ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/oopsePaper/pbc.tex
Revision: 972
Committed: Wed Jan 21 18:40:38 2004 UTC (21 years, 3 months ago) by mmeineke
Content type: application/x-tex
File size: 3719 byte(s)
Log Message:
added changes into the Empirical Energy section

File Contents

# Content
1 \documentclass{article}%
2 \usepackage{amsfonts}
3 \usepackage{amsmath}
4 \usepackage{amssymb}
5 \usepackage{graphicx}%
6 \setcounter{MaxMatrixCols}{30}
7 %TCIDATA{OutputFilter=latex2.dll}
8 %TCIDATA{Version=5.00.0.2552}
9 %TCIDATA{CSTFile=40 LaTeX article.cst}
10 %TCIDATA{Created=Friday, September 19, 2003 08:29:53}
11 %TCIDATA{LastRevised=Tuesday, January 20, 2004 11:37:59}
12 %TCIDATA{<META NAME="GraphicsSave" CONTENT="32">}
13 %TCIDATA{<META NAME="SaveForMode" CONTENT="1">}
14 %TCIDATA{<META NAME="DocumentShell" CONTENT="Standard LaTeX\Standard LaTeX Article">}
15 %TCIDATA{ComputeDefs=
16 %$H$
17 %}
18 \newtheorem{theorem}{Theorem}
19 \newtheorem{acknowledgement}[theorem]{Acknowledgement}
20 \newtheorem{algorithm}[theorem]{Algorithm}
21 \newtheorem{axiom}[theorem]{Axiom}
22 \newtheorem{case}[theorem]{Case}
23 \newtheorem{claim}[theorem]{Claim}
24 \newtheorem{conclusion}[theorem]{Conclusion}
25 \newtheorem{condition}[theorem]{Condition}
26 \newtheorem{conjecture}[theorem]{Conjecture}
27 \newtheorem{corollary}[theorem]{Corollary}
28 \newtheorem{criterion}[theorem]{Criterion}
29 \newtheorem{definition}[theorem]{Definition}
30 \newtheorem{example}[theorem]{Example}
31 \newtheorem{exercise}[theorem]{Exercise}
32 \newtheorem{lemma}[theorem]{Lemma}
33 \newtheorem{notation}[theorem]{Notation}
34 \newtheorem{problem}[theorem]{Problem}
35 \newtheorem{proposition}[theorem]{Proposition}
36 \newtheorem{remark}[theorem]{Remark}
37 \newtheorem{solution}[theorem]{Solution}
38 \newtheorem{summary}[theorem]{Summary}
39 \newenvironment{proof}[1][Proof]{\noindent\textbf{#1.} }{\ \rule{0.5em}{0.5em}}
40 \begin{document}
41 \section{\label{Sec:pbc}Periodic Boundary Conditions}
42
43 \textit{Periodic boundary conditions} are widely used to simulate truly
44 macroscopic systems with a relatively small number of particles. The
45 simulation box is replicated throughout space to form an infinite lattice.
46 During the simulation, when a particle moves in the primary cell, its image in
47 other boxes move in exactly the same direction with exactly the same
48 orientation.Thus, as a particle leaves the primary cell, one of its images
49 will enter through the opposite face.If the simulation box is large enough to
50 avoid \textquotedblleft feeling\textquotedblright\ the symmetries of the
51 periodic lattice, surface effects can be ignored. Cubic, orthorhombic and
52 parallelepiped are the available periodic cells In OOPSE. We use a matrix to
53 describe the property of the simulation box. Therefore, both the size and
54 shape of the simulation box can be changed during the simulation. The
55 transformation from box space vector $\mathbf{s}$ to its corresponding real
56 space vector $\mathbf{r}$ is defined by
57 \begin{equation}
58 \mathbf{r}=\underline{\mathbf{H}}\cdot\mathbf{s}%
59 \end{equation}
60
61
62 where $H=(h_{x},h_{y},h_{z})$ is a transformation matrix made up of the three
63 box axis vectors. $h_{x},h_{y}$ and $h_{z}$ represent the three sides of the
64 simulation box respectively.
65
66 To find the minimum image of a vector $\mathbf{r}$, we convert the real vector
67 to its corresponding vector in box space first, \bigskip%
68 \begin{equation}
69 \mathbf{s}=\underline{\mathbf{H}}^{-1}\cdot\mathbf{r}%
70 \end{equation}
71 And then, each element of $\mathbf{s}$ is wrapped to lie between -0.5 to 0.5,
72 \begin{equation}
73 s_{i}^{\prime}=s_{i}-round(s_{i})
74 \end{equation}
75 where
76
77 %
78
79 \begin{equation}
80 round(x)=\left\{
81 \begin{array}
82 [c]{c}%
83 \lfloor{x+0.5}\rfloor & \text{if \ }x\geqslant0\\
84 \lceil{x-0.5}\rceil & \text{otherwise}%
85 \end{array}
86 \right.
87 \end{equation}
88
89
90 For example, $round(3.6)=4$,$round(3.1)=3$, $round(-3.6)=-4$, $round(-3.1)=-3$.
91
92 Finally, we obtain the minimum image coordinates $\mathbf{r}^{\prime}$ by
93 transforming back to real space,%
94
95 \begin{equation}
96 \mathbf{r}^{\prime}=\underline{\mathbf{H}}^{-1}\cdot\mathbf{s}^{\prime}%
97 \end{equation}
98
99 \end{document}

Properties

Name Value
svn:executable *