| 1 |
tim |
903 |
\documentclass{article}%
|
| 2 |
|
|
\usepackage{amsfonts}
|
| 3 |
|
|
\usepackage{amsmath}
|
| 4 |
|
|
\usepackage{amssymb}
|
| 5 |
|
|
\usepackage{graphicx}%
|
| 6 |
|
|
\setcounter{MaxMatrixCols}{30}
|
| 7 |
|
|
%TCIDATA{OutputFilter=latex2.dll}
|
| 8 |
|
|
%TCIDATA{Version=5.00.0.2552}
|
| 9 |
|
|
%TCIDATA{CSTFile=40 LaTeX article.cst}
|
| 10 |
|
|
%TCIDATA{Created=Friday, September 19, 2003 08:29:53}
|
| 11 |
tim |
928 |
%TCIDATA{LastRevised=Tuesday, January 13, 2004 10:22:03}
|
| 12 |
tim |
903 |
%TCIDATA{<META NAME="GraphicsSave" CONTENT="32">}
|
| 13 |
|
|
%TCIDATA{<META NAME="SaveForMode" CONTENT="1">}
|
| 14 |
|
|
%TCIDATA{<META NAME="DocumentShell" CONTENT="Standard LaTeX\Standard LaTeX Article">}
|
| 15 |
|
|
%TCIDATA{ComputeDefs=
|
| 16 |
|
|
%$H$
|
| 17 |
|
|
%}
|
| 18 |
|
|
\newtheorem{theorem}{Theorem}
|
| 19 |
|
|
\newtheorem{acknowledgement}[theorem]{Acknowledgement}
|
| 20 |
|
|
\newtheorem{algorithm}[theorem]{Algorithm}
|
| 21 |
|
|
\newtheorem{axiom}[theorem]{Axiom}
|
| 22 |
|
|
\newtheorem{case}[theorem]{Case}
|
| 23 |
|
|
\newtheorem{claim}[theorem]{Claim}
|
| 24 |
|
|
\newtheorem{conclusion}[theorem]{Conclusion}
|
| 25 |
|
|
\newtheorem{condition}[theorem]{Condition}
|
| 26 |
|
|
\newtheorem{conjecture}[theorem]{Conjecture}
|
| 27 |
|
|
\newtheorem{corollary}[theorem]{Corollary}
|
| 28 |
|
|
\newtheorem{criterion}[theorem]{Criterion}
|
| 29 |
|
|
\newtheorem{definition}[theorem]{Definition}
|
| 30 |
|
|
\newtheorem{example}[theorem]{Example}
|
| 31 |
|
|
\newtheorem{exercise}[theorem]{Exercise}
|
| 32 |
|
|
\newtheorem{lemma}[theorem]{Lemma}
|
| 33 |
|
|
\newtheorem{notation}[theorem]{Notation}
|
| 34 |
|
|
\newtheorem{problem}[theorem]{Problem}
|
| 35 |
|
|
\newtheorem{proposition}[theorem]{Proposition}
|
| 36 |
|
|
\newtheorem{remark}[theorem]{Remark}
|
| 37 |
|
|
\newtheorem{solution}[theorem]{Solution}
|
| 38 |
|
|
\newtheorem{summary}[theorem]{Summary}
|
| 39 |
|
|
\newenvironment{proof}[1][Proof]{\noindent\textbf{#1.} }{\ \rule{0.5em}{0.5em}}
|
| 40 |
|
|
\begin{document}
|
| 41 |
|
|
\section{\label{Sec:pbc}Periodic Boundary Conditions}
|
| 42 |
|
|
|
| 43 |
tim |
904 |
\textit{Periodic boundary conditions} are widely used to simulate truly
|
| 44 |
tim |
928 |
macroscopic systems with a relatively small number of particles. The
|
| 45 |
|
|
simulation box is replicated throughout space to form an infinite lattice.
