluation).
2768 +
2769 + \begin{longtable}[c]{GBF}
2770 + \caption{Meta-data Keywords: Required parameters for the Langevin Hull integrator}
2771 + \\
2772 + {\bf keyword} & {\bf units} & {\bf use}  \\ \hline
2773 + \endhead
2774 + \hline
2775 + \endfoot
2776 + {\tt viscosity} & poise & Sets the value of viscosity of the implicit
2777 + solven . \\
2778 + {\tt targetTemp} & K & Sets the target temperature of the system.
2779 + This parameter must be specified to use Langevin Hull dynamics. \\
2780 + {\tt targetPressure} & atm & Sets the target pressure of the system.
2781 + This parameter must be specified to use Langevin Hull dynamics. \\
2782 + {\tt usePeriodicBoundaryConditions} & logical & Turns off periodic boundary conditions.
2783 + This parameter must be set to \tt false \\
2784 + \label{table:lhullParameters}
2785   \end{longtable}
2786  
2787 +
2788   \section{\label{sec:constraints}Constraint Methods}
2789  
2790   \subsection{\label{section:rattle}The {\sc rattle} Method for Bond
# Line 3190 | Line 3348 | For example, the phrase {\tt select mass > 16.0 and ch
3348   \end{center}
3349  
3350   For example, the phrase {\tt select mass > 16.0 and charge < -2}
3351 < wouldselect StuntDoubles which have mass greater than 16.0 and charges
3351 > would select StuntDoubles which have mass greater than 16.0 and charges
3352   less than -2.
3353  
3354   \subsection{\label{section:within}Within expressions}

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines