ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/oopsePaper/pbc.tex
Revision: 968
Committed: Tue Jan 20 16:49:22 2004 UTC (21 years, 3 months ago) by tim
Content type: application/x-tex
File size: 3816 byte(s)
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 tim 903 \documentclass{article}%
2     \usepackage{amsfonts}
3     \usepackage{amsmath}
4     \usepackage{amssymb}
5     \usepackage{graphicx}%
6     \setcounter{MaxMatrixCols}{30}
7     %TCIDATA{OutputFilter=latex2.dll}
8     %TCIDATA{Version=5.00.0.2552}
9     %TCIDATA{CSTFile=40 LaTeX article.cst}
10     %TCIDATA{Created=Friday, September 19, 2003 08:29:53}
11 tim 968 %TCIDATA{LastRevised=Tuesday, January 20, 2004 11:37:59}
12 tim 903 %TCIDATA{<META NAME="GraphicsSave" CONTENT="32">}
13     %TCIDATA{<META NAME="SaveForMode" CONTENT="1">}
14     %TCIDATA{<META NAME="DocumentShell" CONTENT="Standard LaTeX\Standard LaTeX Article">}
15     %TCIDATA{ComputeDefs=
16     %$H$
17     %}
18     \newtheorem{theorem}{Theorem}
19     \newtheorem{acknowledgement}[theorem]{Acknowledgement}
20     \newtheorem{algorithm}[theorem]{Algorithm}
21     \newtheorem{axiom}[theorem]{Axiom}
22     \newtheorem{case}[theorem]{Case}
23     \newtheorem{claim}[theorem]{Claim}
24     \newtheorem{conclusion}[theorem]{Conclusion}
25     \newtheorem{condition}[theorem]{Condition}
26     \newtheorem{conjecture}[theorem]{Conjecture}
27     \newtheorem{corollary}[theorem]{Corollary}
28     \newtheorem{criterion}[theorem]{Criterion}
29     \newtheorem{definition}[theorem]{Definition}
30     \newtheorem{example}[theorem]{Example}
31     \newtheorem{exercise}[theorem]{Exercise}
32     \newtheorem{lemma}[theorem]{Lemma}
33     \newtheorem{notation}[theorem]{Notation}
34     \newtheorem{problem}[theorem]{Problem}
35     \newtheorem{proposition}[theorem]{Proposition}
36     \newtheorem{remark}[theorem]{Remark}
37     \newtheorem{solution}[theorem]{Solution}
38     \newtheorem{summary}[theorem]{Summary}
39     \newenvironment{proof}[1][Proof]{\noindent\textbf{#1.} }{\ \rule{0.5em}{0.5em}}
40     \begin{document}
41     \section{\label{Sec:pbc}Periodic Boundary Conditions}
42    
43 tim 904 \textit{Periodic boundary conditions} are widely used to simulate truly
44 tim 928 macroscopic systems with a relatively small number of particles. The
45     simulation box is replicated throughout space to form an infinite lattice.
46     During the simulation, when a particle moves in the primary cell, its image in
47     other boxes move in exactly the same direction with exactly the same
48     orientation.Thus, as a particle leaves the primary cell, one of its images
49     will enter through the opposite face.If the simulation box is large enough to
50 tim 968 avoid \textquotedblleft feeling\textquotedblright\ the symmetries of the
51     periodic lattice, surface effects can be ignored. Cubic, orthorhombic and
52     parallelepiped are the available periodic cells In OOPSE. We use a matrix to
53     describe the property of the simulation box. Therefore, both the size and
54     shape of the simulation box can be changed during the simulation. The
55     transformation from box space vector $\mathbf{s}$ to its corresponding real
56     space vector $\mathbf{r}$ is defined by
57 tim 903 \begin{equation}
58 tim 968 \mathbf{r}=\underline{\mathbf{H}}\cdot\mathbf{s}%
59 tim 903 \end{equation}
60    
61    
62 tim 904 where $H=(h_{x},h_{y},h_{z})$ is a transformation matrix made up of the three
63 tim 928 box axis vectors. $h_{x},h_{y}$ and $h_{z}$ represent the three sides of the
64 tim 904 simulation box respectively.
65 tim 903
66 tim 968 To find the minimum image of a vector $\mathbf{r}$, we convert the real vector
67     to its corresponding vector in box space first, \bigskip%
68 tim 903 \begin{equation}
69 tim 968 \mathbf{s}=\underline{\mathbf{H}}^{-1}\cdot\mathbf{r}%
70 tim 903 \end{equation}
71 tim 928 And then, each element of $\mathbf{s}$ is wrapped to lie between -0.5 to 0.5,
72 tim 903 \begin{equation}
73 tim 904 s_{i}^{\prime}=s_{i}-round(s_{i})
74 tim 903 \end{equation}
75 tim 928 where
76 tim 904
77     %
78 tim 903
79 tim 904 \begin{equation}
80 tim 928 round(x)=\left\{
81     \begin{array}
82     [c]{c}%
83     \lfloor{x+0.5}\rfloor & \text{if \ }x\geqslant0\\
84     \lceil{x-0.5}\rceil & \text{otherwise}%
85     \end{array}
86     \right.
87 tim 904 \end{equation}
88 tim 903
89 tim 904
90     For example, $round(3.6)=4$,$round(3.1)=3$, $round(-3.6)=-4$, $round(-3.1)=-3$.
91    
92 tim 968 Finally, we obtain the minimum image coordinates $\mathbf{r}^{\prime}$ by
93     transforming back to real space,%
94 tim 904
95 tim 903 \begin{equation}
96 tim 968 \mathbf{r}^{\prime}=\underline{\mathbf{H}}^{-1}\cdot\mathbf{s}^{\prime}%
97 tim 903 \end{equation}
98    
99 tim 904 \end{document}

Properties

Name Value
svn:executable *