ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/oopsePaper/ssd.tex
Revision: 765
Committed: Tue Sep 16 17:06:02 2003 UTC (21 years, 10 months ago) by chrisfen
Content type: application/x-tex
File size: 4154 byte(s)
Log Message:
SSD portion of paper added (ssd.tex).

File Contents

# User Rev Content
1 chrisfen 765 \section{\label{sec:SSD}Water Model: SSD and Derivatives}
2    
3     In the interest of computational efficiency, the native solvent used
4     in OOPSE is the Soft Sticky Dipole (SSD) water model. SSD was
5     developed by Ichiye \emph{et al.} as a modified form of the
6     hard-sphere water model proposed by Bratko, Blum, and
7     Luzar.\cite{Bratko85,Bratko95} It consists of a single point dipole
8     with a Lennard-Jones core and a sticky potential that directs the
9     particles to assume the proper hydrogen bond orientation in the first
10     solvation shell. Thus, the interaction between two SSD water molecules
11     \emph{i} and \emph{j} is given by the potential
12     \begin{equation}
13     u_{ij} = u_{ij}^{LJ} (r_{ij})\ + u_{ij}^{dp}
14     (\mathbf{r}_{ij},\boldsymbol{\Omega}_i,\boldsymbol{\Omega}_j)\ +
15     u_{ij}^{sp}
16     (\mathbf{r}_{ij},\boldsymbol{\Omega}_i,\boldsymbol{\Omega}_j),
17     \end{equation}
18     where the $\mathbf{r}_{ij}$ is the position vector between molecules
19     \emph{i} and \emph{j} with magnitude equal to the distance $r_ij$, and
20     $\boldsymbol{\Omega}_i$ and $\boldsymbol{\Omega}_j$ represent the
21     orientations of the respective molecules. The Lennard-Jones, dipole,
22     and sticky parts of the potential are giving by the following
23     equations,
24     \begin{equation}
25     u_{ij}^{LJ}(r_{ij}) = 4\epsilon \left[\left(\frac{\sigma}{r_{ij}}\right)^{12}-\left(\frac{\sigma}{r_{ij}}\right)^{6}\right],
26     \end{equation}
27     \begin{equation}
28     u_{ij}^{dp} = \frac{\boldsymbol{\mu}_i\cdot\boldsymbol{\mu}_j}{r_{ij}^3}-\frac{3(\boldsymbol{\mu}_i\cdot\mathbf{r}_{ij})(\boldsymbol{\mu}_j\cdot\mathbf{r}_{ij})}{r_{ij}^5}\ ,
29     \end{equation}
30     \begin{equation}
31     \begin{split}
32     u_{ij}^{sp}
33     (\mathbf{r}_{ij},\boldsymbol{\Omega}_i,\boldsymbol{\Omega}_j)
34     &=
35     \frac{\nu_0}{2}[s(r_{ij})w(\mathbf{r}_{ij},\boldsymbol{\Omega}_i,\boldsymbol{\Omega}_j)\\
36     & \quad \ +
37     s^\prime(r_{ij})w^\prime(\mathbf{r}_{ij},\boldsymbol{\Omega}_i,\boldsymbol{\Omega}_j)]\ ,
38     \end{split}
39     \end{equation}
40     where $\boldsymbol{\mu}_i$ and $\boldsymbol{\mu}_j$ are the dipole
41     unit vectors of particles \emph{i} and \emph{j} with magnitude 2.35 D,
42     $\nu_0$ scales the strength of the overall sticky potential, $s$ and
43     $s^\prime$ are cubic switching functions. The $w$ and $w^\prime$
44     functions take the following forms,
45     \begin{equation}
46     w(\mathbf{r}_{ij},\boldsymbol{\Omega}_i,\boldsymbol{\Omega}_j)=\sin\theta_{ij}\sin2\theta_{ij}\cos2\phi_{ij},
47     \end{equation}
48     \begin{equation}
49     w^\prime(\mathbf{r}_{ij},\boldsymbol{\Omega}_i,\boldsymbol{\Omega}_j) = (\cos\theta_{ij}-0.6)^2(\cos\theta_{ij}+0.8)^2-w^0,
50     \end{equation}
51     where $w^0 = 0.07715$. The $w$ function is the tetrahedral attractive
52     term that promotes hydrogen bonding orientations within the first
53     solvation shell, and $w^\prime$ is a dipolar repulsion term that
54     repels unrealistic dipolar arrangements within the first solvation
55     shell. A more detailed description of the functional parts and
56     variables in this potential can be found in other
57     articles.\cite{liu96:new_model,chandra99:ssd_md}
58    
59     Since SSD is a one-site point dipole model, the force calculations are
60     simplified significantly from a computational standpoint, in that the
61     number of long-range interactions is dramatically reduced. In the
62     original Monte Carlo simulations using this model, Ichiye \emph{et
63     al.} reported a calculation speed up of up to an order of magnitude
64     over other comparable models while maintaining the structural behavior
65     of water.\cite{liu96:new_model} In the original molecular dynamics studies of
66     SSD, it was shown that it actually improves upon the prediction of
67     water's dynamical properties over TIP3P and SPC/E.\cite{chandra99:ssd_md}
68    
69     Recent constant pressure simulations revealed issues in the original
70     SSD model that led to lower than expected densities at all target
71     pressures.\cite{Ichiye03,Gezelter04} Reparameterizations of the
72     original SSD have resulted in improved density behavior, as well as
73     alterations in the water structure and transport behavior. OOPSE is
74     easily modified to impliment these new potential parameter sets for
75     the derivative water models: SSD1, SSD/E, and SSD/RF. All of the
76     variable parameters are listed in the accompanying BASS file, and
77     these parameters simply need to be changed to the updated values.