1 |
\documentclass{article}% |
2 |
\usepackage{amsfonts} |
3 |
\usepackage{amsmath} |
4 |
\usepackage{amssymb} |
5 |
\usepackage{graphicx}% |
6 |
\setcounter{MaxMatrixCols}{30} |
7 |
%TCIDATA{OutputFilter=latex2.dll} |
8 |
%TCIDATA{Version=5.00.0.2552} |
9 |
%TCIDATA{CSTFile=40 LaTeX article.cst} |
10 |
%TCIDATA{Created=Friday, September 19, 2003 08:29:53} |
11 |
%TCIDATA{LastRevised=Tuesday, January 20, 2004 11:37:59} |
12 |
%TCIDATA{<META NAME="GraphicsSave" CONTENT="32">} |
13 |
%TCIDATA{<META NAME="SaveForMode" CONTENT="1">} |
14 |
%TCIDATA{<META NAME="DocumentShell" CONTENT="Standard LaTeX\Standard LaTeX Article">} |
15 |
%TCIDATA{ComputeDefs= |
16 |
%$H$ |
17 |
%} |
18 |
\newtheorem{theorem}{Theorem} |
19 |
\newtheorem{acknowledgement}[theorem]{Acknowledgement} |
20 |
\newtheorem{algorithm}[theorem]{Algorithm} |
21 |
\newtheorem{axiom}[theorem]{Axiom} |
22 |
\newtheorem{case}[theorem]{Case} |
23 |
\newtheorem{claim}[theorem]{Claim} |
24 |
\newtheorem{conclusion}[theorem]{Conclusion} |
25 |
\newtheorem{condition}[theorem]{Condition} |
26 |
\newtheorem{conjecture}[theorem]{Conjecture} |
27 |
\newtheorem{corollary}[theorem]{Corollary} |
28 |
\newtheorem{criterion}[theorem]{Criterion} |
29 |
\newtheorem{definition}[theorem]{Definition} |
30 |
\newtheorem{example}[theorem]{Example} |
31 |
\newtheorem{exercise}[theorem]{Exercise} |
32 |
\newtheorem{lemma}[theorem]{Lemma} |
33 |
\newtheorem{notation}[theorem]{Notation} |
34 |
\newtheorem{problem}[theorem]{Problem} |
35 |
\newtheorem{proposition}[theorem]{Proposition} |
36 |
\newtheorem{remark}[theorem]{Remark} |
37 |
\newtheorem{solution}[theorem]{Solution} |
38 |
\newtheorem{summary}[theorem]{Summary} |
39 |
\newenvironment{proof}[1][Proof]{\noindent\textbf{#1.} }{\ \rule{0.5em}{0.5em}} |
40 |
\begin{document} |
41 |
\section{\label{Sec:pbc}Periodic Boundary Conditions} |
42 |
|
43 |
\textit{Periodic boundary conditions} are widely used to simulate truly |
44 |
macroscopic systems with a relatively small number of particles. The |
45 |
simulation box is replicated throughout space to form an infinite lattice. |
46 |
During the simulation, when a particle moves in the primary cell, its image in |
47 |
other boxes move in exactly the same direction with exactly the same |
48 |
orientation.Thus, as a particle leaves the primary cell, one of its images |
49 |
will enter through the opposite face.If the simulation box is large enough to |
50 |
avoid \textquotedblleft feeling\textquotedblright\ the symmetries of the |
51 |
periodic lattice, surface effects can be ignored. Cubic, orthorhombic and |
52 |
parallelepiped are the available periodic cells In OOPSE. We use a matrix to |
53 |
describe the property of the simulation box. Therefore, both the size and |
54 |
shape of the simulation box can be changed during the simulation. The |
55 |
transformation from box space vector $\mathbf{s}$ to its corresponding real |
56 |
space vector $\mathbf{r}$ is defined by |
57 |
\begin{equation} |
58 |
\mathbf{r}=\underline{\mathbf{H}}\cdot\mathbf{s}% |
59 |
\end{equation} |
60 |
|
61 |
|
62 |
where $H=(h_{x},h_{y},h_{z})$ is a transformation matrix made up of the three |
63 |
box axis vectors. $h_{x},h_{y}$ and $h_{z}$ represent the three sides of the |
64 |
simulation box respectively. |
65 |
|
66 |
To find the minimum image of a vector $\mathbf{r}$, we convert the real vector |
67 |
to its corresponding vector in box space first, \bigskip% |
68 |
\begin{equation} |
69 |
\mathbf{s}=\underline{\mathbf{H}}^{-1}\cdot\mathbf{r}% |
70 |
\end{equation} |
71 |
And then, each element of $\mathbf{s}$ is wrapped to lie between -0.5 to 0.5, |
72 |
\begin{equation} |
73 |
s_{i}^{\prime}=s_{i}-round(s_{i}) |
74 |
\end{equation} |
75 |
where |
76 |
|
77 |
% |
78 |
|
79 |
\begin{equation} |
80 |
round(x)=\left\{ |
81 |
\begin{array} |
82 |
[c]{c}% |
83 |
\lfloor{x+0.5}\rfloor & \text{if \ }x\geqslant0\\ |
84 |
\lceil{x-0.5}\rceil & \text{otherwise}% |
85 |
\end{array} |
86 |
\right. |
87 |
\end{equation} |
88 |
|
89 |
|
90 |
For example, $round(3.6)=4$,$round(3.1)=3$, $round(-3.6)=-4$, $round(-3.1)=-3$. |
91 |
|
92 |
Finally, we obtain the minimum image coordinates $\mathbf{r}^{\prime}$ by |
93 |
transforming back to real space,% |
94 |
|
95 |
\begin{equation} |
96 |
\mathbf{r}^{\prime}=\underline{\mathbf{H}}^{-1}\cdot\mathbf{s}^{\prime}% |
97 |
\end{equation} |
98 |
|
99 |
\end{document} |