|
| 46 |
|
|
During the simulation, when a particle moves in the primary cell, its image in
|
| 47 |
|
|
other boxes move in exactly the same direction with exactly the same
|
| 48 |
|
|
orientation.Thus, as a particle leaves the primary cell, one of its images
|
| 49 |
|
|
will enter through the opposite face.If the simulation box is large enough to
|
| 50 |
|
|
avoid "feeling" the symmetries of the periodic lattice, surface effects can be
|
| 51 |
|
|
ignored. Cubic, orthorhombic and parallelepiped are the available periodic
|
| 52 |
|
|
cells In OOPSE. We use a matrix to describe the property of the simulation
|
| 53 |
|
|
box. Therefore, both the size and shape of the simulation box can be changed
|
| 54 |
|
|
during the simulation. The transformation from box space vector $\mathbf{s}$
|
| 55 |
|
|
to its corresponding real space vector $\mathbf{r}$ is defined by
|
| 56 |
tim |
903 |
\begin{equation}
|
| 57 |
tim |
928 |
\mathbf{r}=\underline{\underline{H}}\cdot\mathbf{s}%
|
| 58 |
tim |
903 |
\end{equation}
|
| 59 |
|
|
|
| 60 |
|
|
|
| 61 |
tim |
904 |
where $H=(h_{x},h_{y},h_{z})$ is a transformation matrix made up of the three
|
| 62 |
tim |
928 |
box axis vectors. $h_{x},h_{y}$ and $h_{z}$ represent the three sides of the
|
| 63 |
tim |
904 |
simulation box respectively.
|
| 64 |
tim |
903 |
|
| 65 |
tim |
928 |
To find the minimum image, we convert the real vector to its corresponding
|
| 66 |
|
|
vector in box space first, \bigskip%
|
| 67 |
tim |
903 |
\begin{equation}
|
| 68 |
tim |
928 |
\mathbf{s}=\underline{\underline{H}}^{-1}\cdot\mathbf{r}%
|
| 69 |
tim |
903 |
\end{equation}
|
| 70 |
tim |
928 |
And then, each element of $\mathbf{s}$ is wrapped to lie between -0.5 to 0.5,
|
| 71 |
tim |
903 |
\begin{equation}
|
| 72 |
tim |
904 |
s_{i}^{\prime}=s_{i}-round(s_{i})
|
| 73 |
tim |
903 |
\end{equation}
|
| 74 |
tim |
928 |
where
|
| 75 |
tim |
904 |
|
| 76 |
|
|
%
|
| 77 |
tim |
903 |
|
| 78 |
tim |
904 |
\begin{equation}
|
| 79 |
tim |
928 |
round(x)=\left\{
|
| 80 |
|
|
\begin{array}
|
| 81 |
|
|
[c]{c}%
|
| 82 |
|
|
\lfloor{x+0.5}\rfloor & \text{if \ }x\geqslant0\\
|
| 83 |
|
|
\lceil{x-0.5}\rceil & \text{otherwise}%
|
| 84 |
|
|
\end{array}
|
| 85 |
|
|
\right.
|
| 86 |
tim |
904 |
\end{equation}
|
| 87 |
tim |
903 |
|
| 88 |
tim |
904 |
|
| 89 |
|
|
For example, $round(3.6)=4$,$round(3.1)=3$, $round(-3.6)=-4$, $round(-3.1)=-3$.
|
| 90 |
|
|
|
| 91 |
tim |
928 |
Finally, we obtain the minimum image coordinates by transforming back to real space,%
|
| 92 |
tim |
904 |
|
| 93 |
tim |
903 |
\begin{equation}
|
| 94 |
tim |
928 |
\mathbf{r}^{\prime}=\underline{\underline{H}}^{-1}\cdot\mathbf{s}^{\prime}%
|
| 95 |
tim |
903 |
\end{equation}
|
| 96 |
|
|
|
| 97 |
|
|
|
| 98 |
|
|
|
| 99 |
tim |
904 |
\end{document} |