ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/oopsePaper/ssd.tex
Revision: 818
Committed: Fri Oct 24 21:27:59 2003 UTC (21 years, 8 months ago) by gezelter
Content type: application/x-tex
File size: 4166 byte(s)
Log Message:
Formatting changes to get out of RevTex nonsense

File Contents

# User Rev Content
1 chrisfen 765 \section{\label{sec:SSD}Water Model: SSD and Derivatives}
2    
3     In the interest of computational efficiency, the native solvent used
4 gezelter 818 in {\sc oopse} is the Soft Sticky Dipole (SSD) water model. SSD was
5 chrisfen 765 developed by Ichiye \emph{et al.} as a modified form of the
6     hard-sphere water model proposed by Bratko, Blum, and
7     Luzar.\cite{Bratko85,Bratko95} It consists of a single point dipole
8     with a Lennard-Jones core and a sticky potential that directs the
9     particles to assume the proper hydrogen bond orientation in the first
10     solvation shell. Thus, the interaction between two SSD water molecules
11     \emph{i} and \emph{j} is given by the potential
12     \begin{equation}
13     u_{ij} = u_{ij}^{LJ} (r_{ij})\ + u_{ij}^{dp}
14     (\mathbf{r}_{ij},\boldsymbol{\Omega}_i,\boldsymbol{\Omega}_j)\ +
15     u_{ij}^{sp}
16     (\mathbf{r}_{ij},\boldsymbol{\Omega}_i,\boldsymbol{\Omega}_j),
17     \end{equation}
18     where the $\mathbf{r}_{ij}$ is the position vector between molecules
19     \emph{i} and \emph{j} with magnitude equal to the distance $r_ij$, and
20     $\boldsymbol{\Omega}_i$ and $\boldsymbol{\Omega}_j$ represent the
21     orientations of the respective molecules. The Lennard-Jones, dipole,
22     and sticky parts of the potential are giving by the following
23     equations,
24     \begin{equation}
25     u_{ij}^{LJ}(r_{ij}) = 4\epsilon \left[\left(\frac{\sigma}{r_{ij}}\right)^{12}-\left(\frac{\sigma}{r_{ij}}\right)^{6}\right],
26     \end{equation}
27     \begin{equation}
28     u_{ij}^{dp} = \frac{\boldsymbol{\mu}_i\cdot\boldsymbol{\mu}_j}{r_{ij}^3}-\frac{3(\boldsymbol{\mu}_i\cdot\mathbf{r}_{ij})(\boldsymbol{\mu}_j\cdot\mathbf{r}_{ij})}{r_{ij}^5}\ ,
29     \end{equation}
30     \begin{equation}
31     \begin{split}
32     u_{ij}^{sp}
33     (\mathbf{r}_{ij},\boldsymbol{\Omega}_i,\boldsymbol{\Omega}_j)
34     &=
35     \frac{\nu_0}{2}[s(r_{ij})w(\mathbf{r}_{ij},\boldsymbol{\Omega}_i,\boldsymbol{\Omega}_j)\\
36     & \quad \ +
37     s^\prime(r_{ij})w^\prime(\mathbf{r}_{ij},\boldsymbol{\Omega}_i,\boldsymbol{\Omega}_j)]\ ,
38     \end{split}
39     \end{equation}
40     where $\boldsymbol{\mu}_i$ and $\boldsymbol{\mu}_j$ are the dipole
41     unit vectors of particles \emph{i} and \emph{j} with magnitude 2.35 D,
42     $\nu_0$ scales the strength of the overall sticky potential, $s$ and
43     $s^\prime$ are cubic switching functions. The $w$ and $w^\prime$
44     functions take the following forms,
45     \begin{equation}
46     w(\mathbf{r}_{ij},\boldsymbol{\Omega}_i,\boldsymbol{\Omega}_j)=\sin\theta_{ij}\sin2\theta_{ij}\cos2\phi_{ij},
47     \end{equation}
48     \begin{equation}
49     w^\prime(\mathbf{r}_{ij},\boldsymbol{\Omega}_i,\boldsymbol{\Omega}_j) = (\cos\theta_{ij}-0.6)^2(\cos\theta_{ij}+0.8)^2-w^0,
50     \end{equation}
51     where $w^0 = 0.07715$. The $w$ function is the tetrahedral attractive
52     term that promotes hydrogen bonding orientations within the first
53     solvation shell, and $w^\prime$ is a dipolar repulsion term that
54     repels unrealistic dipolar arrangements within the first solvation
55     shell. A more detailed description of the functional parts and
56     variables in this potential can be found in other
57     articles.\cite{liu96:new_model,chandra99:ssd_md}
58    
59     Since SSD is a one-site point dipole model, the force calculations are
60     simplified significantly from a computational standpoint, in that the
61     number of long-range interactions is dramatically reduced. In the
62     original Monte Carlo simulations using this model, Ichiye \emph{et
63     al.} reported a calculation speed up of up to an order of magnitude
64     over other comparable models while maintaining the structural behavior
65     of water.\cite{liu96:new_model} In the original molecular dynamics studies of
66     SSD, it was shown that it actually improves upon the prediction of
67     water's dynamical properties over TIP3P and SPC/E.\cite{chandra99:ssd_md}
68    
69     Recent constant pressure simulations revealed issues in the original
70     SSD model that led to lower than expected densities at all target
71     pressures.\cite{Ichiye03,Gezelter04} Reparameterizations of the
72     original SSD have resulted in improved density behavior, as well as
73 gezelter 818 alterations in the water structure and transport behavior. {\sc oopse} is
74 chrisfen 765 easily modified to impliment these new potential parameter sets for
75     the derivative water models: SSD1, SSD/E, and SSD/RF. All of the
76     variable parameters are listed in the accompanying BASS file, and
77     these parameters simply need to be changed to the updated values.